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Abstract. Let A ∼= k〈X 〉/I be an associative algebra. A finite word over alphabet X is I -reducible if its image in
A is a k-linear combination of length-lexicographically lesser words. An obstruction is a subword-minimal I -
reducible word. If the number of obstructions is finite then I has a finite Gröbner basis, and the word problem
for the algebra is decidable. A cogrowth function is the number of obstructions of length ≤ n. We show that
the cogrowth function of a finitely presented algebra is either bounded or at least logarithmical. We also show
that an uniformly recurrent word has at least logarithmical cogrowth.

Résumé. Soit A ∼= k〈X 〉/I une algèbre associative. Un mot fini sur l’alphabet X est I -réductible si son image
dans A est une combinaison linéaire k de mots de longueur lexicographiquement moindre. Une obstruction
dans un mot minimal I -réductible. Si le nombre d’obstructions est fini, alors I a une base finie Gröbner,
et le mot problème pour l’algèbre est décidable. Une fonction co-croissance est le nombre d’obstructions de
longueur ≤ n. Nous montrons que la fonction de co-croissance d’une algèbre finement présentée est soit
bornée, soit au moins logarithmique. Nous montrons également qu’un mot uniformément récurrent a au
moins une co-croissance logarithmique.
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1. Cogrowth of associative algebras

Let A be a finitely generated associative algebra over a field k. Then A ∼= k〈X 〉/I , where k〈X 〉 is a
free algebra with generating set X = {x1, . . . , xs } and I is a two-sided ideal of relations. Further we
assume the generating set is fixed. Let “≺” be a well-ordering of X , x1 ≺ ·· · ≺ xs . This order can
be extended to a linear order on the set 〈X 〉 of monomials of k〈X 〉, i.e. finite words in alphabet
X : u1 ≺ u2 if |u1| < |u2| or |u1| = |u2| and u1 <lex u2. Here | · | denotes the length of a word, i.e.
the degree of a monomial, and <l ex is the lexicographical order. For f ∈ k〈X 〉 we denote by f̂ its
leading (with respect to ≺) monomial. An algebra k〈X 〉/I is said to be finitely presented if I is a
finitely generated ideal.

We call a monomial w ∈ 〈X 〉 I -reducible if w = f̂ for some relation f ∈ I . In the opposite case,
we call w I -irreducible. Denote the set of all monomials of degree at most n by 〈X 〉≤n . Let An ⊆ A
be the image of 〈X 〉≤n under the canonical map. The growth VA(n) is the dimension of the linear
span of An . It is easily shown that VA(n) is equal to the number of I -irreducible monomials in
〈X 〉≤n .

We call a monomial w ∈ 〈X 〉 an obstruction for I if w is I -reducible, but any proper subword
of w is I -irreducible. The cogrowth of algebra A is defined as the function O A(n), the number of
obstructions of length É n.

The celebrated Bergman gap theorem says that the growth function VA(n) is either constant,
linear of no less than (n + 1)(n + 2)/2 [2]. In this section we give a non-trivial bound on the
cogrowth function for finitely presented algebras.

Theorem 1. Let A be a finitely presented algebra. Then the cogrowth function O A(n) is either
constant or no less than logarithmic: O A(n) ≥ log2(n)−C . The constant C depends only on the
maximal length of a relation.

Recall that a Gröbner basis of an ideal I is a subset G ⊆ I such that for any f ∈ I there exists
g ∈ G such that the leading monomial of f contains the leading monomial of g as a subword.
One of Gröbner bases can be obtained by taking for each obstruction u a relation fu ∈ I such that
f̂u = u.

If f and g are two elements of k〈X 〉, g ∈ I and the word ĝ is a subword of f̂ , then f can be
replaced by f ′ such that f ′− f ∈ I and f̂ ′ ≺ f̂ . This operation is called a reduction.

Let f and g be two elements of k〈X 〉. If u1u2 = f̂ and u2u3 = ĝ for some u1,u2,u3 ∈ 〈X 〉, then
the word u1u2u3 is called a composition of f and g , and the normed element f u3 −u1g is the
result of this composition.

Lemma 2 (Diamond Lemma [3]). Let two-sided ideal I be generated by a subset U of a free
associative algebra k〈X 〉. Suppose that

(i) there are no f , g ∈U such that ĝ is a proper subword of f̂ , and
(ii) for any two elements f , g ∈U the result of any their composition can be reduced to 0 after

finitely many reductions with elements from U .

Then the set U is a Gröbner basis of I .

Example. Consider the associative algebra A ∼= k〈x, y〉/I , where I is a two-sided ideal generated
by f = x2 − y x. It can be shown that the set {x y i x − y i+1x | i ≥ 0} is a Gröbner basis of I , so
O A(n) = n −1 for n ≥ 2. A monomial is I -irreducible if and only if it contains at most one letter x,
hence VA(n) = (n +1)(n +2)/2.

Theorem 1 directly follows from

Lemma 3. Let A ∼= k〈X 〉/I be a finitely presented algebra and let N be greater than the maximal
length of its defining relation. Suppose there are no obstructions of length from the interval [N ,2N ].
Then I has a finite Gröbner basis.
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Proof. Let S be the set of all obstructions in 〈X 〉≤N . Take for each monomial w ∈ S a relation fw

such that f̂w = w . Let us show that this set { fw | s ∈ S} forms a Gröbner basis for I . Indeed, I is
generated by the set { fw |w ∈ S}. The condition (i) of the Diamond Lemma holds automatically
because no obstruction can be a proper subword of another obstruction. Let us check the
condition (ii).

Let u, v ∈ S and let h be the result of some composition of fu and fv . It is clear that the leading
monomial of h has length less then 2N . We start reducing h with elements from { fw |w ∈ S}. After
finally many steps we obtain either 0 or an element h′ such that ĥ′ does not contain subwords
from S. But since there are no obstructions from [N ,2N ], the second case is impossible. �

The word problem for a finitely presented algebra, i.e. the question whether a given element
f ∈ k〈X 〉 lies in I , is undecidable in the general case. But if I has a finite Gröebner basis G , then A
has a decidable word problem. Note also that the problem whether a given element in a finitely
presented associative algebra is a zero divisor (or is it nilpotent) is undecidable, even if we are
given a finite Gröebner basis [6]. But if the ideal of relations is generated by monomials and has a
finite Gröebner basis, the nilpotency problem is algorithmically decidable [2].

2. Colength of a period

A monomial algebra is a finitely generated associative algebra whose defining relations are
monomials. Let u be a finite word in alphabet X and let Au be the algebra k〈X 〉/I , where I is
generated by the set of monomials that are not subwords of the periodic sequence u∞. Such
algebras Au play important role in the study of monomial algebras [2].

Let W be a sequence on alphabet X , i.e. a map XN. A finite word v is an obstruction for W if v
is not a subword of W but any proper subword v ′ of v is a subword of W . If u is a finite word, the
number of obstructions for u∞ is always finite. We call this number the colength of the period u.
We say that the period is defined by the set of obstructions.

In [5], G. R. Chelnokov proved that a sequence of minimal period n cannot be defined by fewer
than log2 n + 1 obstructions. G. R. Chelnokov also gave for infinitely many ni an example of a

binary sequence with minimal period ni and colength of the period logϕni , where ϕ =
p

5+1
2 .

P. A. Lavrov found the precise lower estimation for colength of period.

Theorem 4 (cf. [7]). Let A = {a,b} be a binary alphabet. Let u be a word of length n and colength c,
then ϕc ≥ n, where ϕc is the c-th Fibonacci number (ϕ1 = 1, ϕ2 = 2, ϕ3 = 3, ϕ4 = 5 etc.).

The case of an arbitrary alphabet was considered in [8] by P. A. Lavrov and independently in [4]
by I. I. Bogdanov and G. R. Chelnokov.

3. Cogrowth function for an uniformly recurrent sequence

A sequence of letters W on a finite alphabet is called uniformly recurrent (u.r. for brevity) if for
any finite subword u of W there exists a number C (u,W ) such that any subword of W having
length C (u,W ) contains u as a subword. This property can be considered as a generalization of
periodicity [9].

For a sequence of letters W denote by AW the algebra k〈X 〉/IW , where IW is generated by the
set of monomials that are not subwords of W . A monomial algebra A is called almost simple if
each of its proper factor algebras B = A/I is nilpotent. In [2] it was shown that almost simple
monomial algebras are algebras of the form AW , where W is an u.r. sequence.

Again, a finite word u is an obstruction for W if it is not a subword of W but any its proper
subword is a subword of W . The cogrowth function OW (n) is the number of obstructions with
length É n.
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Theorem 5. Let W be an u.r. non-periodic sequence on a binary alphabet. Then
limn→∞OW (n)/log3 n ≥ 1.

A factorial language is a set U of finite words such that for any u ∈ U all subwords of u also
belong to U . Denote by Uk the words of U having length k. A finite word u is called an obstruction
for U if u 6∈U , but any proper subword belongs to U . Denote the factorial language consisting of
all subwords of a given sequence W by L (W ). To prove Theorem 5 we will assume the contrary
and construct an infinite factorial language that is a proper subset of L (W ).

Let U be a factorial language and k be an integer. The Rauzy graph Rk (U ) of order k is
the directed graph with vertex set Uk and edge set Uk+1. Two vertices u1 and u2 of Rk (U ) are
connected by an edge u3 if and only if u3 ∈U , u1 is a prefix of u3, and u2 is a suffix of u3.

For a sequence W we denote the graph Rk (L (W )) by Rk (W ). Further the word graph will
always mean a directed graph, the word path will always mean a directed path in a directed graph.
The length |p| of a path p is the number of its vertices, i.e. the number of edges plus one. If a path
p2 starts at the end of a path p1, we denote their concatenation by p1p2. Recall that a directed
graph is strongly connected if for every pair of vertices {v1, v2} it contains a directed path from v1

to v2 and a directed path from v2 to v1. It is clear that any Rauzy graph of an u.r. non-periodic
sequence is a strongly connected digraph and is not a cycle.

Given a directed graph H , its directed line graph L(H) is a directed graph such that each vertex
of L(H) represents an edge of H , and two vertices of L(H) that represent edges e1 and e2 of H are
connected by an arrow from e1 to e2 if and only if the head of e1 meets the tail of e2. For any k > 0
there is one-to-one correspondence between paths of length k in L(H) and paths of length k +1
in H .

Let U be a factorial language and let m Ê n. A word a1 . . . am ∈ Um corresponds to a path
of length m −n +1 in Rn(U ), this path visits vertices a1 . . . an , a2 . . . an+1, . . . , am−n+1 . . . am . The
graph Rm(U ) can be considered as a subgraph of Lm−n(Rn(U )). Moreover, the graph Rn+1(U ) is
obtained from L(Rn(U )) by removing edges that correspond to obstructions of length n +1.

We call a vertex v of a directed graph H a fork if v has out-degree more than one. Furthermore
we assume that all forks have out-degrees exactly 2 (this is the case of a binary alphabet). For
a directed graph H we define its entropy regulator: er (H) is the minimal integer such that any
directed path of length er(H) in H contains at least one vertex that is a fork in H .

Proposition 6. Let H be a strongly connected digraph that is not a cycle. Then er(H) <∞.

Proof. Assume the contrary. Let n be the total number of vertices in H . Consider a path of length
n +1 in H that does not contain forks. Note that this path visits some vertex v at least twice. This
means that starting from v it is possible to obtain only vertices of this cycle. Since the graph H is
strongly connected, H coincides with this cycle. �

Lemma 7. Let H be a strongly connected digraph, er(H) = K . Then er(L(H)) = K .

Proof. The forks of the digraph L(H) are edges in H that end at forks. Consider K vertices forming
a path in L(H). This path corresponds to a path of length K +1 in H . Since er(H) ≤ K , there exists
an edge of this path that ends at a fork. �

Lemma 8. Let H be a strongly connected digraph, er(H) = K , let v be a fork in H, the edge e starts
at v. Let the digraph H∗ be obtained from H by removing the edge e. Let G be a subgraph of H∗ that
consists of all vertices and edges reachable from v. Then G is a strongly connected digraph. Also G
is either a cycle of length at most K , or er(G) ≤ 2K .

Proof. First we prove that the digraph G is strongly connected. Let v ′ be an arbitrary vertex of G ,
then there is a path in G from v to v ′. Consider a path p of minimum length from v ′ to v in H .
Such a path exists, for otherwise H is not strongly connected. The path p does not contain the
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edge e, for otherwise it could be shortened. This means that p connects v ′ to v in the digraph G .
From any vertex of G we can reach the vertex v , hence G is strongly connected.

Consider an arbitrary path p of length 2K in the digraph G , suppose that p does not have forks.
Since er(H) = K , then in p there are two vertices v1 and v2 which are forks in H and there are no
forks in p between v1 and v2. The out-degrees of all vertices except v coincide in H and G . If
v1 6= v or v2 6= v , then we find a vertex of p that is a fork in G . If v1 = v2 = v , then there is a cycle C
in G such that |C | ≤ K and C does not contain forks of G . Since G is a strongly connected graph, it
coincides with this cycle C . �

Corollary 9. Let W be a binary u.r. non-periodic sequence, then for any n

er(Rn−1(W )) ≤ 2OW (n).

Proof. We prove this by induction on n. The base case n = 0 is obvious. Let er(Rn−1(W )) = K
and suppose W has exactly a obstructions of length n + 1. These obstructions correspond to
paths of length 2 in the graph Rn−1(W ), i.e. edges of the graph H := L(Rn−1(W )). From Lemma 7
we have that er(H) = K . The graph Rn(W ) is obtained from the graph H by removing some
edges e1,e2, . . . ,ea . Since W is a u.r. sequence, the digraphs H and H − {e1,e2, . . . ,ea} are strongly
connected. This means that the edges e1, . . . ,ea start at different forks of H . We also know that
Rn(W ) is not a cycle. The graph Rn(W ) can be obtained by removing edges ei from H one by one.
Applying Lemma 8 a times, we show that er(Rn(W )) ≤ 2aK , which completes the proof. �

Lemma 10. Let H be a strongly connected digraph, er(H) = K , k ≥ 3K . Let u be an arbitrary edge
of the graph Lk (H). Then the digraph Lk (H)−u contains a strongly connected subgraph B such
that er(B) ≤ 3K .

Proof. Consider in H the path pu of length k+2, corresponding to u. Divide first k vertices of pu

into three subpaths of length at least K . Since er(H) = K , each of these subpaths contains a fork
(some of these forks can coincide). Next, we consider three cases.

Case 1. Assume that the path pu visits at least two different forks of H . Then pu contains a
subpath of the form pe, where p is a path connecting two different forks v1 and v2 (and not
containing other forks) and e is an edge starting at v2. It is clear that the length of p1 does not
exceed K +1. Lemma 8 implies that there is a strongly connected subgraph G of H such that G
contains the vertex v2 but does not contain the edge e2.

If G is not a cycle, then er(G) ≤ 2K . Hence, the graph B := Lk (G) is a subgraph of Lk (H), and
from Lemma 7 we have er(B) ≤ 2K . It is also clear that the digraph B does not contain the edge u.

If G is a cycle, we denote it by p1 and denote its first edge by e1 (we assume that v2 is the first
and last vertex of p1). The length of p1 does not exceed K . Among the vertices of p1 there are no
forks of H besides v2. Therefore, v1 6∈ p1. Call a path t in H good, if t does not contain the subpath
pe. Let us show that for any good path s in H there are two different paths s1 and s2 starting at
the end of s such that |s1| = |s2| = 3K and the paths ss1, ss2 are also good.

It is clear that for any good path we can add an edge such that the new path is also good. There
is a path t1, |t1| < K such that st1 is a good path and ends at some fork v . If v 6= v2, then two edges
ei , e j start at v , the paths st1ei and st2e j are good, and each of them can be prolonged further to
a good path of arbitrary length. If v = v2, then the paths st1p1e and st1p1e1 are good and can be
extended.

Consider in Lk (H) a subgraph that consists of all vertices and edges that are good paths in
H , let B be a strongly connected component of this subgraph. It is clear that er(B) ≤ 3K and the
digraph B does not contain the edge u.

Case 2. Assume that the path pu visits exactly one fork v1 (at least 3 times), but there are forks
besides v1 in H . There are two edges e1 and e2 that start at v1. Starting with these edges and
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moving until forks, we obtain two paths p1 and p2. The edge e1 is the first edge of p1, the edge
e2 is the first of p2, and |p1|, |p2| ≤ K . We can assume that p1 is a subpath of pu . Then p1 ends at
v1 (and is a cycle) and p2 ends at some fork v2 6= v1 (if v1 = v2, then v1 is the only fork reachable
from v1). We complete the proof as in the previous case: p1e1 is a subpath of pu . We call a path
good if it does not contain p1e1. As above, we can show that if s is a good path in H , then there are
two different paths s1 and s2 such that |s1| = |s2| = 3L and the paths ss1, ss2 are also good.

As above, B will be a strongly connected component in the subgraph of Lk (H) that consists of
vertices and edges corresponding to good paths in H .

Case 3. Assume that there is only one fork v in H . Then there are two cycles p1 and p2 of length
≤ K that start and end at v . Let e1 be the first edge of p1 and let e2 be the first edge of p2. The path
pu contains one of the following subpaths: p1e1, p2e2, p1p1e2 or p2p2e1. Denote this path by t .
Call a path good if it does not contain t . A simple check shows that we can complete the proof as
in the previous cases. �

Proof of Theorem 5. Arrange all the obstructions ui of the u.r. binary sequence W by their length
in non-descending order. If limk→∞

log3 |uk |
k ≤ 1, then the statement of the Theorem holds. If

limk→∞
log3 |uk |

k > 1 then the sequence |uk |/3k tends to infinity. Hence, there exists n0 such that
|un0 |/3n0 > 10 and |un |/3n > |un0 |/3n0 for all n > n0. In this situation, |un0+k | > |un0 | +4 ·2n0 ·3k

for any k > 0.
Let vi = ui if 1 ≤ i ≤ n0 and let vi be a subword of ui of length |un0 | + 4 · 2n0 · 3i−n0 if i > n0.

Denote by U the set of all finite binary words that do not contain subwords from {vi }. It is clear
that U is a proper subset of L (W ). We get a contradiction with the uniform recurrence of W if
we show that the language U is infinite. The Rauzy graph Run0−1(U ) is equal to Run0−1(W ), and
from Corollary 9 we have er(Run0−1(L )) ≤ 2n0 .

By induction on n we show that for all n ≥ n0 the graph R|vn |−1(U ) contains a strongly
connected subgraph Hn such that er(Hn) ≤ 3n−n0 · 2n0 . We already have the base case n = n0.
The graph R|vn+1|−1(U ) is obtained from L|vn+1|−|vn |(R|vn |−1) by removing at most one edge. Note
that |vn+1| − |vn | > 3 · er(Hn), so we can use Lemma 10 for the digraph Hn and k = |vn+1| − |vn |.
This completes the inductive step.

All the graphs R|vn |−1(U ) are nonempty and, therefore, the language U is infinite. �

For a sequence W over an alphabet A = {a1, . . . , ak } of size k, we replace in W each letter
ai by 0i 1 and obtain a binary sequence W ′. If W is u.r. and non-periodic, then W ′ is also u.r.
and non-periodic. It is clear that all long enough obstructions of W ′ correspond to some of the
obstructions of W , so we obtain

Corollary 11. Let W be an u.r. non-periodic sequence on a finite alphabet. Then
limn→∞OW (n)/log3 n ≥ 1.

Example. Consider a finite alphabet {0,1} and the sequence of words ui , defined recursively
as u0 = 0, u1 = 01, uk = uk−1uk−2 for k ≥ 2. Since ui is a prefix of ui+1, the sequence
(ui ) has a limit, called a Fibonacci word F = 0100101001001. . . . In Example 25 of [1] the set
{11,000,10101,00100100, . . .} of obstructions of F is described. These words have lengths equal
to Fibonacci numbers. Since the Fibonacci word is u.r., in Theorem 5 we cannot replace the con-
stant 3 by a number smaller than

p
5+1
2 .
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