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Flavonoids promote
Rhizophagus irregularis spore
germination and tomato root
colonization: A target for
sustainable agriculture

Javier Lidoy, Estefanı́a Berrio, Marta Garcı́a, Luis España-Luque,
Maria J. Pozo and Juan Antonio López-Ráez*

Dept. of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidı́n, Consejo
Superior de Investigaciones Científicas (CSIC), Granada, Spain
The use of arbuscular mycorrhizal (AM) fungi has great potential, being used as

biostimulants, biofertilizers and bioprotection agents in agricultural and natural

ecosystems. However, the application of AM fungal inoculants is still

challenging due to the variability of results when applied in production

systems. This variability is partly due to differences in symbiosis

establishment. Reducing such variability and promoting symbiosis

establishment is essential to improve the efficiency of the inoculants. In

addition to strigolactones, flavonoids have been proposed to participate in

the pre-symbiotic plant-AM fungus communication in the rhizosphere,

although their role is still unclear. Here, we studied the specific function of

flavonoids as signaling molecules in AM symbiosis. For that, both in vitro and in

planta approaches were used to test the stimulatory effect of an array of

different subclasses of flavonoids on Rhizophagus irregularis spore germination

and symbiosis establishment, using physiological doses of the compounds. We

show that the flavone chrysin and the flavonols quercetin and rutin were able to

promote spore germination and root colonization at low doses, confirming

their role as pre-symbiotic signaling molecules in AM symbiosis. The results

pave the way to use these flavonoids in the formulation of AM fungal-based

products to promote the symbiosis. This can improve the efficiency of

commercial inoculants, and therefore, help to implement their use in

sustainable agriculture.

KEYWORDS

bioinoculants, symbiosis, rhizosphere signaling, plant microbe communication,
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1 Introduction

The growing human population requires a considerable

increase in food production, leading to overexploitation of

natural resources (Godfray et al., 2010). Crop varieties with

higher yields and greater resistance to environmental stresses

and diseases are currently being developed. However, massive

use of chemical fertilizers and pesticides is still required to

provide essential nutrients and reduce disease damage in

agricultural production systems. The use and abuse of these

chemical products in agriculture have a huge environmental

impact, polluting soils and aquifers and contributing to climate

change, negatively affecting human health, ecosystems and

species worldwide (Tilman et al., 2002; Evans et al., 2019;

Lynch et al., 2021). Therefore, there is an urgent need to find

more sustainable and environmentally friendly alternatives to

reduce the use of these harmful agrochemicals (Geiger

et al., 2010).

One strategy that is gaining momentum is the use of

beneficial microorganisms with biostimulant properties. These

microorganisms can establish symbiotic associations with plants

improving agroecosystems and crop production (Tkacz and

Poole, 2015). Among these beneficial microorganisms stand

out arbuscular mycorrhizal (AM) fungi. These soil fungi

belong to the phylum Glomeromycota and establish mutualistic

associations with plant roots known as AM symbiosis (Smith and

Read, 2008). AM symbiosis is about 450 million years old, and it

is established with more than 70% of land plants, including most

species of agronomic and industrial interest (cereals, vegetables,

fruit trees, cotton, etc.), as well as ornamental and forest species

(Barea et al., 2005; Brundrett and Tedersoo, 2018). It is

characterized for the formation of specific structures within the

roots of the host plant known as arbuscules (Parniske, 2008). In

the arbuscules takes place the nutrient exchange between the

fungus and the host plant (Bonfante and Genre, 2010). In

addition to the arbuscules, the AM fungus develops a large

network of hyphae, known as extraradical mycelium, which

serves to explore larger areas of soil and constitutes the

assimilative structure for mineral nutrients and water,

functioning as pseudo roots (Parniske, 2008). The benefits of

AM symbiosis in plant nutrition and health are well known

(Barea et al., 2005; Wipf et al., 2019). However, in addition to a

better nutrition, AM symbioses offer other benefits to the host

plant including improved defense responses to pathogens and

increased resilience to environmental stresses, such as drought

and salinity (Pozo et al., 2015).

Despite the potential benefits of AM fungi, their application

as biostimulants in agricultural settings is still challenging due to

the variability of the results in production systems, which

hinders their commercialization and implementation (Tkacz

and Poole, 2015). This variability resides mainly in three

factors: a) the quality and effectiveness of the inoculants, b)

the environmental conditions and c) the management
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techniques, especially chemical fertilization. AM fungi are

obligate biotrophs, so they depend on a host plant to develop

and complete their life cycle (Parniske, 2008). This makes it

difficult to implement the production of stable, axenic and

homogeneous inoculants based on AM fungi. Spore-based

inocula are available on the market, and they are easy to

quantify and store, with higher homogeneity and lower risk of

contamination than soil based inocula. However, spore

production in vitro is costly (Siddiqui and Kataoka, 2011).

The establishment and functioning of AM symbiosis

requires a high degree of coordination between the AM fungus

and the host plant, based on precise molecular communication

(Pozo et al., 2015; López-Ráez et al., 2017). The molecular

dialogue is initiated early during the pre-symbiotic phase with

the production and exudation into the rhizosphere of signaling

molecules by the plant, primarily strigolactones (SLs) (López-

Ráez et al., 2017). SLs are specifically recognized by the AM

fungus present in the vicinity of the roots, stimulating spore

germination, hyphal branching and exudation of fungal Myc-

factors, thus facilitating the contact between the two partners

and the establishment of the symbiosis (Akiyama et al., 2005;

Besserer et al., 2006; Bonfante and Genre, 2010). SLs are derived

from carotenoids and, according to their signaling role, they are

produced at very low amounts by the plant (on the order of pico-

and nanomolar), according to the plant’s nutritional status

(López-Ráez et al., 2008; Yoneyama et al., 2012; Marro et al.,

2022). In addition to signaling compounds in the rhizosphere,

SLs are plant hormones regulating plant responses to nutritional

stresses, especially phosphate (Pi) deficiency (Gomez-Roldan

et al., 2008; Umehara et al., 2008; Marro et al., 2022).

In addition to SLs, other plant-derived compounds such as

flavonoids have been proposed to participate in the pre-

symbiotic molecular dialogue in AM symbiosis (reviewed in

Hassan & Mathesius (2012)). However, the flavonoids specific

role and functioning is not clear. Flavonoids comprise a large

and diverse family of ubiquitous secondary metabolites

belonging to the phenylpropanoids. They play a diverse array

of biological functions in plants, acting as antioxidants, pigments

in flowers, fruits and vegetables, regulators of auxin transport,

fertility, defense barriers against herbivores and microbial

pathogens (phytoalexins), regulating root architecture and as

signaling compounds in beneficial plant-microbe symbioses in

the rhizosphere (Hassan andMathesius, 2012). So far, more than

10,000 different flavonoids have been characterized. According

to their chemical structure, they are subcategorized into different

major groups, including flavonols, anthocyanin, flavones,

isoflavonoids, flavanonols, flavanones, flavanols, and chalcones

(Figure 1) (Panche et al., 2016). Regarding their role as signaling

molecules in the rhizosphere, the best-known function is

associated to the Rhizobium-legume symbiosis (Singla and

Garg, 2017). This beneficial symbiosis is established between

legumes and certain rhizobacteria, leading to the fixation of

atmospheric nitrogen and providing nitrogen to the host plant
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under nitrogen deficiency (Masson-Boivin and Sachs, 2018). The

pre-symbiotic and symbiotic stages in the Rhizobium-legume

symbiosis and AM symbioses are similar, and they share some of

the required signaling components forming the so-called SYM

pathway (Mukherjee and Ané, 2011; de Bruijn, 2020). In the

Rhizobium-legume symbiosis, the molecular dialogue during the

pre-symbiotic phase is initiated with the production and

exudation into the rhizosphere of certain flavonoids

(isoflavonoids) by the host plant (Figure 1). These

isoflavonoids are involved in the recruitment of compatible

rhizobia by inducing or inhibiting bacterial Nod factors (Shaw

et al., 2006; Mandal et al., 2010).

The role of flavonoids in AM symbiosis is ambiguous and

unclear. Initially, they were considered not important for AM

establishment (Becard et al., 1995). Few years later, it was shown

that certain flavonoids presented activity either stimulating

spore germination or root colonization (Akiyama et al., 2002;

Scervino et al., 2007; Steinkellner et al., 2007). However, the role

of flavonoids in AM symbiosis is still controversial as positive,

negative or neutral results have been described (Vierheilig et al.,

1998; Singla and Garg, 2017). This controversy may be related to

the very different experimental conditions used, as they study

different flavonoids, different concentrations and different fungal

genotypes (Vierheilig et al., 1998; Singla and Garg, 2017). Thus,

the specific involvement and functioning of flavonoids in AM

symbiosis remains unclear. We hypothesize that the exogenous

application of flavonoids may enhance the effectiveness of AM

inoculants by acting as signaling molecules during the pre-

symbiotic phase of the AM symbiosis. Different flavonoids

belonging to different subcategories and at different

concentrations were tested, both in vitro and in planta, for

their capacity to induce spore germination and stimulate root
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colonization by the AM fungus Rhizophagus irregularis

(formerly Glomus intraradices), the most widely used AM

fungus in commercial products in the market. The results

confirm the bioactivity of these compounds in the symbiosis

and reveal that there is class specificity and their activity depends

on the dose used.
2 Material and methods

2.1 In vitro germination of spores of the
AM fungus R. irregularis

The in vitro assays were carried out in 90 mm diameter Petri

dishes with 35 ml of agar medium (2%) in deionized water under

sterile conditions. The flavonoids used were the flavonols

quercetin and rutin (Sigma-Aldrich, Germany), the flavone

chrysin (Sigma-Aldrich, Germany), the isoflavone genistein

(Sigma-Aldrich, Germany) and the pterocarpene medicarpin

(kindly provided by Dr. Francisco A. Macıás, University of

Cádiz, Spain). As positive control, the active enantiomer of the

synthetic SL analogue 2’-epi-GR24 (GR244DO, StrigoLab, Italy)

(Scaffidi et al., 2014) was used. For the preparation of the

different treatments, stock solutions (1 mM) were prepared by

dissolving the different compounds in 100% acetone. Serial

dilutions in deionized water were prepared for each

compound. Prior the addition to the Petri dishes, the solutions

were sterilized using 0.22 µm filters. All treatments, including the

controls, had a final concentration of acetone in the plate of 1‰.

In a laminar flow hood, 50 µl of the corresponding dilution were

added per plate and spread homogeneously over the entire agar

surface using a seeding loop. The plates were kept open for 30

min to allow absorption of the added compounds and for acetone

evaporation. Subsequently, a solution with 15 axenic spores of R.

irregularis [MUCL 57021; kindly supplied by Koppert Biological

Systems (The Netherlands)] were added per plate. Plates were

sealed and incubated upside down at darkness at 25°C. Spore

germination was evaluated daily. Due to the presence of multiple

hyphae from the starter inoculum, germination was quantified by

assessing the growth of new hyphae through the culture medium.

Two independent experiments were performed with different

concentrations of flavonoids, always within a physiological

concentration range. For the experiment 1, 5 independent

replicates per treatment were used [5 plates with 15 spores per

plate; therefore (75 spores per treatment)]. For the experiment 2,

7 replicates per treatment [7 plates with 15 spores per plate (105

spores per treatment)] were used.
2.2 AM colonization in planta

Tomato (Solanum lycopersicum L.) seeds of the genotypes

Red Cherry (LA0337), kindly provided by Dr. Gregg Howe
FIGURE 1

Schematic overview of the different groups of flavonoids
according to their chemical structure.
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(Michigan State University, USA) and Kardia (Syngenta, Spain)

were surface sterilized with 50% commercial bleach for 10 min

and after washed thoroughly with tap water. The seeds were then

sown in sterilized vermiculite and incubated at 25–27°C, 16h/8h

(day/night) and 65-70% relative humidity in a climatic chamber.

Ten-day-old seedlings were transplanted individually into 100

ml growing cells with sterile sand:vermiculite (1:1). Plants were

inoculated with spores of R. irregularis (MUCL 57021; Ri plants)

supplied by Koppert Biological Systems (The Netherlands). 700

and 300 spores were used for the assay with the cultivar Red

Cherry and Kardia, respectively. As mycorrhizal control, a set of

non-inoculated plants was included (Nm plants). Ri plants were

treated with quercetin, rutin, chrysin or genistein, at two

different concentrations 0.01 and 0.1 µM. As a positive

control, a treatment with the synthetic SL analogue GR244DO

was included. Negative controls were also included with non-

treated plants. For the application of the different compounds

(flavonoids and GR244DO), serial dilutions in Hewitt nutrient

solution were prepared for each of the 1mM stock solutions

prepared. Prior to their addition, the corresponding serial

dilutions of the different compounds were prepared in

Hewitt’s nutrient solution (Hewitt, 1953), at a final acetone

concentration of 1‰. To favor mycorrhizal symbiosis

establishment, modified Hewitt’s solution was used containing

25% of the standard phosphate levels (0.33 mM). Plants were

treated twice a week with 10 ml of the different compound

dilutions. The control (untreated) treatments were also irrigated

twice a week with 10 ml of Hewitt solution containing 1‰

acetone. Ten independent replicates per treatment were used.

Mycorrhizal levels were assessed 6 weeks after transplanting.
2.3 Quantification of mycorrhizal
colonization

Quantification of mycorrhizal colonization was performed

by histochemical staining as described in Garcıá et al. (2020).

Briefly, roots were cleared and digested in a solution of 10%

KOH (w/v) for 2 days at room temperature. The alkaline solution

was washed thoroughly with tap water and acidified with a 2%

(v/v) acetic acid solution. The fungal root structures were stained

with a 5% (v/v) black ink (Lamy, Germany) and 2% acetic acid

solution incubated at room temperature (Vierheilig et al., 2005).

After 24h the ink was washed with water and colonization was

determined by the gridline intersection method (Giovannetti and

Mosse, 1980) using a Nikon SMZ1000 stereomicroscope.
2.4 Statistics

To identify significant differences between the means,

statistical analyses were performed with unpaired t-test

analysis using Statgraphics Plus 3.1. Since the percentage of
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germination and mycorrhizal colonization did not have a

normal distribution, the Bliss transformation was applied to

the data before the analysis.
3 Results

To deepen in the role offlavonoids as pre-symbiotic signals in

AM symbiosis, the capacity of a series of flavonoids belonging to

different subcategories of stimulating the germination of spores

of the AM fungus R. irregularis was assessed in vitro (Figure 1).

Different concentrations, within physiological levels, were used.

Spores of R. irregularis were used in the experiments since most

AM fungal commercial products are based on this fungus as

biostimulant. Two independent experiments were assessed:
3.1 Stimulatory effect of flavonoids of AM
symbiosis in vitro

In a first assay, three different concentrations (0.01, 0.1 and 1

µM) of the different flavonoids were tested. SLs are well-known

pre-symbiotic signals in AM symbiosis, having the ability to

stimulate spore germination and hyphal branching of AM fungi

(Akiyama et al., 2005; Besserer et al., 2006). Therefore, a

treatment with an active enantiomer of the synthetic SL

analogue 2’-epi-GR24 (GR244DO) (Scaffidi et al., 2014) was

included as a positive control. Spore germination was checked

daily from the third day. Germination levels were quantified 10

days upon application. GR244DO induced spore germination at

all three concentrations used, showing a slight decrease at the

highest concentration (1 µM), Validating the bioassay and

confirming the viability of the spores (Figure 2). The five

flavonoids tested (genistein, medicarpin, chrysin, quercetin

and rutin) also stimulated spore germination of R. irregularis

compared to the control. Genistein induced about 2.5 times

germination at all the concentrations tested (Figure 2).

Medicarpin application stimulated spore germination 2.8- and

1.8-fold at the lower concentrations, 0.01 and 0.1 µM,

respectively. Conversely, a significant inhibitory effect on spore

germination was observed at the highest concentration (1 µM).

For the flavone chrysin, the highest stimulation of germination

was observed after application of 0.1 µM, with a 4.2-fold increase

respect to the control. The flavonol quercetin stimulated spore

germination at the three tested concentrations. The highest

induction in germination was observed at 0.1 µM, with a 5-

fold increase. Upon application of 0.01 and 1 µM, about 3 times

induction was observed (Figure 2). Rutin also induced

germination at the three concentrations tested, being the

highest stimulation observed at the lowest concentration (0.01

µM), with about 4-fold increase respect to the control. At higher

concentrations (0.1 and 1 µM), germination was stimulated 2.9

and 2.7 times, respectively (Figure 2).
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To confirm the results observed, a second spore germination

assay in vitro was carried out. According to the previous results,

only the lower concentrations (0.01 and 0.1 µM) were used for

the different compounds in this second assay. Here, spore

germination was faster than in the previous experiment and

germination levels were quantified 5 days after application of the

different compounds. As before, GR244DO induced spore

germination at both concentrations used, again validating the

bioassay and spore’s viability (Figure 3). In this experiment, only

the four flavonoids that showed the higher effect on germination

in the previous assay (chrysin, genistein, quercetin and rutin)

were tested. No effect of the flavone chrysin was detected at any

of the concentration used (Figure 3). In the case of the isoflavone

genistein, both concentrations stimulated germination of the

spores of R. irregularis. The application of 0.01 and 0.1 µM

induced germination 2.7 and 2.3-fold, respectively, compared to

the control (Figure 3). These inductions were similar to that

observed for the positive control GR244DO (Figure 3). The

flavonol quercetin promoted spore germination about 2.5 times

compared to the control at 0.1 µM, while no stimulatory effect

was observed at the lower concentration (0.01 µM) (Figure 3). In

the case of rutin, a 2.5-fold promotion was observed at the lower

concentration (0.01 µM), showing similar stimulation levels to

those observed for GR244DO (Figure 3). No significant effect was

detected at 0.1 µM. The results showed that certain flavonoids

belonging to different subcategories, have the capacity of

stimulate the germination of the spores of the AM fungus R.

irregularis in vitro at low concentrations. Remarkably, the results

also indicate that the effect is dose dependent.
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3.2 Stimulatory effect of flavonoids on
AM symbiosis establishment in planta

Based on the results obtained in vitro, we next carried out an

in planta experiment to determine whether the increased spore

germination rate induced by flavonoids resulted in higher

mycorrhizal root colonization. Tomato (cv. Red Cherry) as a

host plant and spores of the same R. irregularis strain (MUCL

57021) used in the in vitro assays were used. As expected, the

application of GR244DO highly (about 6 times) enhanced

mycorrhizal colonization levels of R. irregularis at 0.01 and 0.1

µM compared to control plants (Figure 4). Regarding the

flavonoid treatments, no significant effect in mycorrhization

was observed upon application of the isoflavone genistein at

any of the two concentrations applied. Conversely, a stimulatory

effect was observed for the other three compounds tested. The

flavone chrysin induced mycorrhizal colonization levels about 3

and 4 times at 0.01 and 0.1 µM, respectively, compared to the

control (Figure 4). The flavonol quercetin promoted mycorrhizal

colonization more than 2 times after application of both 0.01 and

0.1 µM (Figure 4). The other flavonol, rutin, increased

mycorrhization about 3-fold upon application of 0.01 µM and

about 2-fold at 0.1 µM, although this increase was not

statistically significant (Figure 4). The results show that the

flavonoids chrysin, quercetin and rutin function as signaling

molecules in the rhizosphere stimulating the establishment of

AM symbiosis.
FIGURE 3

Effect of flavonoid treatments on in vitro R. irregularis spore
germination. Relative percentage of germination in spores
incubated for 5 days in Petri dishes with 2% agar medium with
two different concentrations (0.01 and 0.1 µM) of the flavonoids
chrysin, genistein, quercetin and rutin. The application of the
synthetic strigolactone analogue GR244DO (GR24) was used as a
positive control. The bars correspond to the mean of 7
independent replicates (15 spores per replicate) ± S.E. T-test
analysis between each treatment compared with the control.
*p<0.05, **p<0.01.
FIGURE 2

Effect of flavonoid treatments on in vitro R. irregularis spore
germination. Relative percentage of germination in spores
incubated for 10 days in Petri dishes with 2% agar medium with
three different concentrations (0.01, 0.1 and 1 µM) of the
flavonoids chrysin, genistein, medicarpin, quercetin and rutin.
The synthetic strigolactone analogue GR244DO (GR24) was used
as a positive control. The bars correspond to the mean of 5
independent replicates (15 spores per replicate) ± S.E. T-test
analysis between each treatment compared with the control.
*p<0.05, **p<0.01, ***p<0.001.
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3.3 Quercetin promotes AM symbiosis in
commercial tomato rootstocks

Currently, the vast majority of tomato production is carried

out using grafted plants (Raymond, 2013). Grafting is a

horticulture technique that combine and use beneficial traits of

both the rootstock and the scion plants. Hereto, a rootstock is

selected for its resistance to soilborne pathogens and/or its

ability to increase vigor and fruit yield. Then, the rootstock

can be combined with different scions selected for their fruit

quality characteristics. To further study the potential use of

flavonoids in agriculture to improve AM fungal-based

commercial products, a mycorrhizal experiment was carried

out using the commercial tomato rootstock Kardia (Syngenta).

The flavonol quercetin was selected because of the previous

results and its reduced cost compared to the other flavonoids

tested, which makes it more interesting from a commercial point

of view. A slight increase of 1.3 times in mycorrhizal

colonization was observed upon application of 0.1 mM
GR244DO (Figure 5). Application of 1 µM quercetin promoted

root colonisation by 2-fold compared to the untreated control

plants (Figure 5), confirming the ability to stimulate AM

symbiosis in different genotypes, including hybrid lines of

great agronomic interest.
4 Discussion

In the present study, we carried out in vitro and in planta

assays to confirm their involvement in this beneficial symbiosis
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with the aim of testing their potential use as additives to improve

commercial AM fungal-based inoculants. The in vitro assays

revealed that the flavonoids chrysin, genistein, medicarpin,

quercetin and rutin, belonging to different subclasses,

stimulated spore germination and hyphal growth of the AM

fungus R. irregularis at different concentrations (Figures 2, 3).

They showed a stimulatory germination activity similar to that

of the synthetic SL analogue GR244DO, indicating their high and

specific activity. A role for the flavone chrysin in AM fungal

spore germination and hyphal development was previously

described, although with contradictory results. First, an

inhibitory effect on Gi. margarita was reported during the pre-

symbiotic phase (Bécard et al., 1992; Chabot et al., 1992).

Conversely, a stimulatory effect in the number of entry points

and root colonization was later shown for Gi. margarita,

Funneliformis mosseae and R. irregularis (Scervino et al.,

2007). Therefore, the results seem to vary depending on the

fungal genotypes, experimental conditions and, probably, the

concentrations used, as this is crucial when using signaling

compounds. Here, a stimulatory effect of chrysin was observed

at low (‘physiological’, nanomolar range) doses, suggesting that

this compound can act as a plant-derived signaling molecule

during AM symbiosis establishment.

Our results are also consistent with the ability to stimulate

spore germination and hyphal growth of the AM fungus Gi.

margarita in vitro reported for certain flavonols, specially

quercetin (Bécard et al., 1992; Chabot et al., 1992; Poulin et al.,

1997; Scervino et al., 2005b). A role of quercetin in stimulating

spore germination and hyphal growth has been reported also for

other AM fungi, such as Gi. rosea (Scervino et al., 2005b) and Gi.

gigantea (Baptista and Siqueira, 1997), F. mosseae (Kape et al.,

1993), Claroideoglomus etunicatum (Tsai and Phillips, 1991;

Bécard et al., 1992), G. macrocarpum (Tsai and Phillips, 1991)

and R. irregularis (Bécard et al., 1992; Poulin et al., 1997).

However, these effects were always observed at high

concentrations (Vierheilig et al., 1998). Here, as for chrysin,

we showed that quercetin is also able to stimulate fungal

development at low concentrations (0.01 and 0.1 µM),

supporting the role of flavonols a signaling molecules in AM

symbiosis establishment. In agreement with this, a stimulatory

effect in fungal development at low doses (0.01 µM) was also

observed for rutin, a glycosylated derivative of quercetin. No

effect in fungal development was previously described for rutin,

although high concentrations of the compound were used in

these experiments (Bécard et al., 1992; Chabot et al., 1992;

Scervino et al., 2007). Once again, the different concentrations

of the flavonoids tested could explain the divergences

observed, since the dose is critical when working with

signaling compounds.

Based on these and previous results, it is clear that certain

flavonoids can stimulate AM fungal development during the

pre-symbiotic phase of AM symbiosis in vitro. However, an

effect in vitro does not necessarily correlate with an increased
FIGURE 4

Root colonization of tomato plants by the mycorrhizal fungus R.
irregularis. Plants were inoculated with R. irregularis spores and
treated twice a week with two different concentrations (0.01 and
0.1 µM) of the flavonoids chrysin, genistein, quercetin and rutin.
The synthetic strigolactone analogue GR244DO (GR24) was used
as a positive control. The bars correspond to the mean of 10
independent replicates ± S.E. T-test analysis between each
treatment compared with the control. *p<0.05, **p<0.01,
***p<0.001.
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mycorrhizal colonization in planta. Remarkably, we show here

the flavone chrysin, and the flavonols quercetin and rutin were

also able to promote mycorrhizal colonization in tomato plants

at low doses when applied in fertigation and using AM fungal

spores as inoculum. This agrees with previous results in different

plant species, including tomato. In tomato, the application of the

flavones chrysin and luteolin, and the flavonol morin increased

root colonization by different AM fungi, while other flavonols

such as rutin, kaempferol and isorhamnetin showed no effect

(Scervino et al., 2007). Quercetin was found to be present in

mycorrhizal white clover (Trifolium repens) roots and shown to

promote mycorrhizal colonization of Gi. margarita (Scervino

et al., 2005a). Recently, quercetin has been related with the

expansion of invasive plants (Pei et al., 2020; Tian et al., 2021;

Borda et al., 2022). It was shown that these plants have increased

levels of quercetin in their root exudates than native plants,

which was associated to an enhanced mycorrhizal colonization

and capacity of expansion. The authors also showed that the
Frontiers in Plant Science 07
exogenous application of quercetin promoted AM fungal

colonization of the target plants (Pei et al., 2020; Tian et al.,

2021). The results suggest that the flavonol quercetin, and

probably its derivatives such as rutin, act as signaling

molecules in the rhizosphere promoting the establishment of

AM symbiosis, as SLs do. Likely, both SLs and flavonols might

act in tandem as ‘cry for help’ host signals to attract AM fungi

and prepare the plant for colonization. In agreement with this

idea, Maloney et al. (2014) proposed a role of flavonols,

including quercetin, in the promotion of lateral root

formation, which are the preferred place for the AM fungus to

colonize the host plant. The results open up the possibility of

using these compounds to improve the efficiency of commercial

products based on AM fungal spores. Indeed, we show here that

the addition of low doses of quercetin (at nanomolar levels)

promote mycorrhizal colonization by R. irregularis, the most

widely AM fungus used in commercial products. Remarkably,

the effect seems to be not specific, as this assay was performed

using two different tomato genotypes, including a tomato variety

commonly used as rootstock. Most tomato farmers can benefit

of this effect since currently the vast majority of tomato

production is carried out using grafted plants (Raymond,

2013). Our findings support the use of this alternative strategy

in tomato production, which could be extended to other crops

produced in nursery conditions. However, further assays under

field conditions should be performed before its implementation

in production systems. Remarkably, most mycorrhizal plants,

including crops with agronomic interest, produce these

flavonoids, being probably sensitive to them. Therefore, this

promoting effect of AM symbiosis could be extended to

other crops.

Overall, we confirm here the role of flavonols in AM

symbiosis and show their relevance as rhizosphere signaling

molecules during the pre-symbiotic phase, promoting spore

germination, hyphal development and symbiosis establishment.

The increasing demand of AM fungal-based biostimulants in

agriculture needs effective and efficient commercial inoculants,

especially in seasonal crops. In this scenario, the addition of

selected flavonoids -such as the flavone chrysin and the flavonol

quercetin- at low doses has a great potential as accelerators of the

pre-symbiotic phase, promoting symbiosis establishment and

improving the efficiency of commercial products. The final goal

of this research is the use these signaling compounds in

agricultural production systems to implement the use of AMF

as biostimulants, thus reducing the use of harmful

agrochemicals. Remarkably, this management requires very

reduced costs, which makes it achievable for most farmers.

Therefore, this management has a great potential in

sustainable agriculture. However, before its implementation we

need first to confirm their effect in agricultural settings, as well as

their effectiveness in different crops.
FIGURE 5

Mycorrhizal root colonization of rootstock tomato plants by the
AM fungus R. irregularis. Plants were inoculated with R.
irregularis spores and treated with quercetin (1 µM). The
application of the synthetic strigolactone analogue GR244DO

(GR24) was used as a positive control (0.1 µM). The bars
correspond to the mean of 10 independent replicates ± S.E. T-
test analysis between each treatment compared with the
control. *p<0.05, **p<0.01.
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