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Abstract. Let A= k(X)/I be an associative algebra. A finite word over alphabet X is I-reducible if its image in
Ais a k-linear combination of length-lexicographically lesser words. An obstruction is a subword-minimal I-
reducible word. If the number of obstructions is finite then I has a finite Grobner basis, and the word problem
for the algebra is decidable. A cogrowth function is the number of obstructions of length < n. We show that
the cogrowth function of a finitely presented algebra is either bounded or at least logarithmical. We also show
that an uniformly recurrent word has at least logarithmical cogrowth.

Résumé. Soit A = k(X)/I une algebre associative. Un mot fini sur I'alphabet X est I-réductible si son image
dans A est une combinaison linéaire k de mots de longueur lexicographiquement moindre. Une obstruction
dans un mot minimal I -réductible. Si le nombre d’obstructions est fini, alors I a une base finie Grébner,
et le mot probléme pour 'algebre est décidable. Une fonction co-croissance est le nombre d’obstructions de
longueur < n. Nous montrons que la fonction de co-croissance d'une algebre finement présentée est soit
bornée, soit au moins logarithmique. Nous montrons également qu'un mot uniformément récurrent a au
moins une co-croissance logarithmique.
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1. Cogrowth of associative algebras

Let A be a finitely generated associative algebra over a field k. Then A = k(X)/I, where k(X) is a
free algebra with generating set X = {x),..., x5} and I is a two-sided ideal of relations. Further we
assume the generating set is fixed. Let “<” be a well-ordering of X, x; < --- < x;5. This order can
be extended to a linear order on the set (X) of monomials of k(X), i.e. finite words in alphabet
X:uy < up if |ug| < |up| or |uy| = |up| and u; <y uy. Here |- | denotes the length ofaword,Ai.e.
the degree of a monomial, and <y, is the lexicographical order. For f € k(X) we denote by f its
leading (with respect to <) monomial. An algebra k(X)/I is said to be finitely presented if I is a
finitely generated ideal. R

We call a monomial w € (X) I-reducible if w = f for some relation f € I. In the opposite case,
we call w I-irreducible. Denote the set of all monomials of degree at most n by (X)<,.Let A, € A
be the image of (X) <, under the canonical map. The growth V4(n) is the dimension of the linear
span of A,. It is easily shown that V4(n) is equal to the number of I-irreducible monomials in
(X)<n-

We call a monomial w € (X) an obstruction for I if w is I-reducible, but any proper subword
of w is I-irreducible. The cogrowth of algebra A is defined as the function O 4(n), the number of
obstructions of length < n.

The celebrated Bergman gap theorem says that the growth function V4 (n) is either constant,
linear of no less than (n + 1)(n + 2)/2 [2]. In this section we give a non-trivial bound on the
cogrowth function for finitely presented algebras.

Theorem 1. Let A be a finitely presented algebra. Then the cogrowth function O4(n) is either
constant or no less than logarithmic: Oa(n) = log,(n) — C. The constant C depends only on the
maximal length of a relation.

Recall that a Grobner basis of an ideal I is a subset G < I such that for any f € I there exists
g € G such that the leading monomial of f contains the leading monomial of g as a subword.
One of Grébner bases can be obtained by taking for each obstruction u a relation f, € I such that
fu=1u.

If f and g are two elements of k(X), g € I and the word g is a subword of f, then f can be
replaced by f’ such that f'— f € I and f’ < f This operation is called a reduction.

Let f and g be two elements of k(X). If u;u, = fand upus = g for some uy, up, uz € (X), then
the word u; upus is called a composition of f and g, and the normed element fus — u; g is the
result of this composition.

Lemma 2 (Diamond Lemma [3]). Let two-sided ideal I be generated by a subset U of a free
associative algebra k(X). Suppose that

(i) thereareno f,g € U such that g is a proper subword of f, and
(ii) for any two elements f, g € U the result of any their composition can be reduced to 0 after
finitely many reductions with elements from U.

Then the set U is a Grobner basis of I.

Example. Consider the associative algebra A = k(x, y)/I, where I is a two-sided ideal generated
by f = x?> — yx. It can be shown that the set {xy’x — y'*1x|i = 0} is a Grobner basis of I, so
Oa(n) =n—1for n = 2. Amonomial is I-irreducible if and only if it contains at most one letter x,
hence V4(n) = (n+1)(n+2)/2.

Theorem 1 directly follows from

Lemma 3. Let A = k(X)/I be a finitely presented algebra and let N be greater than the maximal
length of its defining relation. Suppose there are no obstructions of length from the interval [N,2N].
Then I has a finite Grobner basis.
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Proof. Let S be the set of all obstructions in (X)<y. Take for each monomial w € S a relation f,
such that ﬁ\u = w. Let us show that this set {f, | s € S} forms a Grébner basis for I. Indeed, I is
generated by the set {f;, | w € S}. The condition (i) of the Diamond Lemma holds automatically
because no obstruction can be a proper subword of another obstruction. Let us check the
condition (ii).

Let u, v € S and let & be the result of some composition of f;, and f,. It is clear that the leading
monomial of % has length less then 2 N. We start reducing & with elements from {f,, | w € S}. After
finally many steps we obtain either 0 or an element /'’ such that i’ does not contain subwords
from S. But since there are no obstructions from [V, 2N], the second case is impossible. O

The word problem for a finitely presented algebra, i.e. the question whether a given element
f € k(X) liesin I, is undecidable in the general case. But if I has a finite Groebner basis G, then A
has a decidable word problem. Note also that the problem whether a given element in a finitely
presented associative algebra is a zero divisor (or is it nilpotent) is undecidable, even if we are
given a finite Groebner basis [6]. But if the ideal of relations is generated by monomials and has a
finite Gréebner basis, the nilpotency problem is algorithmically decidable [2].

2. Colength of a period

A monomial algebra is a finitely generated associative algebra whose defining relations are
monomials. Let u be a finite word in alphabet X and let A, be the algebra k(X)/I, where I is
generated by the set of monomials that are not subwords of the periodic sequence u*. Such
algebras A, play important role in the study of monomial algebras [2].

Let W be a sequence on alphabet X, i.e. a map XV. A finite word v is an obstruction for W if v
is not a subword of W but any proper subword v’ of v is a subword of W. If u is a finite word, the
number of obstructions for u* is always finite. We call this number the colength of the period u.
We say that the period is defined by the set of obstructions.

In [5], G. R. Chelnokov proved that a sequence of minimal period »n cannot be defined by fewer
than log, n + 1 obstructions. G. R. Chelnokov also gave for infinitely many n; an example of a
binary sequence with minimal period 7; and colength of the period log, n;, where ¢ = @
P. A. Lavrov found the precise lower estimation for colength of period.

Theorem 4 (cf. [7]). Let A ={a, b} be a binary alphabet. Let u be a word of length n and colength c,
then @, = n, where @ is the c-th Fibonacci number (p1 =1, ¢2 =2, p3 =3, ¢4 =5 etc.).

The case of an arbitrary alphabet was considered in [8] by P. A. Lavrov and independently in [4]
by I. I. Bogdanov and G. R. Chelnokov.

3. Cogrowth function for an uniformly recurrent sequence

A sequence of letters W on a finite alphabet is called uniformly recurrent (u.r. for brevity) if for
any finite subword u of W there exists a number C(u, W) such that any subword of W having
length C(u, W) contains u as a subword. This property can be considered as a generalization of
periodicity [9].

For a sequence of letters W denote by Ay the algebra k(X)/ I, where Iy is generated by the
set of monomials that are not subwords of W. A monomial algebra A is called almost simple if
each of its proper factor algebras B = A/I is nilpotent. In [2] it was shown that almost simple
monomial algebras are algebras of the form Ay, where W is an u.r. sequence.

Again, a finite word u is an obstruction for W if it is not a subword of W but any its proper
subword is a subword of W. The cogrowth function Ow (n) is the number of obstructions with
length < n.
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Theorem 5. Let W be an u.r non-periodic sequence on a binary alphabet. Then
lim;,—.ocOw(n)/logg n = 1.

A factorial language is a set % of finite words such that for any u € % all subwords of u also
belong to % . Denote by %} the words of % havinglength k. A finite word u is called an obstruction
for % if u ¢ %, but any proper subword belongs to % . Denote the factorial language consisting of
all subwords of a given sequence W by £ (W). To prove Theorem 5 we will assume the contrary
and construct an infinite factorial language that is a proper subset of £ (W).

Let % be a factorial language and k be an integer. The Rauzy graph Ry (%) of order k is
the directed graph with vertex set % and edge set %.;. Two vertices u; and u, of Ry (%) are
connected by an edge u3 if and only if us € %, u; is a prefix of u3, and u; is a suffix of us.

For a sequence W we denote the graph R (Z(W)) by Ry (W). Further the word graph will
always mean a directed graph, the word path will always mean a directed path in a directed graph.
The length |p| of a path p is the number of its vertices, i.e. the number of edges plus one. If a path
p2 starts at the end of a path p;, we denote their concatenation by p; p». Recall that a directed
graph is strongly connected if for every pair of vertices {v;, v} it contains a directed path from v,
to v, and a directed path from v, to v;. It is clear that any Rauzy graph of an u.r. non-periodic
sequence is a strongly connected digraph and is not a cycle.

Given a directed graph H, its directed line graph L(H) is a directed graph such that each vertex
of L(H) represents an edge of H, and two vertices of L(H) that represent edges e; and e, of H are
connected by an arrow from e to e, if and only if the head of e; meets the tail of e;. For any k > 0
there is one-to-one correspondence between paths of length k in L(H) and paths of length k + 1
in H.

Let % be a factorial language and let m = n. A word a; ...a,, € %, corresponds to a path
of length m—n+1in R,(%), this path visits vertices a;...ay, az...An+1, -+, Am-n+1---am. The
graph R;,(%/) can be considered as a subgraph of L™~ "(R;,(%)). Moreover, the graph R (%) is
obtained from L(R, (%)) by removing edges that correspond to obstructions of length n + 1.

We call a vertex v of a directed graph H a fork if v has out-degree more than one. Furthermore
we assume that all forks have out-degrees exactly 2 (this is the case of a binary alphabet). For
a directed graph H we define its entropy regulator: er(H) is the minimal integer such that any
directed path of length er(H) in H contains at least one vertex that is a fork in H.

Proposition 6. Let H be a strongly connected digraph that is not a cycle. Then er(H) < oco.

Proof. Assume the contrary. Let n be the total number of vertices in H. Consider a path of length
n+1in H that does not contain forks. Note that this path visits some vertex v at least twice. This
means that starting from v it is possible to obtain only vertices of this cycle. Since the graph H is
strongly connected, H coincides with this cycle. g

Lemma7. Let H be a strongly connected digraph, ex(H) = K. Thener(L(H)) = K.

Proof. The forks of the digraph L(H) are edges in H that end at forks. Consider K vertices forming
a path in L(H). This path corresponds to a path of length K+ 1 in H. Since er(H) < K, there exists
an edge of this path that ends at a fork. g

Lemma8. Let H be a strongly connected digraph, ex(H) = K, let v be a fork in H, the edge e starts
at v. Let the digraph H* be obtained from H by removing the edge e. Let G be a subgraph of H* that
consists of all vertices and edges reachable from v. Then G is a strongly connected digraph. Also G
is either a cycle of length at most K, or er(G) < 2K.

Proof. First we prove that the digraph G is strongly connected. Let v’ be an arbitrary vertex of G,
then there is a path in G from v to v'. Consider a path p of minimum length from v’ to v in H.
Such a path exists, for otherwise H is not strongly connected. The path p does not contain the
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edge e, for otherwise it could be shortened. This means that p connects v’ to v in the digraph G.
From any vertex of G we can reach the vertex v, hence G is strongly connected.

Consider an arbitrary path p of length 2K in the digraph G, suppose that p does not have forks.
Since er(H) = K, then in p there are two vertices v, and v, which are forks in H and there are no
forks in p between v; and v,. The out-degrees of all vertices except v coincide in H and G. If
v1 # vor v, # v, then we find a vertex of p thatis a forkin G. If v; = v» = v, then there is a cycle C
in G such that |C| < K and C does not contain forks of G. Since G is a strongly connected graph, it
coincides with this cycle C. 0

Corollary 9. Let W be a binary u.r. non-periodic sequence, then for any n
er(Ry—1(W)) 20w,

Proof. We prove this by induction on n. The base case n = 0 is obvious. Let er(R,—;(W)) = K
and suppose W has exactly a obstructions of length n + 1. These obstructions correspond to
paths of length 2 in the graph R,_; (W), i.e. edges of the graph H := L(R,,—;(W)). From Lemma 7
we have that er(H) = K. The graph R,(W) is obtained from the graph H by removing some
edges e}, e,...,e4. Since W is a u.r. sequence, the digraphs H and H —{ey, ey,..., e;} are strongly
connected. This means that the edges ey, ..., e, start at different forks of H. We also know that
R, (W) isnot a cycle. The graph R,,(W) can be obtained by removing edges e; from H one by one.
Applying Lemma 8 a times, we show that er(R, (W)) < 29K, which completes the proof. g

Lemma 10. Let H be a strongly connected digraph, ex(H) = K, k = 3K. Let u be an arbitrary edge
of the graph L¥(H). Then the digraph L*(H) — u contains a strongly connected subgraph B such
thater(B) <3K.

Proof. Consider in H the path p, of length k + 2, corresponding to u. Divide first k vertices of p,,
into three subpaths of length at least K. Since er(H) = K, each of these subpaths contains a fork
(some of these forks can coincide). Next, we consider three cases.

Case 1. Assume that the path p,, visits at least two different forks of H. Then p, contains a
subpath of the form pe, where p is a path connecting two different forks v; and v, (and not
containing other forks) and e is an edge starting at v,. It is clear that the length of p; does not
exceed K + 1. Lemma 8 implies that there is a strongly connected subgraph G of H such that G
contains the vertex v, but does not contain the edge e,.

If G is not a cycle, then er(G) < 2K. Hence, the graph B := L*G) isa subgraph of L*¥(H), and
from Lemma 7 we have er(B) < 2K. It is also clear that the digraph B does not contain the edge u.

If G is a cycle, we denote it by p; and denote its first edge by e; (we assume that v, is the first
and last vertex of p;). The length of p; does not exceed K. Among the vertices of p; there are no
forks of H besides v,. Therefore, v; ¢ p;. Call a path ¢ in H good, if t does not contain the subpath
pe. Let us show that for any good path s in H there are two different paths s; and s, starting at
the end of s such that |s;| = |s2| = 3K and the paths ss;, ss, are also good.

It is clear that for any good path we can add an edge such that the new path is also good. There
isapath 1, | ;| < K such that st; is a good path and ends at some fork v. If v # v,, then two edges
ej, ej start at v, the paths st;e; and stz e; are good, and each of them can be prolonged further to
a good path of arbitrary length. If v = v», then the paths st; p; e and st; p; e; are good and can be
extended.

Consider in L¥(H) a subgraph that consists of all vertices and edges that are good paths in
H, let B be a strongly connected component of this subgraph. It is clear that er(B) < 3K and the
digraph B does not contain the edge u.

Case 2. Assume that the path p,, visits exactly one fork v, (at least 3 times), but there are forks
besides v, in H. There are two edges e; and e; that start at v;. Starting with these edges and
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moving until forks, we obtain two paths p; and p;. The edge e; is the first edge of p;, the edge
ey is the first of py, and |p11, |p2] < K. We can assume that p; is a subpath of p,. Then p; ends at
v (and is a cycle) and p» ends at some fork v» # v; (if v; = vy, then v is the only fork reachable
from v;). We complete the proof as in the previous case: pje; is a subpath of p,,. We call a path
good if it does not contain p; e;. As above, we can show that if s is a good path in H, then there are
two different paths s; and s, such that |s;| = |s2| = 3L and the paths ss;, ss» are also good.

As above, B will be a strongly connected component in the subgraph of L¥(H) that consists of
vertices and edges corresponding to good paths in H.

Case 3. Assume that there is only one fork v in H. Then there are two cycles p; and p, of length
< K that start and end at v. Let e; be the first edge of p; and let e, be the first edge of p,. The path
pu contains one of the following subpaths: pye;, p2e2, p1p1e2 or p2p2e;. Denote this path by £.
Call a path good if it does not contain ¢. A simple check shows that we can complete the proof as
in the previous cases. O

Proof of Theorem 5. Arrange all the obstructions u; of the u.r. binary sequence W by their length
in non-descending order. If li_mkﬁoolo%# < 1, then the statement of the Theorem holds. If

li_mkaoolog?'—kluk‘ > 1 then the sequence |ug|/ 3k tends to infinity. Hence, there exists ny such that
[tn,l/3™ > 10 and |uyl/3" > |uy,|/3" for all n > ny. In this situation, |t +x| > [l +4-2™ .3k
for any k > 0.

Let v; = u; if 1 < i < ng and let v; be a subword of u; of length |uy,| +4 - 2™ -3i710 if § > py.
Denote by % the set of all finite binary words that do not contain subwords from {v;}. It is clear
that % is a proper subset of Z(W). We get a contradiction with the uniform recurrence of W if
we show that the language % is infinite. The Rauzy graph Ry, -1(%) is equal to Ry, —1(W), and
from Corollary 9 we have er(Run0 _1(&) <20,

By induction on n we show that for all n = ny the graph Ry,,-1(%) contains a strongly
connected subgraph H, such that er(H,) < 3™ .2, We already have the base case n = nyg.
The graph R)y,,,|-1(%) is obtained from L!V»+1I=1?x/(R, | ) by removing at most one edge. Note
that |v,41]1 — v, > 3-er(Hy,), so we can use Lemma 10 for the digraph H, and k = |v,41] — |val.
This completes the inductive step.

All the graphs Ry,,,|-1(%) are nonempty and, therefore, the language % is infinite. g

For a sequence W over an alphabet A = {a,,...,ay} of size k, we replace in W each letter
a; by 0°1 and obtain a binary sequence W'. If W is w.r. and non-periodic, then W’ is also u.r.
and non-periodic. It is clear that all long enough obstructions of W' correspond to some of the
obstructions of W, so we obtain

Corollary 11. Let W be an u.r. non-periodic sequence on a finite alphabet. Then
lim;—ooOw(n)/log;n=1.

Example. Consider a finite alphabet {0,1} and the sequence of words u;, defined recursively
as uy = 0, uy =01, up = up_1ux—» for k = 2. Since u; is a prefix of u;4;, the sequence
(u;) has a limit, called a Fibonacci word F = 0100101001001.... In Example 25 of [1] the set
{11,000,10101,00100100,...} of obstructions of F is described. These words have lengths equal
to Fibonacci numbers. Since the Fibonacci word is u.r., in Theorem 5 we cannot replace the con-

stant 3 by a number smaller than @
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