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Excessive immune activation within the lesion site can be observed after stroke

onset. Such neuroinflammation within the brain parenchyma represents the

innate immune response, as well as the result of the additional interactions

between peripheral and resident immune cells. Accumulative studies have

illustrated that the pathological process of ischemic stroke is associated with

resident and peripheral immunity. The infiltration of peripheral immune cells

within the brain parenchyma implicitly contributes to secondary brain injuries.

Therefore, better understanding of the roles of resident and peripheral immune

reactions toward ischemic insult is necessary. In this review, we summarized

the interaction between peripheral and resident immunity on systemic

immunity and the clinical outcomes after stroke onset and also discussed

various potential immunotherapeutic strategies.
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1 Introduction

Stroke is a disease with cerebral blood flow obstruction (ischemic stroke) or cerebral

vascular rupture hemorrhage (hemorrhagic stroke) caused by a variety of factors (1).

Among which, ischemic stroke accounts for approximately 87% and is the leading cause

of mortality and morbidity (2). According to data from the World Health Organization

(WHO), approximately 5 million people die of ischemic stroke worldwide each year, and

about 1 million people lose their lives due to ischemic stroke in China each year (3, 4).

Although tremendous efforts have been made with regard to therapeutic strategies,
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a number of treatments have not been successfully translated

into clinical settings (5). This disappointing outcome indicates

an insufficient understanding of the pathophysiology of

ischemic stroke and emphasizes the need to determine the

underlying mechanisms of the progression of brain injuries (6).

Numerous studies have revealed the activation of the innate

and adaptive immune responses in the brain lesion of ischemic

stroke. The stroke onset induces sustained immune reactions

during both the acute and chronic phases. Accumulative

evidence has revealed that neuroinflammation plays the

predominant role in the progression of brain injury (7). A

variety of harmful substances, including excessive cytokines/

chemokines and reactive oxygen species (ROS), comprise the

stroke-induced inflammatory cascade, which are responsible for

the damaged vascular integrity, cell death, and secondary brain

damage (8). However, rapid and optimal neuroinflammation is

also indispensable in the subsequent process of injury repair and

functional recovery (9). Such dual characteristics may be due to

systemic conditions and the time-dependent role of immune

reactions (9). Furthermore, regional and systemic immune

responses present spatial and temporal functions during the

different phases after stroke. In this review, we discuss the

interaction between the peripheral and resident immune cells

and summarize the immunotherapeutic strategies against

ischemic stroke to better understand the role of immune

reaction in the progression of stroke.
2 Resident and peripheral immune
responses in ischemic stroke

The immune reactions within the brain parenchyma are

distinguished from periphery immunity. In the past decades,

accumulative evidence has revealed the link of immune

responses between the brain and the periphery. With the

physical defense of the blood–brain barrier (BBB), lymphatic

drainage and antigen-presenting cells (APCs) are deficient,

which makes the brain an immune-privileged organ (10–12).

However, after the disrupture of the BBB, peripheral immune

cells can move into the lesion sites. Cellular or soluble

components within the central nervous system (CNS) are

drained through the cerebrospinal fluid (CSF) into the deep

cervical lymph node and induce further immune reactions. Such

neuroinflammatory interaction will be intensified in a variety of

neurological conditions, especially in stroke. It has been reported

that peripheral immune cells can also be observed in the brain

parenchyma after stroke onset (13). Therefore, it is necessary to

fully examine the physiological interactions between the

immune responses and brain injuries.

After stroke occurrence, harmful substances and peripheral

antigens enter the brain parenchyma through the disrupted BBB,

followed by the subsequent recruitment of immune cells into the
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lesion sites, resulting in activated neuroinflammation. Due to the

influence of immune and neuroinflammatory reactions on the

progression of injuries, mortality, and recovery from stroke, a

better understanding of the compartmentalization and the links

between the brain and peripheral immune reactions is necessary,

which will facilitate the establishment of effective therapeutic

strategies through immune-targeted approaches (Figure 1).
2.1 Activated immune reactions in the
brain after ischemic stroke

According to a previous study, the infiltration and the

activation of immune cells caused by ischemic stroke are

temporally and spatially regulated (14). The biological function

of these immune cells depends on the microenvironment during

the different phases after stroke onset. At the earliest phase,

within hours of ischemic onset, the resident microglia and

astrocytes are both remarkably activated, which is also

maintained in the following weeks. In a previous longitudinal

transcriptome analysis, the sustained innate and adaptive

immune transcripts in the brain of patients with ischemic

stroke were determined (15). A variety of harmful substances

and excessive cytokines will further lead to a wide range of cell

death. Of note is that the damage-associated molecular patterns

(DAMPs) derived from damaged cells can be recognized by

pattern recognition receptors (PRRs), which in turn activate

further innate inflammatory reactions (16). Such activated

immune cells accompanied by damaged cells release various

inflammatory substances, which leads to the entry and

infiltration of peripheral immune cells. In addition, the

infiltration of peripheral immune cells can be observed at the

acute, subacute, and recovery phases of ischemic stroke,

indicating long-term immune reactions. However, the spatial

and temporal patterns of immune trafficking during the recovery

period are still not fully defined. Activation of the NLRP3

inflammasome is also strongly associated with immunotherapy

after ischemic stroke. NLRP3 has been thought to be a key factor

in neuronal injury after stroke. NLRP3 inflammasomes can

produce large amounts of inflammatory factors after ischemic

stroke, ultimately leading to neurological dysfunction and

neuronal cell death (17). Targeting the upstream and

downstream NLRP3 pathways has shown promise in the

treatment of ischemic stroke (18).
2.2 Innate and adaptive immunity after
ischemic stroke

Innate immunity represents the initial immune reaction to

ischemic stroke onset, while peripheral immune cells can be

observed within the brain parenchyma in the later phase (19, 20).

According to a previous study based on experimental ischemic
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stroke models, peripheral immune cells can be detected in the

lesion site after stroke and last for at least 7 days (21). Of these

peripheral immune cells, neutrophils are the first invading cells into

the brain parenchyma. Subsequently, monocyte-derived

macrophages (MDMs), dendritic cells, and some other immune

cells are found in the damaged sites after ischemic stroke (22). In

the later stages, adaptive immunity will be activated, which features

the infiltration of T and B lymphocytes within the brain

parenchyma (23). Accumulative evidence has revealed the roles

of the innate and adaptive immunity in the progression of stroke,

even affecting the recovery stage. In this section, we will summarize

the role of various immune cells after stroke onset.

2.2.1 Infiltrated neutrophils
Neutrophils are the first immune cells into the lesion site after

ischemic stroke onset, which can be observed at 30 min and peak

at 24–72 h post-stroke, decreasing over time (24, 25). The

infiltration of neutrophils is considered a risk factor for poor

outcomes, which accounts for the release of various mediators

including metalloproteases (MMPs), ROS, and the pro-

inflammatory interleukin-1 beta (IL-1b). Although the

relationship between neutrophils and ischemic lesions is well

recognized based on clinical trials and experimental studies,

conflicting roles of neutrophils are still revealed in ischemic

outcomes (26). There are two classical subtypes of neutrophils—

neurotoxic phenotype and neuroprotective phenotype—the

different polarized status of which is based on functional

heterogeneity (27). Moreover, a variety of substances, including

ROS, are produced, further inducing the release of pro-

inflammatory cytokines and activating neuroinflammation (28).
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Additionally, the anti-inflammatory effects of neutrophils have

also been reported through the degradation of pro-inflammatory

substances, which is beneficial to brain recovery post-

ischemic stroke. Neutrophils that present signs of alternative

activation, which features the expressions of Arg1 and YM1,

might be beneficial in the recovery from stroke. Cytotoxic

neutrophils are generated through the activation of the

TLR4 signal pathway, while myeloid-selective TLR4

knockout promotes the polarization of cytoprotective

neutrophils and plays a neuroprotective function (29). Due to

the functional heterogeneity of neutrophils, neutrophil

manipulation may be a potential therapeutic strategy for

patients with stroke.

2.2.2 Microglia and monocyte-derived
macrophages

The microglia and MDMs are the dominant immune cells

that produce and release a wide range of cytokines or

chemokines with a peak at 3–7 days after stroke (30, 31). They

play an essential role as the predominant innate immunity in the

regulation of neuroinflammation after ischemic stroke onset.

However, according to experimental studies, the microglia and

MDMs also play a detrimental role in the progression of

neuronal death (31). It is well known that the microglia and

MDMs can release ROS and various inflammatory substances,

which are cytotoxic and induce the progression of brain injury

(32, 33). Moreover, enhanced phagocytosis of cells is closely

related to brain damage after ischemic stroke. However, the

removal of immunogenic intracellular contents and apoptotic

cells can inhibit cytotoxicity and attenuate the progression of
FIGURE 1

Interaction between resident and peripheral immune cells in response to stroke. The distinction between resident and peripheral immunity is
lost after the disruption of the blood–brain barrier (BBB). The resident microglia is then activated after recognition of the danger signals in the
lesion sites and the release of pro-inflammatory cytokines. Additionally, the increase of adhesion molecules enables the migration and invasion
of peripheral immune cells. Invading neutrophils, monocytes, and lymphocytes elicit neuroinflammation and influence the development of brain
injury and the recovery process. Additionally, comorbidities occur with the chronic inflammatory status in peripheral circulation. Currently,
various immune-based therapies have been established to improve the acute damage and recovery process in ischemic stroke.
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brain damage. Additionally, resident phagocytes within the

brain parenchyma can take up infiltrated neutrophils, which

have been revealed to be beneficial in the recovery from brain

injury post-stroke. There is also conflicting evidence on the

neuroprotective function of the microglia/macrophages after

stroke. It has been demonstrated that, after depletion or

inactivation of the microglia or MDMs, tissue repair will be

inhibited, but the neuroinflammation and secondary brain

injury will be accelerated, accounting for the presence of a

variety of anti-inflammatory cytokines such as IL-10 and TGF-

b (produced and secreted by the microglia and MDMs), which

are responsible for tissue recovery (34). Additionally, several

common biomarkers are localized in the microglia, which

indicates the overlapping function of neuroinflammation and

immune regulation. The dual function of mononuclear

phagocytes depends on bidirectional polarization. Within the

lesion site, the microglia and MDMs can be activated and

polarized toward either the pro-inflammatory M1-like

phenotype (classically activated subtype) or the anti-

inflammatory M2-like phenotype (alternatively activated

subtype) (35). The M1 phenotype comprises the pro-

inflammatory immune cells that are responsible for ischemic

damage and poor clinical outcomes, while the M2 phenotype

contributes to the recovery after stroke through the release of

various anti-inflammatory substances. The microglia can be

polarized into different states within a few hours after stroke

onset (36). In acute ischemia–reperfusion assays, the microglia is

polarized from theM1 to the M2 phenotype by drugs that inhibit

the secretion of pro-inflammatory cytokines and promote the

expression of anti-inflammatory cytokines (36, 37). The M1

phenotype is pro-inflammatory and secretes IL-6, tumor

necrosis factor (TNF), and IL-1b, which contribute to brain

injury after stroke (38, 39). The M2 phenotype has anti-

inflammatory effects and secretes anti-inflammatory cytokines

such as IL-10, IL-4, and transforming growth factor beta (TGF-

b), which further protect neurological function and improve

prognosis after stroke (38, 40). The peak time points of cytokine

expression differ in different cell polarization states. Promotion

of the microglia M2 polarization is one method for exerting

neuroprotective effects in ischemic stroke (41).

2.2.3 NK cells
Natural killer (NK) cells are important members of the

innate immunity. NK cells can immediately respond to

pathological insults after stroke onset without a prior

activation period, which enhances neuroinflammation and

further exacerbates brain injury. The expression of CXC3CR1

on NK cells is required for the recruitment of neutrophils, which

is also dependent on the expression of interferon gamma (IFN-g)
(42). Moreover, according to a previous study, IFN-g can be

secreted from NK cells and recruit macrophages or dendritic

cells, which are involved in secondary ischemic damage (13).
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However, there are also several conflicting reports on the

biological role of NK cells in the progression of stroke. In

2014, Mracsko et al. demonstrated that the depletion of NK

cells presented no beneficial effects after ischemic stroke in a

rodent middle cerebral artery occlusion (MCAO) model (43).

Furthermore, the administration of IFN-g prolongs survival after
stroke with the function of antibacterial infection rather than

pro-inflammation (44).

2.2.4 T and B lymphocytes
Immediately after stroke onset, brain-derived antigens are

generated from damaged cells and reach peripheral circulation.

Subsequently, T and B lymphocytes will be stimulated in the

spleen and lymph nodes. Compared with that of other immune

cells, the infiltration rate of T lymphocytes into the lesion sites is

relatively lower. Dead cells are taken up by phagocytes and

present antigens, which induce the migration of T lymphocytes

into the ischemic region within a few days after stroke (45). T

lymphocytes have been demonstrated to show detrimental

effects after stroke, while their depletion played a protective

role in a rodent ischemic stroke model (46). Regulatory T cells

(Tregs) are another predominant member of T lymphocytes that

are also protective effectors in the progression of ischemic stroke.

Tregs play a neuroprotective role after stroke onset through the

release of various anti-inflammatory substances and through

maintaining the BBB integrity (47). Tregs are locally expanded

and are dependent on the activation of serotonin signaling. Their

main role is the maintenance of immune homeostasis and the

attenuation of the onset of overpowering immune responses

(48). It has been shown that the number of Tregs in normal

brain tissue is relatively low, whereas after ischemic stroke, a

large number of Tregs accumulate in the brain and play a

neuroprotective role until the chronic phase of stroke, which is

essential for neurological recovery from ischemic stroke (49, 50).

Tregs mainly infiltrate the brain 1–5 weeks after stroke and

remain at high levels for about a month (51). In the acute phase,

within 1 week after stroke, Tregs may reduce the inflammatory

activation through the production of the anti-inflammatory

cytokine IL-10 (52). The depletion of Tregs within 1 week

after stroke can inhibit neural stem cell proliferation. During

the chronic phase of stroke (after 1 week), a significant reduction

in the number of Tregs was seen in mice treated with an

inhibitor of T cells, and eventual neurological recovery was

delayed (53). Therefore, increasing the number of Tregs is

likely to be a reliable method to improving the neurological

function in the acute and chronic phases after stroke.

Accumulative studies have illustrated the role of T and B

lymphocytes in the progression of secondary brain injury. It has

been reported that CD4+ or CD8+ T lymphocytes and B cells

increase within 4 days after stroke (54). Additionally, the

depletion of CD4+ or CD8+ T lymphocytes with monoclonal

antibodies also alleviates the progression of brain damage after
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stroke onset (55). A variety of studies demonstrated that T

lymphocytes clonally expand within the brain parenchyma or

peripheral circulation in the first week after stroke based on

antigen-dependent activation (55). However, another study

indicated that T lymphocytes acerbate the ischemic damage

without the involvement of antigen recognition or co-

stimulatory pathways (56). In the acute phase of stroke, Tregs

also play a critical role in the inhibition of neuroinflammation

and the other pro-inflammatory T-lymphocyte subpopulations

(57). Interestingly, a previous study also reported the

detrimental role of Tregs in ischemic stroke. Targeting the

depletion of Tregs attenuated the ischemic damage and

improved the neurological function, while microvascular

dysfunction was exacerbated (58). B-lymphocytic responses

can occur in the late stage of ischemic stroke. The production

of CNS antibodies increases over time, and antibody synthesis

can be observed within the first week in approximately half of

stroke survivors (59).
3 Comorbidity and immunity after
stroke onset

A wide range of comorbidities involving aging,

hypertension, hyperglycemia, and hyperlipidemia are linked to

the increased incidence of cardio- and cerebrovascular diseases

(60). There is consistent accumulative evidence that such

comorbid conditions can impair the immune reactions in

peripheral circulation. Various cascades, including oxidative

stress, edema, and lipid oxidation, are involved in the

pathological progression of stroke, which are also converged

into immune responses (8). In comorbid conditions, the

inflammatory reactions will be intensified and will negatively

affect the clinical outcomes of ischemic stroke (61–63).

Aging compromises the immune responses after brain

damage. In particular, both clinical and preclinical studies have

reported that aging diminishes the phagocytic function of

monocytes, reduces the chemotaxis of neutrophils, and inhibits

the cytotoxic role of NK cells (64–66). In terms of adaptive

immunity, the number and the function of lymphocytes are also

altered with aging (67). Hypertension is the second common risk

factor for stroke that is associated with poor outcomes and higher

mortality (68, 69). It has been illustrated that hypertension-related

stroke is associated with the involved autoregulatory responses, the

dysfunction of vessels, and enhanced oxidative stress (70, 71).

Patients with hypertension present exacerbated clinical outcomes

after stroke due to the deregulation of chronic systemic

inflammation. It has been reported that hypertension can

activate monocytes and elevate the production of ROS (72).

Increased CD45+ cells and worse neurological injuries can be

observed in hypertension after stroke onset (73). Moreover,
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hypertension can also activate the microglia, endothelial cells,

and astrocytes within the brain parenchyma. Additionally, it has

been reported that high levels of cholesterol in plasma are linked to

the higher occurrence of vascular diseases and to poor clinical

outcomes after stroke (74). Similar to other comorbidities, the

negative influence of hyperlipidemia after stroke injuries is related

to the chronic inflammatory environment in both the periphery

and brain parenchyma. Accumulative evidence has demonstrated

that high levels of cholesterols in plasma are positively associated

with a larger infarction area and a higher rate of edema formation

(75). The hyperlipidemia-induced damage is closely associated

with the elevated pro-inflammatory reactions within the lesion

sites, which are recognized by the multifunctional class B scavenger

receptor, CD36, after stroke (76). In addition, clinical trials have

also revealed that hyperlipidemia is related to worse neurological

outcomes of patients with stroke, while the administration of

cholesterol-containing drugs can attenuate such poor outcomes

due to their pleiotropic effects on vascular integrity,

neuroinflammation, and oxidative stress (77). Lastly, diabetes

mellitus (DM) is also a high risk factor for patients with stroke,

which features hyperglycemia and insulin resistance, as well as

chronic systemic inflammation (78). Accumulative evidence has

illustrated the effects of DM on the systemic pro-inflammatory

status and the alteration of the immune reactions after stroke.

Additionally, it has also been demonstrated that diabetes can serve

as a predictor for the poor clinical outcomes of patients with

ischemic stroke, which can indicate a larger infarct volume, the

occurrence of brain edema, and damaged neurological function.
4 Immune-based strategies against
ischemic stroke

Accordingly, the immune responses are closely associated

with tissue recovery and clinical outcomes after stroke. With the

disruption of the BBB, the distinction between resident and

peripheral immune cells is also lost, which provides a unique

opportunity to modulate the pathological or recovery process. In

this section, we provide insights into the several potential drugs

in clinical trials that work by targeting the immune

system (Table 1).
4.1 Fingolimod

Inflammation is closely related to the pathogenesis of

ischemic stroke, and the recruitment of inflammatory cells can

further aggravate brain damage (84). Fingolimod is one of the

sphingosine 1-phosphate receptor (S1PR) modulators and is the

first S1PR modulator approved for the treatment of multiple

sclerosis (85). In the past few years, fingolimod has gradually
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been found to be a potentially beneficial drug in the treatment of

stroke. According to previous studies, fingolimod can limit the

migration and circulation of lymphocytes (86). In some clinical

trials, fingolimod showed beneficial effects in ischemic stroke. In

the study of Tian et al., fingolimod was found to enhance the

effect of alteplase administration in the short-acting time

window (4.5–6 h) primarily by promoting anterograde

reperfusion and retrograde collateral flow (79). Fingolimod

primarily maintains the integrity and function of microvessels

by inhibiting the migration of lymphocytes into the brain

parenchyma, further reducing the occurrence of vascular

inflammation and inhibiting the formation of inflammatory

thrombus in capillaries, finally maintaining the perfusion of

brain tissue and rescuing the post-stroke penumbra (87, 88). In

another early-phase clinical study, participants given fingolimod

showed lower circulating lymphocyte counts, milder

neurological deficits, and better recovery of neurological

functions (89). In addition, patients using fingolimod did not

show obvious drug side effects, indicating the safety of the drug.

Furthermore, fingolimod can reduce peri-hematoma edema

after hemorrhagic stroke and can further improve the clinical

prognosis of patients (90). However, in some other studies,

fingolimod was not found to confer long-term treatment

benefits in an acute intracerebral hemorrhage (ICH) mouse

model, and its effect on ICH was weaker than that of ischemic

stroke (91). A number of large medical institutions are still

conducting clinical trials of fingolimod for the endovascular

treatment of ischemic stroke. In summary, some of the latest

research studies have shown the role of fingolimod in stroke to

be very promising. The satisfactory effect of fingolimod in

ischemic stroke is greatly anticipated.
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4.2 Minocycline
Minocycline is a broad-spectrum antibacterial tetracycline

antibiotic that achieves an antibacterial effect by combining with

transfer RNA (tRNA) (92). The lipophilic nature of minocycline

allows it to cross the BBB and exert its effects on the brain (93).

Some previous studies have shown that minocycline can confer

neuroprotective effects in a variety of neurological diseases,

including ischemic stroke (94–96). Previous preclinical trials

have fully demonstrated that minocycline can improve the

prognosis of patients with acute ischemic stroke. In rat models

of stroke, minocycline treatment protected the brain by affecting

the glial cells surrounding the injured brain (97). Astrocytes and

the microglia have great influence on the plasticity of neurons

around infarction. Cell death after infarction can release pro-

inflammatory factors and affect scar formation by activating

peripheral glial cells (98, 99). Minocycline can reduce the infarct

size and improve neurological function when administered in

the acute phase of stroke, and it can also be used in combination

with a tissue plasminogen activator (100). Some clinical trials

have also confirmed the neuroprotective effect of minocycline in

ischemic stroke. The combination of minocycline with other

treatment modalities increased the success rate of stroke

treatment. In a meta-analysis of randomized controlled clinical

trials (including seven randomized controlled trials),

minocycline showed efficacy in patients with acute stroke and

appeared to be a promising neuroprotective agent (101). In a

large open-label, evaluator-blinded study, patients who received

minocycline showed significantly better post-stroke assessments

compared with the placebo group (80).
TABLE 1 Potential clinical immunotherapeutic strategies NIHSS, National Institutes of Health Stroke Scale; mRs, modified Rankin scale.

Candidate
drug Trial type Dosage

Main
evaluation
criteria

Outcomes Year Reference

Fingolimod
Prospective, multicenter,
randomized, open-label, blinded
endpoint clinical trial

0.5 mg daily for 3
consecutive days

NIHSS score at
24 h

Better early clinical improvement at
24 h

2018 Tian et al. (79)

Minocycline Open-label, evaluator-blinded study 200 mg/day
Baseline to
day 90 in
NIHSS

A significantly better outcome with
minocycline treatment compared
with placebo

2007
Lampl et al.
(80)

Anakinra
Randomized, double-blind, placebo-
controlled trial

2 mg kg−1 h−1

infusion over 72 h
NIHSS score
and mRs score

Markers of biological activity were
lower in the pilot group.

2005
Emsley et al.
(81)

Ginsenoside-
Rd

Randomized, double-blind, placebo-
controlled, phase II multicenter trial

10 and 20 mg/day
for 14 consecutive
days

NIHSS score at
15 days

NIHSS scores were significantly
different in the pilot group.

2009 Liu et al. (82)

Cyclosporin A
Multicenter, single-blinded
controlled trial

2.0 mg/kg for
30 days

Infarct volume
on MRI at
30 days

Smaller infarct volume could be
observed in some patients.

2015
Nighoghossian
et al. (83)
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4.3 Anakinra

Anakinra is an IL-1 receptor antagonist. Previous studies

have fully described IL-1 to play an important role in the

development of brain damage in ischemic stroke (102). As the

main members of the IL-1 family, IL-1a and IL-1b play an

important role in stroke. A previous study confirmed that

genetic deletion of IL-1a and IL-1b in mammals leads to a

substantial reduction in damage after experimental stroke (102).

The pro-inflammatory cytokine IL-1 promotes destructive

inflammation in brain regions after stroke (103). In addition,

due to the damage of the BBB after stroke, white blood cells and

inflammation-related factors can more easily enter the brain

through the BBB. The interleukin-1 receptor antagonist (IL-

1Ra), which inhibits IL-1, is neuroprotective in stroke models

(104). In a randomized, double-blind, placebo-controlled trial,

peripheral administration of anakinra 6 h after the onset of acute

stroke significantly reduced neuronal cell death and the

inflammatory processes, demonstrating its therapeutic

potential and its safety and efficacy in acute stroke (81).
4.4 Ginsenoside-Rd

Ginsenoside-Rd is derived from the well-known traditional

Chinese medicine ginseng (105). A lot of previous studies,

including some clinical trials, have confirmed its beneficial

effects on stroke. Ginsenoside-Rd can alleviate brain damage

after stroke by inhibiting inflammation (106). Ginsenoside-Rd

also has the effect of penetrating the BBB, further exerting effects

on brain tissue (107). In experimental models of stroke (mainly

transient middle cerebral artery occlusion, tMCAO), treatment

with ginsenoside-Rd before or after ischemic stroke reduced the

cerebral infarct volume, increased the survival ratio of functional

neurons, and protected neurological function (108–110). A

treatment trial with ginsenoside-Rd (10 mg/kg) found that it

could inhibit poly(ADP-ribose) polymerase-1, thereby

downregulating the apoptosis-inducing nuclear factor-kappa B

p65 subunit nuclear accumulation in MCAO mice, which

supports the anti-inflammatory therapeutic effect of

ginsenoside-Rd in ischemic stroke (111). It has also been

shown to reduce neuroinflammation after stroke by

downregulating the activation of the microglia (108). In a

phase II randomized, double-blind, placebo-controlled

multicenter trial, patients with stroke were divided into a

placebo group, low-dose group (10 mg), and a high-dose

group (20 mg), and the 15-day National Institutes of Health

Stroke Scale (NIHSS) score was used as the primary endpoint.

The results showed significant statistical differences between the

ginsenoside-Rd group and the control group, which indicated

that ginsenoside-Rd may play a neuroprotective role in acute

ischemic stroke (82). In a subsequent phase III trial, the primary
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endpoint set was the distribution of the disability scores on the

modified Rankin scale (mRs) at 90 days, and the results also

indicated the same conclusion: that ginsenoside-Rd can improve

the prognosis of patients with acute ischemic stroke (112).
4.5 Cyclosporin A

Cyclosporin A is generally used as an immunosuppressant,

and it is primarily used clinically for the treatment of

autoimmune diseases and organ transplant rejection.

Moreover, cyclosporin A can also act on neural precursor cells

in neurogenic regions of the brain (113, 114). Recent studies

have found that cyclosporin A can act as a neuroprotective agent

in stroke models by activating neural precursor cells (114). It can

also inhibit mitochondrial dysfunction caused by ROS formation

after stroke (115). In addition, treatment with chronic

cyclosporin A has shown positive effects on cognitive recovery

after stroke. The earliest research on the anti-ischemic effect of

cyclosporin A in a MCAO animal model was conducted in the

1990s, with the experimental results showing that the oral

administration of cyclosporin A in animal models of cerebral

ischemia could significantly reduce the volume of cerebral

infarction and edema (116). The role of cyclosporin A has also

been confirmed in subsequent clinical studies. In a multicenter,

single-blind controlled trial, patients with stroke received

intravenous injection of cyclosporin at 2.0 mg/kg, and the

results showed that, although cyclosporine was not effective in

reducing the infarct volume, a smaller infarct volume and

effective recanalization were observed in some patients with

proximal cerebral artery occlusion (83). Due to its basic

foundation and clinical research prospects, there is a high

expectation for cyclosporin A in the treatment of

ischemic stroke.
5 Conclusion and perspective

Excessive activation of immune reactions may lead to harmful

neuroinflammation, while insufficient immunity will result in

infection. Immunity maintains balance under healthy

conditions; however, following several pathological events,

especially stroke, such balance may be disrupted. The

inflammatory reactions after stroke are closely related to

secondary brain injuries and poor clinical outcomes.

Accordingly, great effort has been made to alleviate excessive

neuroinflammation within the brain parenchyma; however, the

relevance of systemic immunity has not been addressed. The

distinction between the resident immune cells within the brain

parenchyma and systemic immunity is lost; consequently, the

neuroinflammation will interact with peripheral immunity. The

infiltration of peripheral immune cells plays an indispensable role

after ischemic insult, and the neuroinflammation within the
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damaged brain inevitably regulates the systemic immunity. So far,

the primary studies have solely focused on the local

neuroinflammation after stroke and have neglected the systemic

immunity and the interaction between organs. Although anti-

inflammatory therapeutic strategies can effectively alleviate

neuroinflammation, the other effects on systemic immunity also

need to be considered in future explorations.
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