

Comptes Rendus Mathématique

Alexei Ya. Kanel-Belov, Igor Melnikov and Ivan Mitrofanov

On cogrowth function of algebras and its logarithmical gap

Volume 359, issue 3 (2021), p. 297-303

Published online: 20 April 2021

https://doi.org/10.5802/crmath.170

This article is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0/

Les Comptes Rendus. Mathématique sont membres du Centre Mersenne pour l'édition scientifique ouverte www.centre-mersenne.org e-ISSN: 1778-3569

Comptes Rendus Mathématique

2021, Vol. 359, 3, p. 297-303 https://doi.org/10.5802/crmath.170

Algebra / Algèbre

On cogrowth function of algebras and its logarithmical gap

Sur la fonction de co-croissance des algèbres et son écart logarithmique

Alexei Ya. Kanel-Belov^a, Igor Melnikov^b and Ivan Mitrofanov^{*, c}

E-mails: kanelster@gmail.com, melnikov_ig@mail.ru, phortim@yandex.ru

Abstract. Let $A \cong k\langle X \rangle / I$ be an associative algebra. A finite word over alphabet X is I-reducible if its image in A is a k-linear combination of length-lexicographically lesser words. An *obstruction* is a subword-minimal I-reducible word. If the number of obstructions is finite then I has a finite Gröbner basis, and the word problem for the algebra is decidable. A *cogrowth* function is the number of obstructions of length $\leq n$. We show that the cogrowth function of a finitely presented algebra is either bounded or at least logarithmical. We also show that an uniformly recurrent word has at least logarithmical cogrowth.

Résumé. Soit $A \cong k\langle X \rangle/I$ une algèbre associative. Un mot fini sur l'alphabet X est I-réductible si son image dans A est une combinaison linéaire k de mots de longueur lexicographiquement moindre. Une obstruction dans un mot minimal I-réductible. Si le nombre d'obstructions est fini, alors I a une base finie Gröbner, et le mot problème pour l'algèbre est décidable. Une fonction co-croissance est le nombre d'obstructions de longueur $\le n$. Nous montrons que la fonction de co-croissance d'une algèbre finement présentée est soit bornée, soit au moins logarithmique. Nous montrons également qu'un mot uniformément récurrent a au moins une co-croissance logarithmique.

Funding. The paper was supported by Russian Science Foundation (grant no. 17-11-01377).

Manuscript received 6 July 2020, revised and accepted 14 December 2020.

^a Bar Ilan University, Ramat-Gan, Israel

 $[^]b$ Moscow Institute of Physics and Technology, Dolgoprudny, Russia

^c C.N.R.S., École Normale Superieur, PSL Research University, France

^{*} Corresponding author.

1. Cogrowth of associative algebras

Let A be a finitely generated associative algebra over a field k. Then $A \cong k\langle X \rangle / I$, where $k\langle X \rangle$ is a free algebra with generating set $X = \{x_1, \ldots, x_s\}$ and I is a two-sided *ideal of relations*. Further we assume the generating set is fixed. Let "<" be a well-ordering of X, $x_1 < \cdots < x_s$. This order can be extended to a linear order on the set $\langle X \rangle$ of monomials of $k\langle X \rangle$, i.e. finite words in alphabet X: $u_1 < u_2$ if $|u_1| < |u_2|$ or $|u_1| = |u_2|$ and $u_1 <_{lex} u_2$. Here $|\cdot|$ denotes the length of a word, i.e. the degree of a monomial, and $<_{lex}$ is the lexicographical order. For $f \in k\langle X \rangle$ we denote by \widehat{f} its leading (with respect to <) monomial. An algebra $k\langle X \rangle / I$ is said to be *finitely presented* if I is a finitely generated ideal.

We call a monomial $w \in \langle X \rangle$ *I-reducible* if $w = \widehat{f}$ for some relation $f \in I$. In the opposite case, we call w *I-irreducible*. Denote the set of all monomials of degree at most n by $\langle X \rangle_{\leq n}$. Let $A_n \subseteq A$ be the image of $\langle X \rangle_{\leq n}$ under the canonical map. The *growth* $V_A(n)$ is the dimension of the linear span of A_n . It is easily shown that $V_A(n)$ is equal to the number of *I*-irreducible monomials in $\langle X \rangle_{\leq n}$.

We call a monomial $w \in \langle X \rangle$ an *obstruction* for I if w is I-reducible, but any proper subword of w is I-irreducible. The *cogrowth* of algebra A is defined as the function $O_A(n)$, the number of obstructions of length $\leq n$.

The celebrated Bergman gap theorem says that the growth function $V_A(n)$ is either constant, linear of no less than (n+1)(n+2)/2 [2]. In this section we give a non-trivial bound on the cogrowth function for finitely presented algebras.

Theorem 1. Let A be a finitely presented algebra. Then the cogrowth function $O_A(n)$ is either constant or no less than logarithmic: $O_A(n) \ge \log_2(n) - C$. The constant C depends only on the maximal length of a relation.

Recall that a *Gröbner basis* of an ideal I is a subset $G \subseteq I$ such that for any $f \in I$ there exists $g \in G$ such that the leading monomial of f contains the leading monomial of g as a subword. One of Gröbner bases can be obtained by taking for each obstruction g a relation g as a subword full g and g are lation g as a subword.

If f and g are two elements of $k\langle X\rangle$, $g\in I$ and the word \widehat{g} is a subword of \widehat{f} , then f can be replaced by f' such that $f'-f\in I$ and $\widehat{f}'<\widehat{f}$. This operation is called a *reduction*.

Let f and g be two elements of $k\langle X \rangle$. If $u_1u_2 = \widehat{f}$ and $u_2u_3 = \widehat{g}$ for some $u_1, u_2, u_3 \in \langle X \rangle$, then the word $u_1u_2u_3$ is called a *composition* of f and g, and the normed element $fu_3 - u_1g$ is the result of this composition.

Lemma 2 (Diamond Lemma [3]). Let two-sided ideal I be generated by a subset U of a free associative algebra $k\langle X \rangle$. Suppose that

- (i) there are no $f, g \in U$ such that \hat{g} is a proper subword of \hat{f} , and
- (ii) for any two elements $f, g \in U$ the result of any their composition can be reduced to 0 after finitely many reductions with elements from U.

Then the set U is a Gröbner basis of I.

Example. Consider the associative algebra $A \cong k\langle x, y \rangle / I$, where I is a two-sided ideal generated by $f = x^2 - yx$. It can be shown that the set $\{xy^ix - y^{i+1}x \mid i \ge 0\}$ is a Gröbner basis of I, so $O_A(n) = n - 1$ for $n \ge 2$. A monomial is I-irreducible if and only if it contains at most one letter x, hence $V_A(n) = (n+1)(n+2)/2$.

Theorem 1 directly follows from

Lemma 3. Let $A \cong k\langle X \rangle / I$ be a finitely presented algebra and let N be greater than the maximal length of its defining relation. Suppose there are no obstructions of length from the interval [N,2N]. Then I has a finite Gröbner basis.

Proof. Let S be the set of all obstructions in $\langle X \rangle_{\leq N}$. Take for each monomial $w \in S$ a relation f_w such that $\widehat{f_w} = w$. Let us show that this set $\{f_w \mid s \in S\}$ forms a Gröbner basis for I. Indeed, I is generated by the set $\{f_w \mid w \in S\}$. The condition (i) of the Diamond Lemma holds automatically because no obstruction can be a proper subword of another obstruction. Let us check the condition (ii).

Let $u,v\in S$ and let h be the result of some composition of f_u and f_v . It is clear that the leading monomial of h has length less then 2N. We start reducing h with elements from $\{f_w \mid w \in S\}$. After finally many steps we obtain either 0 or an element h' such that \hat{h}' does not contain subwords from S. But since there are no obstructions from [N,2N], the second case is impossible.

The *word problem* for a finitely presented algebra, i.e. the question whether a given element $f \in k\langle X \rangle$ lies in I, is undecidable in the general case. But if I has a finite Gröebner basis G, then A has a decidable word problem. Note also that the problem whether a given element in a finitely presented associative algebra is a zero divisor (or is it nilpotent) is undecidable, even if we are given a finite Gröebner basis [6]. But if the ideal of relations is generated by monomials and has a finite Gröebner basis, the nilpotency problem is algorithmically decidable [2].

2. Colength of a period

A *monomial algebra* is a finitely generated associative algebra whose defining relations are monomials. Let u be a finite word in alphabet X and let A_u be the algebra $k\langle X\rangle/I$, where I is generated by the set of monomials that are not subwords of the periodic sequence u^{∞} . Such algebras A_u play important role in the study of monomial algebras [2].

Let W be a sequence on alphabet X, i.e. a map $X^{\mathbb{N}}$. A finite word v is an *obstruction* for W if v is not a subword of W but any proper subword v' of v is a subword of W. If u is a finite word, the number of obstructions for u^{∞} is always finite. We call this number the *colength* of the period u. We say that the period is *defined by* the set of obstructions.

In [5], G. R. Chelnokov proved that a sequence of minimal period n cannot be defined by fewer than $\log_2 n + 1$ obstructions. G. R. Chelnokov also gave for infinitely many n_i an example of a binary sequence with minimal period n_i and colength of the period $\log_{\varphi} n_i$, where $\varphi = \frac{\sqrt{5}+1}{2}$. P. A. Lavrov found the precise lower estimation for colength of period.

Theorem 4 (cf. [7]). Let $A = \{a, b\}$ be a binary alphabet. Let u be a word of length n and colength c, then $\varphi_c \ge n$, where φ_c is the c-th Fibonacci number ($\varphi_1 = 1$, $\varphi_2 = 2$, $\varphi_3 = 3$, $\varphi_4 = 5$ etc.).

The case of an arbitrary alphabet was considered in [8] by P. A. Lavrov and independently in [4] by I. I. Bogdanov and G. R. Chelnokov.

3. Cogrowth function for an uniformly recurrent sequence

A sequence of letters W on a finite alphabet is called *uniformly recurrent* (u.r. for brevity) if for any finite subword u of W there exists a number C(u, W) such that any subword of W having length C(u, W) contains u as a subword. This property can be considered as a generalization of periodicity [9].

For a sequence of letters W denote by A_W the algebra $k\langle X \rangle/I_W$, where I_W is generated by the set of monomials that are not subwords of W. A monomial algebra A is called *almost simple* if each of its proper factor algebras B = A/I is nilpotent. In [2] it was shown that almost simple monomial algebras are algebras of the form A_W , where W is an u.r. sequence.

Again, a finite word u is an *obstruction* for W if it is not a subword of W but any its proper subword is a subword of W. The *cogrowth function* $O_W(n)$ is the number of obstructions with length $\leq n$.

Theorem 5. Let W be an u.r. non-periodic sequence on a binary alphabet. Then $\overline{\lim_{n\to\infty}}O_W(n)/\log_3 n \ge 1$.

A *factorial language* is a set \mathscr{U} of finite words such that for any $u \in \mathscr{U}$ all subwords of u also belong to \mathscr{U} . Denote by \mathscr{U}_k the words of \mathscr{U} having length k. A finite word u is called an *obstruction* for \mathscr{U} if $u \notin \mathscr{U}$, but any proper subword belongs to \mathscr{U} . Denote the factorial language consisting of all subwords of a given sequence W by $\mathscr{L}(W)$. To prove Theorem 5 we will assume the contrary and construct an infinite factorial language that is a proper subset of $\mathscr{L}(W)$.

Let \mathscr{U} be a factorial language and k be an integer. The *Rauzy graph* $R_k(\mathscr{U})$ of order k is the directed graph with vertex set \mathscr{U}_k and edge set \mathscr{U}_{k+1} . Two vertices u_1 and u_2 of $R_k(\mathscr{U})$ are connected by an edge u_3 if and only if $u_3 \in \mathscr{U}$, u_1 is a prefix of u_3 , and u_2 is a suffix of u_3 .

For a sequence W we denote the graph $R_k(\mathcal{L}(W))$ by $R_k(W)$. Further the word graph will always mean a directed graph, the word path will always mean a directed path in a directed graph. The length |p| of a path p is the number of its vertices, i.e. the number of edges plus one. If a path p_2 starts at the end of a path p_1 , we denote their concatenation by p_1p_2 . Recall that a directed graph is strongly connected if for every pair of vertices $\{v_1, v_2\}$ it contains a directed path from v_1 to v_2 and a directed path from v_2 to v_1 . It is clear that any Rauzy graph of an u.r. non-periodic sequence is a strongly connected digraph and is not a cycle.

Given a directed graph H, its *directed line graph* L(H) is a directed graph such that each vertex of L(H) represents an edge of H, and two vertices of L(H) that represent edges e_1 and e_2 of H are connected by an arrow from e_1 to e_2 if and only if the head of e_1 meets the tail of e_2 . For any k > 0 there is one-to-one correspondence between paths of length k in L(H) and paths of length k + 1 in H.

Let \mathscr{U} be a factorial language and let $m \ge n$. A word $a_1 \dots a_m \in \mathscr{U}_m$ corresponds to a path of length m-n+1 in $R_n(\mathscr{U})$, this path visits vertices $a_1 \dots a_n$, $a_2 \dots a_{n+1}, \dots, a_{m-n+1} \dots a_m$. The graph $R_m(\mathscr{U})$ can be considered as a subgraph of $L^{m-n}(R_n(\mathscr{U}))$. Moreover, the graph $R_{n+1}(\mathscr{U})$ is obtained from $L(R_n(\mathscr{U}))$ by removing edges that correspond to obstructions of length n+1.

We call a vertex v of a directed graph H a fork if v has out-degree more than one. Furthermore we assume that all forks have out-degrees exactly 2 (this is the case of a binary alphabet). For a directed graph H we define its *entropy regulator*: er(H) is the minimal integer such that any directed path of length $ext{er}(H)$ in H contains at least one vertex that is a fork in H.

Proposition 6. Let H be a strongly connected digraph that is not a cycle. Then $er(H) < \infty$.

Proof. Assume the contrary. Let n be the total number of vertices in H. Consider a path of length n+1 in H that does not contain forks. Note that this path visits some vertex v at least twice. This means that starting from v it is possible to obtain only vertices of this cycle. Since the graph H is strongly connected, H coincides with this cycle.

Lemma 7. Let H be a strongly connected digraph, er(H) = K. Then er(L(H)) = K.

Proof. The forks of the digraph L(H) are edges in H that end at forks. Consider K vertices forming a path in L(H). This path corresponds to a path of length K+1 in H. Since $\operatorname{er}(H) \leq K$, there exists an edge of this path that ends at a fork.

Lemma 8. Let H be a strongly connected digraph, $\operatorname{er}(H) = K$, let v be a fork in H, the edge e starts at v. Let the digraph H^* be obtained from H by removing the edge e. Let G be a subgraph of H^* that consists of all vertices and edges reachable from v. Then G is a strongly connected digraph. Also G is either a cycle of length at most K, or $\operatorname{er}(G) \leq 2K$.

Proof. First we prove that the digraph G is strongly connected. Let v' be an arbitrary vertex of G, then there is a path in G from v to v'. Consider a path p of minimum length from v' to v in H. Such a path exists, for otherwise H is not strongly connected. The path p does not contain the

edge e, for otherwise it could be shortened. This means that p connects v' to v in the digraph G. From any vertex of G we can reach the vertex v, hence G is strongly connected.

Consider an arbitrary path p of length 2K in the digraph G, suppose that p does not have forks. Since $\operatorname{er}(H) = K$, then in p there are two vertices v_1 and v_2 which are forks in H and there are no forks in P between P and P are two find a vertex of P that is a fork in P and P are then there is a cycle P in P and P are the following arbitrary path P and P are two forms of P and P are the following path P and P are the following path P and P are the following path P are the following path P and P are the following path P are the following path P and P are the following path P and P are the following path P and P are the following path P are the following path P and P are the following path P are the following pa

Corollary 9. Let W be a binary u.r. non-periodic sequence, then for any n

$$\operatorname{er}(R_{n-1}(W)) \le 2^{O_W(n)}$$
.

Proof. We prove this by induction on n. The base case n=0 is obvious. Let $\operatorname{er}(R_{n-1}(W))=K$ and suppose W has exactly a obstructions of length n+1. These obstructions correspond to paths of length 2 in the graph $R_{n-1}(W)$, i.e. edges of the graph $H:=L(R_{n-1}(W))$. From Lemma 7 we have that $\operatorname{er}(H)=K$. The graph $R_n(W)$ is obtained from the graph H by removing some edges e_1,e_2,\ldots,e_a . Since W is a u.r. sequence, the digraphs H and $H-\{e_1,e_2,\ldots,e_a\}$ are strongly connected. This means that the edges e_1,\ldots,e_a start at different forks of H. We also know that $R_n(W)$ is not a cycle. The graph $R_n(W)$ can be obtained by removing edges e_i from H one by one. Applying Lemma 8 a times, we show that $\operatorname{er}(R_n(W)) \leq 2^a K$, which completes the proof.

Lemma 10. Let H be a strongly connected digraph, $\operatorname{er}(H) = K$, $k \ge 3K$. Let u be an arbitrary edge of the graph $L^k(H)$. Then the digraph $L^k(H) - u$ contains a strongly connected subgraph B such that $\operatorname{er}(B) \le 3K$.

Proof. Consider in H the path p_u of length k+2, corresponding to u. Divide first k vertices of p_u into three subpaths of length at least K. Since $\operatorname{er}(H) = K$, each of these subpaths contains a fork (some of these forks can coincide). Next, we consider three cases.

Case 1. Assume that the path p_u visits at least two different forks of H. Then p_u contains a subpath of the form pe, where p is a path connecting two different forks v_1 and v_2 (and not containing other forks) and e is an edge starting at v_2 . It is clear that the length of p_1 does not exceed K+1. Lemma 8 implies that there is a strongly connected subgraph G of H such that G contains the vertex v_2 but does not contain the edge e_2 .

If *G* is not a cycle, then $\operatorname{er}(G) \leq 2K$. Hence, the graph $B := L^k(G)$ is a subgraph of $L^k(H)$, and from Lemma 7 we have $\operatorname{er}(B) \leq 2K$. It is also clear that the digraph *B* does not contain the edge *u*.

If G is a cycle, we denote it by p_1 and denote its first edge by e_1 (we assume that v_2 is the first and last vertex of p_1). The length of p_1 does not exceed K. Among the vertices of p_1 there are no forks of H besides v_2 . Therefore, $v_1 \not\in p_1$. Call a path t in H good, if t does not contain the subpath pe. Let us show that for any good path s in H there are two different paths s_1 and s_2 starting at the end of s such that $|s_1| = |s_2| = 3K$ and the paths s_1 , s_2 are also good.

It is clear that for any good path we can add an edge such that the new path is also good. There is a path t_1 , $|t_1| < K$ such that st_1 is a good path and ends at some fork v. If $v \ne v_2$, then two edges e_i , e_j start at v, the paths st_1e_i and st_2e_j are good, and each of them can be prolonged further to a good path of arbitrary length. If $v = v_2$, then the paths st_1p_1e and $st_1p_1e_1$ are good and can be extended.

Consider in $L^k(H)$ a subgraph that consists of all vertices and edges that are good paths in H, let B be a strongly connected component of this subgraph. It is clear that $\operatorname{er}(B) \leq 3K$ and the digraph B does not contain the edge u.

Case 2. Assume that the path p_u visits exactly one fork v_1 (at least 3 times), but there are forks besides v_1 in H. There are two edges e_1 and e_2 that start at v_1 . Starting with these edges and

moving until forks, we obtain two paths p_1 and p_2 . The edge e_1 is the first edge of p_1 , the edge e_2 is the first of p_2 , and $|p_1|, |p_2| \le K$. We can assume that p_1 is a subpath of p_u . Then p_1 ends at v_1 (and is a cycle) and p_2 ends at some fork $v_2 \ne v_1$ (if $v_1 = v_2$, then v_1 is the only fork reachable from v_1). We complete the proof as in the previous case: p_1e_1 is a subpath of p_u . We call a path good if it does not contain p_1e_1 . As above, we can show that if s is a good path in s_1 , then there are two different paths s_1 and s_2 such that $|s_1| = |s_2| = 3L$ and the paths s_1 , s_2 are also good.

As above, B will be a strongly connected component in the subgraph of $L^k(H)$ that consists of vertices and edges corresponding to good paths in H.

Case 3. Assume that there is only one fork v in H. Then there are two cycles p_1 and p_2 of length $\le K$ that start and end at v. Let e_1 be the first edge of p_1 and let e_2 be the first edge of p_2 . The path p_u contains one of the following subpaths: p_1e_1 , p_2e_2 , $p_1p_1e_2$ or $p_2p_2e_1$. Denote this path by t. Call a path good if it does not contain t. A simple check shows that we can complete the proof as in the previous cases.

Proof of Theorem 5. Arrange all the obstructions u_i of the u.r. binary sequence W by their length in non-descending order. If $\varliminf_{k\to\infty} \frac{\log_3|u_k|}{k} \le 1$, then the statement of the Theorem holds. If $\varliminf_{k\to\infty} \frac{\log_3|u_k|}{k} > 1$ then the sequence $|u_k|/3^k$ tends to infinity. Hence, there exists n_0 such that $|u_{n_0}|/3^{n_0} > 10$ and $|u_n|/3^n > |u_{n_0}|/3^{n_0}$ for all $n > n_0$. In this situation, $|u_{n_0+k}| > |u_{n_0}| + 4 \cdot 2^{n_0} \cdot 3^k$ for any k > 0.

Let $v_i = u_i$ if $1 \le i \le n_0$ and let v_i be a subword of u_i of length $|u_{n_0}| + 4 \cdot 2^{n_0} \cdot 3^{i-n_0}$ if $i > n_0$. Denote by $\mathscr U$ the set of all finite binary words that do not contain subwords from $\{v_i\}$. It is clear that $\mathscr U$ is a proper subset of $\mathscr L(W)$. We get a contradiction with the uniform recurrence of W if we show that the language $\mathscr U$ is infinite. The Rauzy graph $R_{u_{n_0}-1}(\mathscr U)$ is equal to $R_{u_{n_0}-1}(W)$, and from Corollary 9 we have $\operatorname{er}(R_{u_{n_0}-1}(\mathscr L)) \le 2^{n_0}$.

By induction on n we show that for all $n \ge n_0$ the graph $R_{|\nu_n|-1}(\mathcal{U})$ contains a strongly connected subgraph H_n such that $\operatorname{er}(H_n) \le 3^{n-n_0} \cdot 2^{n_0}$. We already have the base case $n=n_0$. The graph $R_{|\nu_{n+1}|-1}(\mathcal{U})$ is obtained from $L^{|\nu_{n+1}|-|\nu_n|}(R_{|\nu_n|-1})$ by removing at most one edge. Note that $|\nu_{n+1}|-|\nu_n|>3\cdot\operatorname{er}(H_n)$, so we can use Lemma 10 for the digraph H_n and $k=|\nu_{n+1}|-|\nu_n|$. This completes the inductive step.

All the graphs $R_{|y_n|-1}(\mathcal{U})$ are nonempty and, therefore, the language \mathcal{U} is infinite. \square

For a sequence W over an alphabet $A = \{a_1, ..., a_k\}$ of size k, we replace in W each letter a_i by 0^i1 and obtain a binary sequence W'. If W is u.r. and non-periodic, then W' is also u.r. and non-periodic. It is clear that all long enough obstructions of W' correspond to some of the obstructions of W, so we obtain

Corollary 11. Let W be an u.r. non-periodic sequence on a finite alphabet. Then $\overline{\lim_{n\to\infty}}O_W(n)/\log_3 n \ge 1$.

Example. Consider a finite alphabet $\{0,1\}$ and the sequence of words u_i , defined recursively as $u_0=0$, $u_1=01$, $u_k=u_{k-1}u_{k-2}$ for $k\geq 2$. Since u_i is a prefix of u_{i+1} , the sequence (u_i) has a limit, called a *Fibonacci word* F=0100101001001.... In Example 25 of [1] the set $\{11,000,10101,00100100,...\}$ of obstructions of F is described. These words have lengths equal to Fibonacci numbers. Since the Fibonacci word is u.r., in Theorem 5 we cannot replace the constant 3 by a number smaller than $\frac{\sqrt{5}+1}{2}$.

References

- [1] M.-P. Béal, F. Mignosi, A. Restivo, M. Sciortino, "Forbidden Words in Symbolic Dynamics", *Adv. Appl. Math.* **25** (2020), no. 2, p. 163-193.
- [2] A. Y. Belov, V. V. Borisenko, V. N. Latyshev, "Monomial algebras", J. Math. Sci., New York 87 (1997), no. 3, p. 3463-3575.

- [3] G. M. Bergman, "The diamond lemma for ring theory", Adv. Math. 29 (1978), no. 2, p. 178-218.
- [4] I. I. Bogdanov, G. R. Chelnokov, "The maximal length of the period of a periodic word defined by restrictions", https://arxiv.org/abs/1305.0460, 2013.
- [5] G. R. Chelnokov, "On the number of restrictions defining a periodic sequence", *Model and Analysis of Inform. Systems* 14 (2007), no. 2, p. 12-16, in Russian.
- [6] I. Ivanov-Pogodaev, S. Malev, "Finite Gröbner basis algebras with unsolvable nilpotency problem and zero divisors problem", J. Algebra 508 (2018), p. 575-588.
- [7] P. A. Lavrov, "Number of restrictions required for periodic word in the finite alphabet", https://arxiv.org/abs/1209. 0220, 2012.
- [8] —, "Minimal number of restrictions defining a periodic word", https://arxiv.org/abs/1412.5201, 2014.
- [9] A. A. Muchnik, Y. L. Pritykin, A. L. Semenov, "Sequences close to periodic", Russ. Math. Surv. 64 (2009), no. 5, p. 805-871.