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1. Introduction

Let B H = (B H
t )t ∈ [0,T ] be a fractional Brownian motion (fBm) with Hurst index H ∈ (0,1). We recall

that B H is a centered Gaussian process with covariance function

RH (t , s) := E
[

B H
t B H

s

]
= 1

2

(
t 2H + s2H −|t − s|2H

)
, 0 ≤ s, t ≤ T.

We consider the exponential functional of the form

F =
∫ T

0
eas+σB H

s d s, (1)

where T > 0, a ∈ R and σ > 0 are constants. It is known that this functional plays an important
role in several domains. The special case, where H = 1

2 , has been well studied and a lot of fruitful
properties of F can be founded in the literature, see e.g. [3, 4, 10]. However, to the best our
knowledge, the deep properties of F for H 6= 1

2 are scarce. In a recent paper [8], we have proved the
Lipschitz continuity of the cumulative distribution function of F with respect to the Hurst index
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H . The aim of the present paper is to investigate the density of F. Unlike the case H = 1
2 , it is not

easy to find the density of F explicitly for H 6= 1
2 and hence, our work will focus on providing the

estimates for the density function. It should be noted that, in the last years, the density estimates
for random variables related to fBm has been extensively studied, see e.g. [1,2,6,7] and references
therein.

The rest of this article is organized as follows. In Section 2, we briefly recall some of the relevant
elements of the Malliavin calculus and two general estimates for densities. Our main results are
then stated and proved in Section 3. Our Theorems 6 and 8 point out that the density of F is
bounded from above by log-normal densities.

2. Preliminaries

In the whole paper, we assume H > 1
2 . Under this assumption, fBm admits the Volterra represen-

tation

B H
t =

∫ t

0
K (t , s)dBs , (2)

where (Bt )t∈[0,T ] is a standard Brownian motion and for some normalizing constant cH , the kernel
K is given by

K (t , s) = cH s1/2−H
∫ t

s
(u − s)H− 3

2 uH− 1
2 du, 0 < s ≤ t ≤ T.

Let us recall some elements of Malliavin calculus with respect to Brownian motion B , where B
is used to present B H

t as in (2). We suppose that (Bt )t ∈ [0,T ] is defined on a complete probability
space (Ω,F ,F,P ), where F= (Ft )t ∈ [0,T ] is a natural filtration generated by the Brownian motion
B. For h ∈ L2[0,T ], we denote by B(h) the Wiener integral

B(h) =
∫ T

0
h(t )dBt .

Let S denote the dense subset of L2(Ω,F ,P ) consisting of smooth random variables of the form

F = f
(
B(h1), . . . , B(hn)

)
, (3)

where n ∈ N, f ∈ C∞
b (Rn),h1, . . . , hn ∈ L2[0,T ]. If F has the form (3), we define its Malliavin

derivative as the process DF := {D t F, t ∈ [0,T ]} given by

D t F =
n∑

k=1

∂ f

∂xk

(
B(h1), . . . , B(hn)

)
hk (t ).

More generally, for each k ≥ 1, we can define the iterated derivative operator by setting

Dk
t1, ..., tk

F = D t1 . . . D tk F.

For any p,k ≥ 1, we shall denote by Dk,p the closure of S with respect to the norm

‖F‖p
k, p := E |F |p +E

[∫ T

0

∣∣D t1 F
∣∣p d t1

]
+·· ·+E

[∫ T

0
. . .

∫ T

0

∣∣∣Dk
t1, ..., tk

F
∣∣∣p

d t1 . . . d tk

]
.

A random variable F is said to be Malliavin differentiable if it belongs to D1,2. For any F ∈ D1,2,
the Clark–Ocone formula says that

F −E [F ] =
∫ T

0
E

[
Ds F

∣∣Fs
]
dBs .

Moreover, any F,G ∈D1,2, we have the following covariance formula

Cov(F,G) = E

[∫ T

0
Ds F E

[
DsG

∣∣Fs
]
d s

]
. (4)

In order to obtain the density estimates for exponential functionals we need the following general
results.
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Proposition 1. Let q,α,β be three positive real numbers such that 1
q + 1

α+ 1
β = 1. Let F be a random

variable in the spaceD2,α, such that E [‖DF‖−2β
H ] <∞. Then the density ρF (x) of F can be estimated

as follows

ρF (x) ≤ cq,α,β (P (F ≤ x))1/q ×
(
E

[
‖DF‖−1

H

]
+∥∥D2F

∥∥
Lα(Ω;H⊗H)

∥∥‖DF‖−2
H

∥∥
β

)
, x ∈R, (5)

where cq,α,β is a positive constant and H = L2[0,T ].

Proof. This proposition comes from the computations on [5, p. 87]. �

Proposition 2. Let F ∈D2,4 be such that E [F ] = 0. Define the random variable

ΦF :=
∫ T

0
Ds F E

[
Ds F

∣∣Fs
]
d s.

Assume that ΦF 6= 0 a.s. and the random variables F
ΦF

and 1
Φ2

F

∫ T
0 DsΦF E [Ds F |Fs ]d s belong to

L2(Ω). Then the law of F has a continuous density given by

ρF (x) = ρF (0)exp

(
−

∫ x

0
hF (z)d z

)
exp

(
−

∫ x

0
wF (z)d z

)
, x ∈ suppρF , (6)

where the functions wF and hF are defined by

wF (z) := E

[
F

ΦF

∣∣∣∣F = z

]
, hF (z) := E

[
1

Φ2
F

∫ T

0
DsΦF E

[
Ds F

∣∣Fs
]
d s

∣∣∣∣∣F = z

]
.

Proof. This proposition is Theorem 7 in our recent paper [9]. �

3. The main results

In this section, we provide explicit estimates for the density ρF (x) of the functional F defined
by (1). Our idea is to consider the random variable X := lnF − E [lnF ] and use the relation
ρF (x) = 1

x ρX (ln x −E [lnF ]), x > 0, where ρX denotes the density of X .
We need some technical results.

Proposition 3. Consider the random variable X := lnF −E [lnF ]. It holds that

0 ≤ DθX ≤σK (T,θ) a.s. (7)

0 ≤ Dr DθX ≤ 2σ2K (T,θ)K (T,r ) a.s. (8)

Proof. By the chain rule for Malliavin derivatives, we have, for 0 ≤ r,θ ≤ T,

DθX = σ
∫ T
θ K (s,θ)eas+σB H

s d s∫ T
0 eas+σB H

s d s
(9)

and

Dr DθX = σ2
∫ T
θ∨r K (s,θ)K (s,r )eas+σB H

s d s∫ T
0 eas+σB H

s d s
− σ2

∫ T
r K (s,r )eas+σB H

s d s
∫ T
θ K (s,θ)eas+σB H

s d s(∫ T
0 eas+σB H

s d s
)2 .

Because the function s 7→ K (s,θ) is non-decreasing for each θ, (7) follows directly from (9). We
also have

Dr DθX ≤ 2σ2K (T,θ)K (T,r ) a.s.

To prove the non-negativity of the second order Malliavin derivative, we let U be a random
variable with the density function defined by

f (x) = eax+σB H
x∫ T

0 eas+σB H
s d s

, 0 ≤ x ≤ T.

C. R. Mathématique — 2022, 360, 151-159
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Denote by EU the expectation with respect to U . We have

Dr DθX = EU [K (U ,θ)K (U ,r )]−EU [K (U ,θ)]EU [K (U ,r )] .

Note that the functions s 7→ K (s,θ) and s 7→ K (s,r ) are non-decreasing. Hence, by Chebyshev’s
association inequality, Dr DθX ≥ 0 a.s. The proof of Proposition 3 is complete. �

Lemma 4. Define

Mr := E [F |Fr ] = E

[∫ T

0
eas+σk f l6B H

s d s

∣∣∣∣Fr

]
, 0 ≤ r ≤ T.

Then, for every p ≥ 2, we have

E

[(
max

0≤r ≤T
Mr

)p]
≤C <∞,

where C is a positive constant depending on p,T, a,σ and H .

Proof. The stochastic process M := (Mr )0≤r≤T is a martingale with M0 = E [F ] and MT = F. Hence,
by Burkhölder–David–Gundy inequality, we have

E

[(
max

0≤r ≤T
Mr

)p]
≤ cp

(
M p

0 +E
[
〈M〉p/2

T

])
= cp

(
(E [F ])p +E

[
〈M〉p/2

T

])
, (10)

where cp is a positive constant. Using the Clark–Ocone formula we have

MT = E MT +
∫ T

0
E

[
Dr MT

∣∣Fr
]
dBr

= E [F ]+σ
∫ T

0
E

[∫ T

r
K (s,r )eas+σB H

s d s

∣∣∣∣Fr

]
dBr ,

which gives us

〈M〉T =
∫ T

0
σ2

(
E

[∫ T

r
K (s,r )eas+σB H

s d s

∣∣∣∣Fr

])2

dr

≤
∫ T

0
σ2K 2(T,r )M 2

r dr a.s.

Then, by Hölder inequality, we have

E
[
〈M〉p/2

T

]
≤σp E

[(∫ T

0
K

2p−4
p (T,r )K

4
p (T,r )M 2

r dr

)p/2
]

≤σp
(∫ T

0
K 2(T,r )dr

) p
2 −1 (∫ T

0
K 2(T,r )E

[
M p

r
]

dr

)
≤σp T (p−2)H

(∫ T

0
K 2(T,r )E

[
F p]

dr

)
=σp T pH E

[
F p]

.

(11)

Here we used the fact that
∫ T

0 K 2(T,r )dr = E |B H
T |2 = T 2H . So we obtain the desired conclusion by

inserting (11) into (10). �

Proposition 5. Let X be as in Proposition 3. We defineΦX := ∫ T
0 Ds X E [Ds X |Fs ]d s. Then,∣∣ΦX

∣∣−1 ∈ Lp (Ω), ∀ p ≥ 1.

We also have (∫ T

0

∣∣DθX
∣∣2dθ

)−1

∈ Lp (Ω), ∀ p ≥ 1.
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Proof. It follows from (9) that

DθX ≥ σ

T
e
−2|a|T+σ min

0≤ s≤T
B H

s −σ max
0≤ s≤T

B H
s

∫ T

θ
K (s,θ)d s a.s. (12)

On the other hand, by using the Cauchy–Schwarz inequality, we have

E
[
DθX

∣∣Fθ]≥ σ

(
E

[√∫ T
θ K (s,θ)eas+σB H

s d s

∣∣∣∣Fθ])2

E
[∫ T

0 eas+σB H
s d s

∣∣∣Fθ] a.s.

and √∫ T

θ
K (s,θ)eas+σB H

s d s ≥
∫ T
θ K (s,θ)

√
eas+σB H

s d s√∫ T
θ K (s,θ)d s

a.s.

We therefore get

E
[
DθX

∣∣Fθ]≥ σ
(∫ T
θ K (s,θ)E

[
eas/2+σB H

s /2
∣∣∣Fθ]d s

)2

∫ T
θ K (s,θ)d sE

[∫ T
0 eas+σB H

s d s
∣∣∣Fθ] a.s.

Furthermore, by Lyapunov’s inequality,

E
[

eas/2+σB H
s /2

∣∣∣Fθ]≥ eas/2+σE
[
B H

s

∣∣Fθ]/2 a.s.

As a consequence,

E
[
DθX

∣∣Fθ]≥ σe
−|a|T+σ min

0≤θ≤ s≤T
Ns,θ ∫ T

θ K (s,θ)d s

max
0≤θ≤T

Mθ
a.s. (13)

where

Ns,θ := E
[

B H
s

∣∣∣Fθ] and Mθ := E

[∫ T

0
eas+σB H

s d s

∣∣∣∣Fθ] .

Combining (12) and (13) yields

DθX E
[
DθX

∣∣Fθ]≥ σ2

T
e
−3|a|T+σ min

0≤ s≤T
B H

s −σ max
0≤ s≤T

B H
s +σ min

0≤θ≤ s≤T
Ns,θ

(∫ T
θ K (s,θ)d s

)2

max
0≤θ≤T

Mθ
a.s.

and hence,

ΦX ≥ σ2

T
e
−3|a|T+σ min

0≤ s≤T
B H

s −σ max
0≤ s≤T

B H
s +σ min

0≤θ≤ s≤T
Ns,θ

∫ T
0

(∫ T
θ K (s,θ)d s

)2
dθ

max
0≤θ≤T

Mθ
a.s. (14)

We observe that ∫ T

0

(∫ T

θ
K (s,θ)d s

)2

dθ =
∫ T

0

∫ T

θ

∫ T

θ
K (t ,θ)K (s,θ)d sd tdθ

=
∫ T

0

∫ T

0

(∫ s∧t

0
K (t ,θ)K (s,θ)dθ

)
d sd t

=
∫ T

0

∫ T

0
E

[
B H

t B H
s

]
d sd t = T 2H+2

2H +2
.

This, together with (14), yields∣∣ΦX
∣∣−1 ≤ 2H +2

σ2T 2H+1
e

3|a|T+2σ max
0≤ s≤T

B H
s +σ max

0≤θ≤ s≤T
Ns,θ

max
0≤θ≤T

Mθ a.s.
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We have (Ns,θ)0≤θ≤ s≤T is a Gaussian field with finite variances because Ns,θ = ∫ θ
0 KH (s,r )dBr .

Hence, by Fernique’s theorem, there exists ε> 0 such that

E

[
e
ε max

0≤θ≤ s≤T
|Ns,θ|2]<∞.

Since

e
pσ max

0≤θ≤ s≤T
Ns,θ ≤ e

p2σ2

4ε +ε max
0≤θ≤ s≤T

|Ns,θ|2
,

this implies that

e
σ max

0≤θ≤ s≤T
Ns,θ ∈ Lp (Ω) for any p ≥ 1.

Similarly, we also have

e
2σ max

0≤ s≤T
B H

s ∈ Lp (Ω) for any p ≥ 1.

So, recalling Lemma 4, we conclude that |ΦX |−1 ∈ Lp (Ω) for any p ≥ 1.
We deduce from (12) that∫ T

0

∣∣DθX
∣∣2dθ ≥ σ2

(2H +2)T 2H
e
−4|a|T+2σ min

0≤ s≤T
B H

s −2σ max
0≤ s≤T

B H
s a.s. (15)

Hence, we also have (
∫ T

0 |DθX |2dθ)−1 ∈ Lp (Ω), ∀ p ≥ 1. The proof of Proposition 5 is complete.
�

We now are in a position to bound the density ρF (x) of F. We first use Proposition 1 to estimate
the left tail of the density.

Theorem 6. We have

ρF (x) ≤ c

x
exp

(
− (ln x −E [lnF ])2

8σ2T 2H

)
, 0 < x ≤ e E [lnF ], (16)

where c is a positive constant.

Proof. It is known from Proposition 5 that

‖D X ‖−2
H =

(∫ T

0

∣∣DθX
∣∣2dθ

)−1

∈ Lp (Ω), ∀ p ≥ 1.

In addition, from the estimate (8), we have

∥∥D2X
∥∥2

L2(Ω ; H⊗H) =
∫ T

0

∫ T

0
E

∣∣DθDr X
∣∣2dθdr ≤σ4

∫ T

0

∫ T

0
K 2(T,θ)K 2(T,r )dθdr =σ4T 2H <∞.

The above estimates allow us to use Proposition 1 with q =β= 4,α= 2 and we obtain

ρX (x) ≤ cP (X ≤ x)
1
4 , x ∈R, (17)

where c is a positive constant.
The remaining of the proof is to bound P (X ≤ x) for x ≤ 0. We consider the function ϕ(λ

:= E [e−λX ], λ > 0 (this function is well defined because F−1 ∈ Lp (Ω), ,∀ p ≥ 1). By using
repeatedly the covariance formula (4), we have
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σ2
X :=Var(X ) = E

[
ΦX

]
and

ϕ′(λ) =−E
[

X e−λX
]

=λE
[

e−λXΦX

]
=λσ2

X E
[

e−λX
]
+λE

[
e−λX

(
ΦX −σ2

X

)]
=λσ2

X E
[

e−λX
]
−λ2E

[
e−λX

∫ T

0
Ds X E

[
DsΦX

∣∣Fs
]
d s

]
Since Ds X ≥ 0 and Dr Ds X ≥ 0, those imply that

∫ T
0 Ds X E [DsΦX |Fs ]d s ≥ 0, and hence,

ϕ′(λ) ≤λσ2
X E

[
e−λX

]
=λσ2

Xϕ(λ), λ> 0.

This, together the fact ϕ(0) = 1, gives us

ϕ(λ) ≤ e
λ2σ2

X
2 , λ> 0.

By Markov’s inequality we have, for all λ> 0,

P (X ≤ x) ≤ eλxϕ(λ) ≤ eλx+ λ2σ2
X

2 , x ≤ 0.

When x ≤ 0, we can choose λ=− x
σ2

X
to get

P (X ≤ x) ≤ e
− x2

2σ2
X , x ≤ 0.

From the estimate (7), we have σ2
X = E [ΦX ] ≤ ∫ T

0 |Ds X |2d s ≤σ2T 2H . So we deduce

P (X ≤ x) ≤ e
− x2

2σ2T 2H , x ≤ 0. (18)

Combining (17) and (18) yields

ρX (x) ≤ c e
− x2

8σ2T 2H , x ≤ 0.

where c is a positive constant. Recalling X = lnF − E [lnF ], the density of F satisfies ρF (x) =
1
x ρX (ln x −E [lnF ]). When 0 < x ≤ eE [lnF ], we have y := ln x −E [lnF ] ≤ 0. We thus obtain

ρF (x) = 1

x
ρX (y) ≤ c

x
e
− y2

8σ2T 2H = c

x
e
− (ln x−E [lnF ])2

8σ2T 2H , 0 < x ≤ e E [lnF ].

This completes the proof of Theorem 6. �

Remark 7. Replacing X by F −E [F ] in the proof of Theorem 6, we obtain the following Gaussian
bound for the left tail

ρF (x) ≤ c e
− (x−E [F ])2

8σ2
F , x ≤ E [F ],

where σ2
F := Var(F ) and c is a positive constant.

We now use Proposition 2 to estimate the right tail of the density.

Theorem 8. We have

ρF (x) ≤ c

x
exp

(
− (ln x −E [lnF ])2

2σ2T 2H

)
, x > eE [lnF ], (19)

where c is a positive constant.
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Proof. Let X be as in Proposition 3. Obviously, we have ΦX 6= 0 a.s. Moreover, from the esti-
mates (7) and (8) we obtain

0 ≤ DsΦX =
∫ T

0
Ds DθX E

[
DθX

∣∣Fθ

]
dθ+

∫ T

0
DθX E

[
Ds DθX

∣∣Fθ

]
dθ

≤ 4σ3
∫ T

0
K 2(T,θ)K (T, s)dθ = 4σ3K (T, s)T 2H

and

0 ≤
∫ T

0
DsΦX E

[
Ds X

∣∣Fs
]
d s ≤ 4σ4T 2H

∫ T

0
K 2(T, s)d s = 4σ4T 4H

Hence, it follows from Proposition 5 that the random variable 1
Φ2

X

∫ T
0 DsΦX E [Ds X |Fs ]d s belong

to L2(Ω). We also have X
ΦX

∈ L2(Ω) because

−|a|T −σ max
0≤ s≤T

B H
s + lnT −E [lnF ] ≤ X ≤ |a|T +σ max

0≤ s≤T
B H

s + lnT −E [lnF ]

and hence, X ∈ Lp (Ω) for all p ≥ 2.
In view of Proposition 2, the density ρX (x) of X is given by

ρX (x) = ρX (0)exp

(
−

∫ x

0
hX (z)d z

)
exp

(
−

∫ x

0
wX (z)d z

)
, x ∈ supp ρX , (20)

where

wX (z) := E

[
X

ΦX

∣∣∣∣X = z

]
and hX (z) := E

[
1

Φ2
X

∫ T

0
DsΦX E

[
Ds X

∣∣Fs
]
d s

∣∣∣∣∣X = z

]
.

Since hX ≥ 0, this implies that

exp

(
−

∫ x

0
hX (z)d z

)
≤ 1, x ≥ 0.

From the estimate (7) we have

0 ≤ΦX ≤σ2
∫ T

0
K 2(T,θ)dθ =σ2T 2H a.s.

and we obtain

exp

(
−

∫ x

0
wF (z)d z

)
≤ e

− x2

2σ2T 2H , x ∈R.

So we can conclude that

ρX (x) ≤ ρX (0)e
− x2

2σ2T 2H , x ≥ 0,

and (19) follows because ρF (x) = 1
x ρX (ln x −E [lnF ]). The proof of Theorem 8 is complete. �
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