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Abstract. Let k be an algebraically closed field and A a finite-dimensional k-algebra. In this note, we deter-
mine complexes which compute the Hochschild homology of the canonical dg enhancement of the bounded
derived category of A and of the canonical dg enhancement of the singularity category of A. As an application,
we obtain a new approach to the computation of Hochschild homology of Leavitt path algebras.
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1. Reminder on Hochschild homology of algebras and categories

Let k be a field. We write ⊗ for ⊗k . Let A be a k-algebra (associative, with 1). We write Mod A for
the category of all (right) A-modules and D A =D(Mod A) for its unbounded derived category. Let
Ae = A ⊗ Aop be the enveloping algebra of A so that Ae -modules identify with A-bimodules. The
Hochschild homology of A is defined by

H Hp (A) = TorAe

p (A, A) , p ∈Z.

∗Corresponding author.

ISSN (electronic) : 1778-3569 https://comptes-rendus.academie-sciences.fr/mathematique/

https://doi.org/10.5802/crmath.318
https://sites.google.com/site/ruthreswaranuma/home
https://webusers.imj-prg.fr/~bernhard.keller/
mailto:dg1621017@smail.nju.edu.cn
mailto:yu.wang@imj-prg.fr
mailto:ruthreswaran@gmail.com
mailto:bernhard.keller@imj-prg.fr
https://comptes-rendus.academie-sciences.fr/mathematique/


492 Yu Wang, Umamaheswaran Arunachalam and Bernhard Keller

Alternatively, we may define it as the pth homology group of the Hochschild chain complex
H H(A) of A, i.e. the complex C∗A concentrated in homological degrees ≥ 0

A A⊗ A . . . A⊗p A⊗(p+1) . . .

with Cp A = A⊗(p+1), p ≥ 0, and differential given by

d
(
a0, . . . , ap

)= p−1∑
i=0

(−1)i (
a0, . . . , ai ai+1, . . . , ap

)+ (−1)p (
ap a0, . . . , ap−1

)
, (1)

where we write (a0, . . . , ap ) for a0 ⊗ ·· · ⊗ ap . Notice that the first differential takes a ⊗ b to the
commutator ab −ba.

We see that H H0(A) is the quotient A/[A, A] of the vector space A by its subspace generated
by all commutators and that H Hp (A) and H H(A) ∈ Dk are functorial in the algebra A. The def-
initions extend from k-algebras to small k-categories A . For example, the Hochschild complex
then becomes the complex⊕

A
(
X0, X0

) ⊕
A

(
X1, X0

)⊗A
(
X0, X1

)oo . . .oo

whose pth term (p ≥ 0) is the sum⊕
A

(
Xp , X0

)⊗A
(
Xp−1, Xp

)⊗·· ·⊗A (X0, X1)

taken over all sequences of objects X0, X1, . . . , Xp of A and whose horizontal differential is given
by formula (1). One then shows that the inclusion A → proj(A) of the one-object category given
by A into the category proj(A) of finitely generated projective right A-modules induces a quasi-
isomorphism

H H(A) ∼−→ H H
(
proj A

)
.

In particular, this yields Morita invariance of Hochschild homology. The definitions further ex-
tend to small differential graded (=dg) categories A , for example the dg category C b

d g (proj A) of
bounded complexes over proj(A). We refer the reader to [10] for more information on this exam-
ple and dg categories in general. The inclusion proj(A) →C b

d g (proj A) yields an isomorphism

H H
(
proj A

) ∼−→ H H
(
C b

d g

(
proj A

))
and this yields the invariance of Hochschild homology under derived equivalences. We will need
the following localization theorem.

Theorem 1 ([9]). Let

A
F // B

G // C

be a sequence of dg categories such that the induced sequence of derived categories

0 // DA
F∗
// DB

G∗
// DC // 0

is exact. Then there is a canonical triangle

H H(A )
H H(F ) // H H(B)

H H(G) // H H(C ) // ΣH H(A )

in Dk and hence long exact sequences in Hochschild (and cyclic) homology.

Let Q be a finite quiver and I an admissible ideal in kQ, i.e. a two-sided ideal contained in the
square of the ideal generated by the arrows and such that the quotient kQ/I is finite-dimensional.
Let R be the quotient of A by its radical. Thus, as an A-module, the algebra R is the direct sum of
the simple A-modules. Following [8], we define the Koszul dual of A to be the dg algebra

A! = RHomA (R,R) .
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Thus, if P is a projective resolution of the A-module R, then the Koszul dual is quasi-isomorphic
to the dg endomorphism algebra HomA(P,P ) of P . The following theorem is a special case of
Corollary D.2 of Van den Bergh’s [2]. We write D for the dual Homk (?,k) over the ground field.

Theorem 2 (Van den Bergh). We have a canonical isomorphism

H H
(

A!) ∼−→ D H H(A).

We refer to [7] for a comparison taking into account much more structure.

2. Hochschild homology of derived categories and singularity categories

Let Q be a finite quiver and I an admissible ideal in kQ. Let mod A be the category of k-finite-
dimensional right A-modules. Denote by Db(A) = Db(mod A) the bounded derived category of
A and by per(A) the perfect derived category, i.e. the thick subcategory generated by the free A-
module of rank 1. Following Buchweitz [3] and Orlov [11], one defines the singularity category of
A as the Verdier quotient

sg(A) =Db(A)/per(A).

Using the canonical dg enhancements of Db(A) and per(A), cf. [10], we obtain a canonical exact
sequence of dg categories

0 // perd g (A) // Db
d g (A) // sgd g (A) // 0 ,

where the dg quotient sgd g (A) yields a canonical dg enhancement for sg(A). It is not hard to
see that, in the homotopy category of dg categories, it is functorial with respect to bimodule
complexes X ∈ D(Aop ⊗B) such that XB is perfect over B and A X is perfect over A. From the
localization Theorem 1, we deduce a triangle

H H
(
perd g (A)

)
// H H

(
Db

d g (A)
)

// H H
(
sgd g (A)

)
// ΣH H

(
perd g (A)

)
(2)

in the derived category of vector spaces.

Theorem 3. We have a canonical isomorphism H H(Db
d g (A)) ∼−→ D H H(A).

Proof. Recall that we have defined R to be the quotient of A by its radical and the Koszul dual
A! as RHomA(R,R). Since the module R is a classical generator of the bounded derived category
Db(A), we deduce from the results of [8] that we have a triangle equivalence

RHomA(R, ?) : Db(A)
∼ // per

(
A!

)
.

This lifts to a quasi-equivalence
Db

d g (A) ∼−→ perd g

(
A!) .

By Morita invariance of Hochschild homology, we have

H H
(

A!) ∼−→ H H
(
perd g

(
A!)) .

By Van den Bergh’s Theorem 2, we have

H H
(

A!) ∼−→ D H H(A).

The claim follows if we combine these isomorphisms. �

Define a linear map τ : A → D A by sending an element a ∈ A to the linear form which takes
b ∈ A to the trace of the linear map

λaρb : A → A , x 7→ axb ,
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where λa is left multiplication by a and ρb right multiplication by b. Notice that since A is finite-
dimensional, this is well-defined. Moreover, the value of 〈a,b〉 = (τ(a))(b) only depends on the
classes of a and b in H H0(A), which is canonically isomorphic to R. It is not hard to check that in
the basis formed by the ei , the matrix of the induced bilinear form

H H0(A)×H H0(A) → k

is the Cartan matrix of A, whose (i , j )-entry is the dimension of ei Ae j . Define the double
Hochschild complex of A to be the complex

. . .
b // A⊗ A

b // A
τ // D A

Db // D(A⊗ A)
Db // . . . ,

where D A sits in degree 0, the differentials b are those of the Hochschild complex and the Db
their duals.

Let us abbreviate S = sgd g (A).

Theorem 4. In Dk, we have a canonical isomorphism between H H(S ) and the double
Hochschild complex of A.

Notice that this implies in particular that H Hn(S ) is finite-dimensional for all n. This is sur-
prising since the singularity category sg(A) is usually not Hom-finite (except if A is Gorenstein),
cf. for example [4].

Proof. We use the triangle

H H
(
perd g (A)

)
// H H

(
Db

d g (A)
)

// H H(S ) // ΣH H
(
perd g (A)

)
obtained from the localization Theorem 1. We have already seen that it is isomorphic to a triangle

H H(A) → H H
(

A!)→ H H(S ) →ΣH H(A) ,

where the first morphism is induced by the inclusion perd g (A) → Db
d g (A). Thus, the complex

H H(S ) identifies with the mapping cone over the morphism H H(A) → H H(A!). Let us deter-
mine this morphism explicitly. Recall that the functor H H , considered as a functor on the ho-
motopy category of small dg categories with values in the derived category Dk, commutes with
tensor products. We have the following commutative square

perd g (Aop )⊗perd g (A) perd g (k)

perd g (A)op ⊗Db
d g (A) perd g (k)

Here, a pair (P1,P2), P1 ∈ proj(Aop ), P2 ∈ proj(A) is taken to P2 ⊗A P1 by the top arrow and
to (HomA(P1, A),P2) by the left vertical arrow. It follows from Appendix D in [2] that the lower
horizontal arrow induces a non degenerate pairing

H H(A)⊗H H
(
Db

d g (A)
)
→ H H(k) = k.

A direct computation now shows that the morphism

H H(A) → D H H(A)

is the composition

H H(A) → H H0(A) → D H H0(A) → D H H(A)

where the middle morphism is induced by the map τ. �
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Corollary 5. For n ≥ 2, we have canonical isomorphisms

H Hn(S ) ∼−→ H Hn−1(A) ∼−→ D H H1−n(S ).

Moreover, we have

H H1(S ) ∼−→ ker
(
H H0(A)

τ→ D H H0(A)
)

∼−→ D H H0(S ).

3. Application: Hochschild homology of dg Leavitt path algebras

Let Q be a finite quiver, for example a quiver with one vertex and a unique loop α. Let A be the
associated radical square zero algebra, i.e. the quotient of kQ by the square of the ideal generated
by the arrows. So for the one-loop quiver, we have A = k[ε]/(ε2). Let Q∗ be the graded quiver
obtained from the opposite quiver of Q by assigning each arrow α∗ : j → i corresponding to an
arrow α : i → j of Q the degree +1. For each vertex i of Q, consider the arrows α∗

s : i → t (α∗
s ),

1 ≤ s ≤ ti , starting in Q∗ at i . Let

ϕi : Pi →
ti⊕

s=1
ΣPt(α∗

s )

be the morphism with components α∗
s , where Pi = ei kQ∗. For example, for the one-loop quiver,

we just have ϕ(1) =α∗ : P1 →ΣP1. Note that if i is a sink of Q, then

ti⊕
s=1

Pt(α∗
s ) = 0.

For each vertex i ∈Q0, let

ϕ(i )−1 = [
βi ,1, . . . , βi , ti

]
:

ti⊕
s=1

ΣPt(α∗
s ) → Pi

be the formal inverse of ϕ(i ). The graded Leavitt path algebra of Q is obtained from kQ∗ by
adjoining all coefficients βi j of all formal inverses ϕ(i )−1, i ∈ Q0. We endow LQ with the grading
inherited from Q∗ and with d = 0.

Theorem 6 (Smith [12], Chen–Yang [6]). We have a triangle equivalence per(LQ ) ∼−→ sg(A) taking
ei LQ to the simple Si .

Corollary 7. The Hochschild homology H H∗(LQ ) of the Leavitt path algebra is computed by the
double Hochschild complex

. . .
b // A⊗ A

b // A
τ // D A

Db // D(A⊗ A)
Db // . . . ,

(with D A in degree 0). In particular, we have

dim H Hp
(
LQ

)= 0 <∞

for all p ∈Z.

A different description of the Hochschild homology of Leavitt path algebras is due to Ara–
Cortiñas [1].
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4. Beyond radical square zero

Let Q be a finite quiver and A = kQ/I the quotient of its path algebra by an admissible ideal. Let J
be the radical of A and R = kQ0 so that we have A = R ⊕ J as R-bimodules. Let A0 = (TR J )/(J ⊗R J )
be the radical square zero algebra associated with A. Thus, we have A0 = R⊕J = A as R-bimodules
but we have x y = 0 in A0 for any two elements of J . We view A0 as a degeneration of A and
A as a deformation of A0. As pointed out by Chen–Wang [5], this suggests that the singularity
category sg(A) is a deformation of the singularity category sg(A0), which is equivalent to the
perfect derived category per(L A0 ) of the graded Leavitt path algebra L A0 . Hence we can hope for
the existence of a dg algebra L A obtained from L A0 by deformation such that per(L A) is equivalent
to sg(A). We sum up the situation in the following diagram

A0 A
deformation

sg(A0) sg(A)

per
(
L A0

)
per(L A)

deformation

∼ ∼

deformation?

L A0 L Adeformation? ?

?

The following theorem confirms this hope.

Theorem 8 (Chen–Wang [5]). The graded algebra L A0 admits a canonical differential dA such
that for L A = (L A0 ,dA), we have a triangle equivalence

per(L A) ∼−→ sg(A).

Corollary 9. The Hochschild homology of the dg Leavitt path algebra L A is computed by the double
Hochschild complex of A.
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