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With the grid connection of a large number of distributed photovoltaics (PVs), the
structure and operation mode of the distribution network are changed. Detailed
modeling of the distribution network can accurately analyze the impact of these
changes on the power system but leads to highmodel complexity and large amounts
of calculation. Equivalent of the distribution network effectively reduces the model
scale, where the static equivalent is the basis for the other equivalents. Most of the
existing static equivalent methods target a few typical operation modes. However,
they are unsuitable for multiple variable scenarios caused by PV power fluctuation.
This paper proposes a static equivalent method of the distribution network with
distributed PVs to adapt to complex and changeable operation modes. Firstly, a
scenario generation method of PV and load power based on kernel density
estimation and a copula function is proposed considering fluctuation and
correlation of PV and load. Secondly, a parameter optimization method based on
particle swarm optimization (PSO) is proposed to optimize the parameters in the
static equivalent model of the distribution network under a single operation mode.
Thirdly, an equivalent parameter estimation model based on convolutional neural
network (CNN) is proposed to improve the efficiency ofmodel parameter calculation
under multiple operation modes. The effectiveness of the proposed method is
verified under an example of an actual distribution network in Shandong, China.
This method has efficiency and is suitable for multiple operating modes.
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1 Introduction

With the development of photovoltaic (PV) technology and the increasing demand for
reducing transmission power losses on the generation side, the proportion of distributed PV
power generation in the distribution network has increased. According to statistics (IEA, 2022),
the new installed capacity of distributed PVs worldwide significantly exceeded that of
centralized PVs in 2021. The installation of massive distributed PV changes the
distribution network from a simple passive network to a complex active one. The direction
of power flow in the distribution network is reversed in light load conditions. The influence of
the distribution network on the bulk power system is becoming more and more complex
(Gusnanda and Putranto, 2019; Li et al., 2021; Liu et al., 2021). Therefore, the impact of
distributed PVs must be considered for large-scale power system analysis.
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Detailed modeling of the complete distribution networks is a
direct way to analyze large-scale power systems accurately.
However, the quantity of distributed PVs is large due to their small
capacity. It is inefficient to model the distribution network with all of
its components. Hence it is necessary to find an equivalent method for
the distribution network that can provide reasonable precision and
retain the essential characteristics of the distribution network, PVs,
and load. In this way, the system analysis model scale can be greatly
reduced.

Static equivalent of the distribution network is the basis of other
equivalent studies such as dynamic equivalent. It includes model
structure design and parameter optimization. For the model
structure, the most basic model equivalents the distribution
network with distributed generators to a single load at the step-
down transformer (Milanovic et al., 2013). This model has a
simple structure but cannot distinguish distributed generators and
load. Jeong et al. (2017) and Dai et al. (2018) adopted the generation-
loadmodel, which overcomes the above shortcomings. This model can
directly simulate the characteristics of distributed generators and is
widely used. The above studies generally apply the models to static
equivalent of the distribution network at a specific operation mode.
However, the operation state of the distribution network is time-
varying due to the fluctuation of distributed PV and load. It is
necessary to consider a variety of operation modes for the
equivalent of the distribution network.

Regarding parameter optimization of equivalent models, Sadeghi
and Sarvi (2009), Wang et al. (2014), and Zhao et al. (2018) used the
least square method to identify model parameters with a single
boundary node. However, the static equivalent of the distribution
network is a strongly non-linear problem, and that is, the voltage,
power, and other characteristics of the step-down transformer have
non-linear relationships with distributed generation and load. The
least square method is inefficient in solving these non-linear static
equivalent problems. Zaker and Farjah (2021) used the genetic
algorithm based on simulating biological evolution to calculate the
model parameters. Genetic algorithm is one of the evolutionary
algorithms that can solve non-linear problems. Nevertheless, it is
complicated to implement because of mutation and crossover
operations.

To solve the above problems, this paper proposes a static
equivalent method of distribution network with distributed PV
under multiple operation modes. Firstly, a joint distribution
probability model of PV and load power is constructed considering
the correlation between fluctuation of PV and load. Secondly, a static
equivalent method of the distribution network with distributed PV
based on particle swarm optimization (PSO) is proposed to provide
equivalent samples. Thirdly, the parameter estimation model of the
equivalent distribution network using convolutional neural network
(CNN) is constructed to improve the parameter identification
efficiency.

The remainder of this paper is organized as follows. Section 2 gives
a power scenario generation method based on kernel density
estimation, Frank copula, and Monte Carlo sampling. Section
3 proposes a static equivalent model of the distribution network
with distributed PV and improves the PSO algorithm to identify
the model parameters. Section 4 introduces the construction process
of the proposed equivalent parameter estimation model based on
CNN. Section 5 uses a practical distribution network to verify the
proposed method.

2 Generation of distribution network
operation mode

The operation mode of the distribution network in this paper
refers to the operation state of ensuring a safe and reliable power
supply under the corresponding PV and load power scenario. This
section generates the operation modes considering the correlation
between fluctuation of PV and load power. Firstly, the probability
density functions of PV and load power are generated based on kernel
density estimation. Secondly, the joint probability distribution
function of PV and load power is established based on the copula
theory. Thirdly, PV and load power scenarios are generated using
Monte Carlo sampling. Finally, some strategies are proposed to
improve the convergence of power flow calculation when
simulation software is used to analyze information such as power loss.

2.1 Kernel density estimation for distributed
PV and load power

The fluctuation of PV and load power are generally fitted by the
parametric and non-parametric estimation methods (Li et al., 2019).
Parameter estimation methods use sample data to infer the probability
distribution of statistics, which needs to specify the distribution of PV
and load power in advance. But it is challenging to accurately depict
the random characteristics of PV and load. Therefore, this paper uses a
non-parametric estimation method, which does not rely on data
following any particular probability distribution.

Kernel density estimation is a non-parametric method to estimate
the probability density function of a random variable based on kernels
as weights. Probability distribution characteristics of PV and load
power can be mined based on known data (Xu et al., 2017). The non-
parametric kernel density estimation function is expressed by Eq. 1.
X1, X2, . . . , Xn are independent and identically distributed samples
drawn from the historical power data with an unknown density f̂(x)
at any given point x. The contribution degree of the sampling points to
the estimated value can be determined by analyzing the distance
between x and other points in the neighborhood.

f
∧

x( ) � 1
nh

∑n
i�1
K

x −Xi

h
( ) (1)

where n is the number of PV and load power samples; h is bandwidth;
K (·)is the kernel function.

The bandwidth h determines the smoothness of the kernel density
estimation function. To balance the effects of estimation bias and
variance, the bandwidth is defined by Eq. 2.

h � σ′n−1/5 (2)
σ′ � 1.05σ (3)

where σ is the standard deviation of PV and load power samples.
The Gaussian kernel function is selected in this paper, which is

described as

KG x( ) � 1���
2π

√ exp −1
2
x2( ) (4)

The distribution characteristics contained in the PV and load power
sample can be revealed by kernel density estimation using all locations
of the power sample point and choosing an appropriate bandwidth.
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2.2 Joint distribution model based on frank
copula function

Due to the correlation between the PV and load power of each
node in the distribution network, the joint probability distribution
method should be applied to connect their marginal distribution
functions. The copula function, which can construct two-
dimensional distribution family, is used in this paper, as shown in
Eq. 5.

H x1, ..., xm( ) � C GX1 x1( ), ..., GXm xm( )( ) (5)
where m is the number of power variables; GXi(xi) (i � 1, 2, ..., m) is
the marginal distribution function of a single power variable; C (·) is
the copula function;H(x1, ..., xm) is the joint distribution function of
all power variables.

There are two common copulas, including Archimedean copulas
and elliptical copulas. Archimedean copulas are widely used in
practice because they allow correlation modeling in arbitrarily high
dimensions with only one parameter. In the Archimedean copula
functions, the frequently used Gumbel and Clayton copulas can only
describe the positive relationship between variables, while Frank
copulas consider both the positive and negative correlation of
variables (Zhu et al., 2019). The relationship between PV and load
power is often negative and complementary, so the Frank copula is
selected in this paper (Zhu et al., 2019). The equation of the Frank
copula is defined as

CFr ui, vi( ) � −1
θ
ln 1 + e−θui − 1( ) e−θvi − 1( )

e−θ − 1( )[ ] (6)

ui � GXi Xi( ) (7)
vi � GYi yi( ) (8)

where CFr (·) is the Frank copula function; xi and yi are PV and load
power at a certain time, i = 1, 2, . . . , 24; ui and vi are the marginal
distribution functions of xi and yi; θ is the correlation coefficient of
Frank copula.

The θ is estimated by the maximum likelihood estimation method.
Maximum likelihood estimation is a method of estimating the
parameters of an assumed probability distribution, given some
observed data. It can be achieved by maximizing a likelihood
function so that the observed data is most probable under the
assumed statistical model.

2.3 Generation of PV and load power
scenarios

After connecting the marginal distribution functions of PV and
load power, the copula function should be sampled based on Monte
Carlo sampling to generate power scenarios. The steps are as follows:

1) Generate random numbers a1, a2, . . . , aj in the interval [0,1].
2) Sample the copula function of the PV and load power. The

marginal distribution of PV power in the ith hour is ui � ai,
and the marginal distribution of load power at the same time is
obtained according to the Frank copula function as follows

zCFr ui, vi( )
zui

� vi (9)

3) Perform the above steps k times. The marginal distribution of PV
and load power of k groups in the ith hour can be obtained by
sampling k times.

4) Use the inverse function to convert (ui, vi) to PV and load power
scenarios, as shown in Eq. 10.

xi � G−1
Xi

ui( )
yi � G−1

Yi
vi( ){ (10)

The power scenarios generated by sampling the copula function
and inversing the marginal distribution consider the correlation
between PV and load power.

2.4 Batch power flow generation based on
STEPS

In scenario generation, the PV and load power are variable. A
power flow calculation program should be used in analyzing each
scenario to get critical information, such as power loss of the
distribution network. This paper uses the open-source Simulation
Toolkit for Electrical Power Systems (STEPS) (Li et al., 2021) to
calculate the power flow of the distribution network.

STEPS supports commonly used models of power system equipment,
including bus, line, transformer, reactive power compensation, load,
synchronous generator, wind power, PV, and DC. Newton-Raphson
and PQ decoupling methods are supported to solve power flow.
Moreover, STEPS provides the application programming interface
named stepspy in Python. Some functions in this interface can
automatically modify the load and PV power and obtain the power loss
on the distribution network to facilitate the automatic simulation analysis.

Newton-Raphson method is used in this paper for power flow
calculation. To improve the convergence, the calculation adopts a
non-flat starting. That is, the power flow is solved based on the result
of the last iteration. Moreover, the non-divergent optimal multiplier
algorithm is adopted to introduce the optimal step size in each
iteration of power flow calculation.

3 Static equivalent of the distribution
network based on PSO

Considering the influence of PV and load power, the static
equivalent of the distribution network under each operation mode
should be performed respectively. This section provides the static
equivalent model and parameter optimization method under a single
operation mode. The equivalent results provide training samples for
the CNN-based equivalent parameter estimation model in Section 4.

3.1 Static equivalent model

The static equivalent model of the distribution network with
distributed PVs is shown in Figure 1. The model combines the
power characteristics of the distributed PV and load. The power at
the load side is taken from both the distributed PV and the
transmission network. Equivalent PV and load power are
calculated by Eqs 11, 12, respectively.
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SGeq � ∑n
i�1
SGi (11)

SLeq � ∑n
i�1
SLi (12)

where SGi and SLi represent the power of each PV and load in the
original distribution network, respectively; SGeq and SLeq represent the
power of the equivalent PV and the equivalent load, respectively.

The power loss of the transmission and distribution networks in
the actual power systems accounts for about 6%–10% of the total
power generation. Moreover, the transformer loss of the distribution
network accounts for half of the total power loss. Therefore, the power
loss cannot be neglected in the static equivalent of the distribution
network because it affects the model accuracy. To make the difference
of the network power loss as small as possible, this paper uses PSO to
optimize model parameters.

3.2 Model parameter optimization based
on PSO

PSO is a bionic algorithm that imitates the foraging behavior of
birds and belongs to one of the evolutionary algorithms. It starts from
the random interval, finds the optimal solution by iteration, and
evaluates the quality of the solution by fitness. Figure 2 is the flow
chart of PSO. The procedure for optimizing the equivalent model
parameters based on PSO is as follows:

1) Initialize the parameters of the PSO algorithm, including particle
search dimension, particle swarm size, inertia weight, individual
learning factor, group learning factor, velocity, and location limit.

2) Randomly initialize the velocity and location of each particle. The
particles in the PSO algorithm are equivalent model parameters,
including transformer reactance, line impedance, and line susceptance.

3) Update the velocity and location of model parameters. The velocity
update equation for each particle is

vnew � ωv + b1r1 lb − l( ) + b2r2 lg − l( ) (13)

where vnew is the particle velocity in this iteration; ω is the inertia
weight; v is the particle velocity in the last iteration; b1 is the individual
learning factor; b2 is the group learning factor; r1 and r2 are the random
numbers in the interval [0,1]; l is the particle location in the last
iteration; lb is the optimal historical location of the particle; lg is the
optimal global location of the population.

The location update equation for each particle is

lnew � l + lnew (14)

where lnew represents the particle location in this iteration.

4) Calculate the fitness. The fitness is defined as the root mean square
error (RMSE) of network power loss. It can be obtained by Eq. 15.

RMSEi �
��������������������
PL − P′

L( )2 + QL − Q′
L( )2

2

√
(15)

where RMSEi is the fitness of the ith particle; PL and QL are the active
power loss and reactive power loss of the initial network, respectively;
P′
L and Q′

L are the active and reactive power loss of the equivalent
network, respectively.

5) Update the optimal historical fitness and location of each particle
and population. If the fitness calculated in Step 4) is less than the
optimal historical fitness of each particle and population, RMSEi is
taken as the optimal fitness, and lnew is taken as the optimal location.

6) Check for convergence. The convergence condition is that fitness is
less than the threshold or the number of iterations reaches the
maximum. If the convergence condition is met, the optimization
progress is terminated, and the optimal global locations of particles
are outputted as the result of transformer reactance, line impedance,
and susceptance. Otherwise, return to Step 3) to continue to cycle.

3.3 Improvement of the optimization process

The basic PSO algorithm has strong global optimization ability
and generality. However, due to the random initial values of equivalent
model parameters and fixed inertia weight, the convergence speed of

FIGURE 1
Static equivalent model of the distribution network.

FIGURE 2
Flow chart of PSO.
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the algorithm is slow. In this paper, the process of optimizing model
parameters based on PSO is improved to solve the problem.

1) Selection of initial values

In general, the parameters of the initial equivalent model
generated by random sampling are scattered and difficult to
converge to the optimal global solution. Therefore, this paper takes
the optimal results obtained by the previous optimization as the initial
values of the optimization in the current operation mode to improve
the search speed of the algorithm.

2) Improvement of inertia weights

Fixed inertia weights in PSO cannot balance global and local
optimization capabilities well. In the parameter identification process,
a robust global optimization ability is needed to escape local minima in
early iterations, and a stronger local optimization ability for the whole
population is needed in later iterations. Therefore, this paper uses a ω
dynamic adaptive inertia weight algorithm (Vasudevan and Sinha.,
2018) to improve the PSO, as shown in Eqs 16, 17.

ω � ω max − ω max − ω min

it max
· k( ) · 1

1 + e−cd
(16)

d � b1r1 lb − l( ) + b2r2 lg − l( )[ ]
v

(17)

where ωmax and ωmin are the maximum and minimum inertia weights,
respectively; itmax is the maximum iteration number; c is a fixed
constant, and the larger it is, the faster the inertia weight increases.

4 Parameter estimation of static
equivalent model based on CNN

It is inefficient to repeat the static equivalent for each operation
mode of the distribution network. Therefore, CNN is used to build a
static equivalent parameter estimation model, which has a feature
extraction function and good generalization ability. In this case, the
efficiency of static parameter optimization in the distribution network
can be improved in practical applications.

4.1 Construction of parameter estimation
model

CNN is a non-probabilistic deep network with convolution
calculation (Mitiche et al., 2020), which can effectively extract
features. It usually consists of convolutional, pooling, and fully
connected layers. Convolutional layers convolve the input features
and pass the result to the next layer. Pooling layers reduce the
feature dimension and training parameters while ensuring that
critical information is not lost (Rai et al., 2021). After several
convolutional and pooling layers, the final regression analysis is
done via fully connected layers. This paper uses one-dimensional
CNN for equivalent parameter estimation because it extracts one-
dimensional sequence features without arranging and
reconstructing them. The structure of CNN is shown in
Figure 3. It contains two convolutional layers and two pooling
layers.

The original input features of CNN should contain the key factors
that affect the equivalent parameters. The static equivalent parameters
of the distribution network change with the PV and load power. In this
paper, considering the influence of operation mode, PV and load
power are taken as input characteristics; while transformer and line
parameters in the static equivalent model are taken as output. Due to
the fast calculation of CNN, this method can realize real-time
estimation of the distribution network equivalent parameters

FIGURE 3
Structure of CNN.

FIGURE 4
Modeling of static equivalent parameter estimation.
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considering the PV and load fluctuation. Figure 4 shows the
construction process of the static equivalent parameter estimation
model based on CNN.

Firstly, the PV and load power scenarios are generated using
kernel density estimation and the copula function based on historical
measured data. These power scenarios are selected to calculate the
power flow and generate operation mode of the distribution network.
Secondly, generate the static equivalent samples of the distribution
network with distributed PVs under each operation mode. The
equivalent parameters are optimized by PSO. Thirdly, a static
equivalent parameter estimation model is constructed based on
CNN, which is trained by the equivalent samples generated in the
previous step.

FIGURE 5
A 35-node distribution network.

FIGURE 6
Frequency distribution histogram of (A) PV active power, and (B)
load active power at 9 a.m. and their fitting results.

FIGURE 8
Scenarios of distributed PV power.

FIGURE 7
Joint distribution function based on Frank copula.
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4.2 Parameter setting and data preprocessing
of the CNN model

The activation function plays a vital role in CNN model learning
and understanding non-linear features. Since the static equivalent of
the distribution network belongs to a multiple regression problem, the
activation function of the fully connected layer is Linear function. The
activation functions of other layers are set as ReLU function. ReLU is
commonly used because it trains the neural network several times
faster without a significant penalty to generalization accuracy.

The following strategies are used in this paper to train the equivalent
parameter estimation model based on CNN. The convolutional layer is
constructed using Conv1D from Keras module. The pooling layer uses
maximum pooling to realize downsampling and reduce the complexity
of CNN computation. The mini-batch optimization strategy and Adam
algorithm are adopted in the training process. The weights of neurons in
each layer are updated through the Adam optimization algorithm and
loss minimization function. The mean square error is defined as the loss
function.

The equivalent samples are divided into training, validation, and
test sets. The standard score method is selected to normalize the input
power features. This method can avoid the phenomenon that part of
the data is ignored due to the significant difference in the sample. For
PV and load power, the standardized way is

z � p − �p

s
(18)

where z is the standardized PV or load power; p is PV power or load
power; �p is the average power; s is the standard deviation of power.

5 Case study

5.1 Introduction to the simulation system

Figure 5 shows an example system to verify the effectiveness of the
proposed static equivalent method for the distribution network. It uses
a distribution network with distributed PVs in Shandong, China.
There are thirty-five nodes in the distribution network, including five
PV nodes and fourteen load nodes. The bus voltage level of the
distributed PVs connected to the network is 380 V. The
transmission network is represented by the generator at node 1
(balance node).

5.2 Results of PV-load scenarios generation

In the actual operation of the distribution network with
distributed PV, the fluctuation of PV and load power affects the
accuracy of the static equivalent model. Therefore, the actual
operation scenarios of distributed PV and load power are
generated based on kernel density estimation and copula.

The PV and load power of the above region in 2021 are taken as
the example. The sampling interval of power is 1 hour, and the non-
parametric kernel density estimation is used to fit the PV and load
power of each hour. The fitting result at 9:00 a.m. is shown in
Figure 6.

Then, the joint distribution of PV and load active power in
this region is established based on the Frank copula function, as

FIGURE 9
Scenarios of load power.

TABLE 1 The equivalent parameters under different operation modes and RMSE of network loss.

Mode PV PL RL XL BL XT RMSE

1 0 0.377 49 0.011 83 0.014 19 0.048 65 0.098 81 0.526 08%

2 0 0.696 94 0.007 22 0.008 67 0.067 32 0.090 29 0.444 39%

3 0.374 09 0.381 72 0.023 41 0.028 08 0.011 05 0.057 36 0.030 22%

4 0.380 55 0.590 97 0.025 18 0.030 21 0.021 06 0.091 34 0.030 21%

5 0.477 84 0.378 42 0.032 15 0.038 53 0.010 13 0.105 85 0.024 27%

6 0.521 43 0.810 83 0.027 02 0.032 42 0.015 54 0.127 36 0.084 36%

7 0.623 38 0.566 15 0.029 39 0.035 27 0.013 81 0.085 49 0.036 38%

8 0.680 56 0.700 24 0.058 32 0.069 99 0.010 32 0.267 28 0.218 12%

9 0.753 37 0.458 24 0.038 42 0.046 16 0.033 88 0.170 95 0.082 47%

10 0.810 83 0.586 02 0.021 57 0.025 88 0.018 21 0.082 62 0.097 33%
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shown in Figure 7. The parameter θ in Frank copula is estimated
by the maximum likelihood estimation method. It has different
values for different operation modes. θ is estimated to be 6.59 at
9:00 a.m.

Based on the scenario generation method in Section 2, a total of
three hundred and fifty PV-load power scenarios are generated
through sampling, as shown in Figures 8, 9.

From the perspective of the correlation of generated scenarios, the
PV and load power in each scenario have the same or opposite change
trend in some periods, which shows a particular correlation. The
power difference among the scenarios is significant and has seasonal
characteristics. The scenario generation results can effectively simulate
the fluctuation and correlation between PV and load power in this
region.

5.3 Static equivalent samples of the
distribution network

Static equivalent of the distribution network is performed
separately for the different operation modes. The transformer
reactance, line impedance, and susceptance of the model are
optimized by PSO. Table 1 shows the parameter optimization
results of the equivalent model and RMSE of power loss under ten
typical operation modes. The active power and model parameters in
the table are all per unit value.

It can be seen that each RMSE is relatively small, indicating that
the power loss of the equivalent network is close to the original power
loss. It is proved that the equivalent method is accurate in a single
operation mode.

The equivalent transformer and line parameters are compared
with their averages for each operation mode, as shown in Figures 10,
11. The parameters calculated following distinct operation modes are
different. Moreover, the transformer parameters have the largest
differences from their average value.

The average of each parameter is substituted into the static
equivalent model for each operation mode. Figure 12 shows the
RMSE of power loss in the distribution network. The average of
RMSE is 9.9896%, which is greater than the allowable error in the
engineering. As a result, static equivalent of the distribution network
in different operation modes cannot be achieved by a single set of
parameters.

5.4 Training of CNN model

One thousand and sixty samples are generated by the proposed
static equivalent method, each representing a different operation
mode. The training, validation, and test sets are all randomly
selected from the samples in the proportion of 60%, 20%, and 20%,
respectively.

One-dimensional CNN in this paper comprises two convolutional
layers, two pooling layers, and one fully connected layer. The PV and load

FIGURE 10
Comparison of equivalent line parameters and their averages.

FIGURE 11
Comparison of equivalent line and transformer parameters and
their averages.

FIGURE 12
The RMSE calculated by substituting the parameter averages into
the equivalent model.
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power on each bus are input features of the CNN model. The training
times are set to three hundred times. Table 2 displays the training results
of the CNN model. It can be seen that the parameter estimation of the
static equivalent model based on CNN has high accuracy.

The equivalent parameters estimated by CNN are substituted
into the static equivalent model of the distribution network. The
RMSE of network power loss for each operation mode is displayed in
Figure 13. The maximum value of RMSE is 1.6998%, and the average
is 1.1968%. Thus, the static equivalent parameter estimation model
based on CNN for the distribution network with distributed PVs is
verified.

6 Conclusion

This paper proposes a power scenario generation strategy
based on kernel density estimation and copula function, which
considers the correlation between fluctuation of PV and load. A
static equivalent method for the distribution network with
distributed PVs is proposed to analyze the influence of PVs on
the simplified distribution network. The essential characteristics
of the PVs, transmission lines, and loads are retained in this
equivalent model. PSO with improved inertia weights is used to
determine line and transformer parameters and has a quick
convergence rate. To improve the efficiency of parameter
identification, CNN is used to estimate static equivalent
parameters of the distribution network with multiple operation
modes. The example demonstrates the high accuracy of the
proposed method.

In addition to the network power loss, the sensitivity of the
distribution network also has an impact on the accuracy of the static

equivalent model. More study is required to analyze the sensitivity of
distribution networks with distributed PVs in static equivalent.

Data availability statement

The raw data supporting the conclusion of this article will be made
available by the authors, without undue reservation.

Author contributions

FX and XL contributed to the conception and design of the
equivalent method. HF wrote the core code of the equivalent
program and completed the first draft of the manuscript. KZ and
SL collected and organized the original data. KZ, SL, and CL
contributed to the manuscript revision and proofread and
approved the submitted version.

Funding

This research is supported by Project “Refined Modelling and
Simulation Technology for Large-Scale Power Systems Considering
Dynamic Characteristics of Renewable Power Generation” funded by
State Grid Shandong Electric Power Company under Grant No.
520626210043.

Acknowledgments

Thanks for the support of State Grid Shandong Electric Power
Company, China.

Conflict of interest

FX and SL were employed by Electric Power Research Institute,
State Grid Shandong Electric Power Company. XL and KZ were
employed by Shandong Electric Power Company, State Grid
Corporation of China.

The remaining authors declare that the research was conducted in
the absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

TABLE 2 Training results of CNN.

Method Training set accuracy (%) Training set error (%) Test set accuracy (%) Test set error (%) Training time (s)

CNN 99.748 0.0038 99.623 0.0018 11.2

FIGURE 13
RMSE of the equivalent parameter estimation model based
on CNN.
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