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Introduction: In recent years, software ecosystems have become more

complex with the proliferation of distributed systems such as blockchains and

distributed ledgers. E�ective management of these systems requires constant

monitoring to identify any potential malfunctions, anomalies, vulnerabilities,

or attacks. Traditional log auditing methods can e�ectively monitor the

health of conventional systems. Yet, they run short of handling the higher

levels of complexity of distributed systems. This study aims to propose an

innovative architecture for system auditing that can e�ectively manage the

complexity of distributed systems using advanced data analytics, natural

language processing, and artificial intelligence.

Methods: To develop this architecture, we considered the unique

characteristics of distributed systems and the various signals that may

arise within them. We also felt the need for flexibility to capture these signals

e�ectively. The resulting architecture utilizes advanced data analytics, natural

language processing, and artificial intelligence to analyze and interpret the

various signals emitted by the system.

Results: We have implemented this architecture in the DELTA (Distributed

Elastic Log Text Analyzer) auditing tool and applied it to the Hyperledger Fabric

platform, a widely used implementation of private blockchains.

Discussion: The proposed architecture for system auditing can e�ectively

handle the complexity of distributed systems, and the DELTA tool provides

a practical implementation of this approach. Further research could explore

this approach’s potential applications and e�ectiveness in other distributed

systems.

KEYWORDS

distributes systems, log auditing, log analysis, NLP, blockchain, Hyperledger Fabric

1. Introduction

Distributed systems have been spreading rapidly in recent years (Zheng et al., 2017),

and the emergence of Distributed Ledger Technologies (DLTs) such as blockchains

have strongly contributed to this trend. These technologies find a wide range of

possible applications in areas such as the Internet of Things (IoT), healthcare,

supply chain management, energy, genomics, fintech, insurance, automotive, etc.
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(Dorri et al., 2017; Bottoni et al., 2020; Carlini et al., 2020;

Fosso Wamba et al., 2020; Motta et al., 2020; Wang and Su,

2020). As a consequence, there is an ongoing strengthening

of development frameworks such as Ethereum, Hyperledger,

EOSIO,Corda,Waves,Quorum etc. which are constantly adding

new features.

The trend is explained by the ability of DLT to provide

a high degree of security, compared to classical systems,

by encrypting and decentralizing data, aspects that are both

paramount for the development of decentralized applications

(dApps). Data security is a crucial issue for information

systems in general. Over time, numerous tools have been

developed for data protection and monitoring system access,

including auditing, which provides a wealth of security-related

information. In particular, log auditing extracts information

about the operations carried out and the conditions in which

they took place and keeps track of their timelines. Logs

are, therefore, essential for analyzing system behavior under

normal and abnormal conditions. Indeed, while the normal case

provides a history of the operations carried out, the anomalous

one helps identify system errors and detect vulnerabilities, thus

preventing cyberattacks.

However, compared to development frameworks,

distributed systems auditing tools lag, especially when it

comes to blockchains. The more established ecosystems,

such as Bitcoin and Ethereum, have their log analysis tools

(Crystal-team, 2019; Knownsec-404, 2019). Yet, there is

a lack of a standardized tool that can be integrated with

most frameworks and is endowed with real-time monitoring

capabilities. Existing tools designed for cloud and decentralized

systems (Kufel, 2016) are not easy to integrate with development

frameworks for blockchain applications and are not up to the

challenges regarding complete log auditing of blockchain

systems (Cangemi and Brennan, 2019). We started from these

premises to define a general methodology and architecture for

constructing a log auditing system suitable for blockchain and

distributed ledger requirements. The architecture is defined in

such a way that it can be applied to all systems with distribution

characteristics, i.e., characterized by a multiplicity of nodes on

which independent agents operate, the only prerequisite being

that there is the possibility of tracing actions by writing logs

to files. We then instantiated this architecture by using it for

the design and development of a universal log analysis tool,

which takes the name of DELTA for Distributed Elastic Log

Text Analyzer, aimed at analyzing logs of activities on most

of the existing development frameworks for distributed and

non-distributed systems—a versatility which is made possible

thanks to the use of the Docker Engine (Reis et al., 2022) and

the stack ELK (Elasticsearch, Logstash, Kibana) integrated via

Filebeat, which have a proven history of applications in log

collection (Alekseev et al., 2018; Bavaskar et al., 2020).

For this purpose, we use the Docker Engine as a bridge

for collecting logs between the analyzer and distributed

systems. Thanks to Docker, it is, in fact, possible not

only to integrate completely different systems but also to

analyze the logs produced through the ELK stack. This

stack makes it possible to efficiently control log collection

methods by accessing Docker containers. Furthermore, Filebeat

takes care of managing log collection methods in real-

time, and Logstash enables automatic log insertion into the

Elasticsearch database, which in turn supplies data to Kibana

for immediate viewing through a customizable graphical

interface.

The developed tool couples traceability with textual

analysis of the traced logs through Natural Language

Processing (NLP). NLP is used to perform, upon the

text within logs produced by the Docker containers,

three types of analysis: keyword extraction, classification,

and sentiment analysis. Keywords are extracted through

two different models: the more precise KeyBERT, based

on BERT (Bidirectional Encoder Representations from

Transformers), and the more versatile YAKE! (Campos

et al., 2020). As regards log classification, the choice fell

on the Zero-Shot facebook/bart-large-mnli developed by

Meta (formerly Facebook), which works without requiring

data outside the text. The idea of Zero-Shot models is to

analyze and classify data that are also completely different

from those with which the training was carried out

using the methodology for statistical inference described

in Lewis et al. (2019). Finally, sentiment analysis is

performed through VADER (Valence Aware Dictionary

and sEntiment Reasoner), an open-source analysis tool based

on rules for extracting sentiment using dictionaries. All log

collection, analysis, and classification processes occur in

real-time, enabling interaction with resource monitoring

processes. This way, it is possible to focus log analysis on

the security problems and undertake mitigating actions

as needed.

Structure of the paper. The remaining part of the article

is organized as follows: Section 2 describes the proposed

generic architecture for log auditing of distributed systems.

Section 3 describes DELTA and the components used for

its implementation. Section 4 describes the application of

DELTA to Hyperledger Fabric, the most popular platform

for private blockchains. Section 5 describes related work.

Section 6 concludes the paper and gives indications on future

work.

2. Methodology

Our systems design choices are rooted in Grounded Theory

(GT) (Glaser and Strauss, 2017), which has a long-standing

reputation in software engineering (Stol et al., 2016). In this

approach, a series of systematic steps ensure that the theory

emerges from the data (hence, grounded). In our case, this
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FIGURE 1

Generic log auditing architecture for distributed systems.

implied the iterative verification of the logs characteristics and

the applicable analysis methods. We then verified the possibility

of automating the log collection and analysis workflow. This

led to the construction of the DELTA tool described in the next

section. Finally, we subjected DELTA to a process of abstraction

to obtain the architecture presented in this section, which

is compatible with various implementation choices, of which

DELTA is but one. From the point of view of the narrative,

we offer these results in reverse compared to how they were

achieved, thus going from the general architecture towards one

of its instances. This presentation structure is consistent with the

overall philosophy underlying GT: on the one hand, the theory

(that is, in our case, the system architecture) emerges bottom-

up from the collection, observation, and experimentation with

data; on the other, once stabilized, the theory is usable top-down

to derive as many of its instances as wanted.

Distributed systems are typically characterized by having an

arbitrary number of nodes performing all network operations.

Often the nodes do not share the same resources; on the

contrary, they have entirely separate environments to guarantee

their independence. As a result, when in operation, they generate

logs independently. Collecting and analyzing the logs from

all records is a cumbersome operation if approached with

traditional methods. Indeed, to perform a log analysis capable

of bringing valid results in good time, it will be difficult or

even inapplicable to analyze each of the logs separately. The

alternative methodology we provide relies primarily on the fact

that, before being analyzed, log data are centralized by using

the elastic stack, as we will illustrate in the following sections.

To implement it adequately, we devised an architecture aimed

at the system’s distributed nature. A representation of its main

components and their role within the system is given in Figure 1.

It is worth noting that this strategy can be re-applied to any

distributed system that writes logs into streams. The proposed

architecture functions with docker by default. Still, as we will

discuss in Section 3.1, it can work with any available sources.
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2.1. Log collector

The first step is to collect the logs, thus dealing with

the problems arising from the independence of the nodes

so that logs of different nodes do not necessarily coincide.

It would, therefore, not be realistic to collect just the logs

produced by a single node or a subset of nodes as there is no

guarantee that they reflect the general opinion of the network:

for example, in a system based on consensus mechanisms such

as a blockchain, one or more nodes can express views on a

transaction that differ from those of the other nodes, hence

letting some anomalies go unnoticed. The Log Collector is the

component of the architecture that handles this crucial step

and is also the only one that simultaneously interacts with the

set of nodes in its entirety to collect all their logs and other

relevant data, such as the specific metadata of the structure

of the distributed system, which can range from simple peer

identifiers to a copy or verification of the security certificates

used to communicate with nodes. Once data collection is

complete, the Log Collector forwards everything to the Structure

Builder.

2.2. Structure builder

The second component of the system is aimed at creating

a structure for effectively managing all collected data to

provide efficient data exchange between the components

while avoiding duplications and redundancies. The main

aspects relevant for selecting the structure used for

storage and exchange are the quality and consistency

of collected data and the technologies available to build

up the system (DBMS, applied analysis techniques, etc.).

Once the initial modeling is done, the data goes into

Storage.

2.3. Storage

The Storage mechanism is divided into two sub-

components: Temporary and Persistent Storage. Temporary

Storage is a queue-and-cache system into which the Structure

Builder inserts data collected and structured but not yet

analyzed. The data held temporarily are then pipelined

into Persistent Storage, which also receives the results of

their analyses carried out by the Analyzer Core while they

were still in Temporary Storage. Finally, data can move

externally from Persistent Storage through integration via

REST APIs. Note that the implementation of the two Storage

components can build upon a single DBMS (Elasticsearch,

MongoDB, etc.) or two or more, giving preference, for

example, to systems designed for caching for Temporary

Storage (e.g., key-value databases) and more structured

systems if needed for Persistent Storage (e.g., relational

databases).

2.4. Analyser core and analysis services

The Analyzer Core is the central component of the

architecture, with the task of analyzing the data in

Temporary Storage according to whatever techniques are

deemed appropriate and can therefore be designed and

implemented with complete flexibility regarding which

analyses to perform. NLP techniques are natural candidates

since the logs mainly consist of messages whose text was

initially provided at the development time of the executed

code. The main objective of the analysis services is to

extract implicit information from the collected data, thus

providing further data by which it is possible to query

the logs. For example, keyword extraction identifies the

most significant words from the log text to use them for

keyword-based searches on Persistent Storage. Generally

speaking, the Analyzer Core aims to obtain data for

effective problem solving. In this regard, in addition to

extracting keywords, Sentiment Analysis, Content Analysis,

and Classification techniques can also be integrated to

obtain useful filtering information, and Network Analysis

can be used to identify significant relationships between

nodes.

2.5. REST API extensibility

Data collection and analysis are vital aspects of an

auditing system. Still, they would turn out null and

void in the absence of suitably engineered information

access, as provided by the REST API module that

enables accessing the Persistent Storage externally and

implements information filters as query interfaces.

Filtered data are then pipelined into the monitoring

service.

2.6. Monitoring service

Thanks to the REST API, the monitoring service works

continuously by constantly looking for anomalies within

the collected data, focusing on new data, and performing

analyses on past data. Detecting anomalies has multiple

purposes; first, spotting clues for possible attacks by

malicious users or, in the event of an attack, trying to

trace the causes. In the longer term, detecting anomalies

and errors helps find programming bugs or unwanted

system behaviors that often turn into vulnerabilities.

Furthermore, it provides datasets for predicting system
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FIGURE 2

Data flow diagram.

behavior and immediately identifying anomalies if the

expected behavior does not occur. The design of the

monitoring service is very dynamic and strictly depends

on the targets to be sentineled; however, it always sends alert

messages concerning observed anomalies to the Mitigation

Services.

2.7. Mitigation services

Once the monitoring service identifies an anomaly, an

alert is sent to the Mitigation Services containing the data

about the anomaly identified, such as its type and how it

occurred. Following the alert, the Mitigation Services have

the task of intervening in the system to control the anomaly.

Implementing the Mitigation Services is strictly contextual

to the system being sentineled as they rely on system-

dependent mitigations, which can be more or less invasive, an

aspect to be defined and decided at development time; e.g.,

operating directly on the nodes that generated the anomaly

to mitigate a particular vulnerability or attack in progress

or forwarding an additional alert message to the system

administrators to verify the nature of the anomaly. Further

design options include a single central mitigation system to

deal with all mitigation operations or independent services

for each macro-type of mitigation required. Each choice of

mitigation is characterized by its specific way of resource

management and implementation of executable processes.

For instance, if there is a single mitigation service, the

procedures could be carried out sequentially so as not to

create interferences; if there are more mitigation services, the

operations could be carried out in parallel, ensuring faster

response to anomalies.

2.8. Analysis flow

The analysis flow is described in Figure 2. When a user

requests services (1), the system nodes operate according to

the codified business logic. While executing operations, the

nodes also write logs (2), which are produced separately. The

Filebeat tool listens, by using harvesters, to the streams of logs

being written (3) and ships them to Logstash, thus attaining

their aggregation and centralization (4). Logstash applies the

data model to the received streams and indexes them on

Elasticsearch (5). Kibana accesses the indexes to make data

available to system administrators (6.1). DELTA reads the

indexes and applies NLP techniques on the logs, classifying

them and also computing sentiment polarities and extracting

keywords (6.2). DELTA provides. Additionally, DELTA provides

APIs to let monitoring systems make queries and analyze

in real time whatever may be affecting the system (7); if

needed, they will launch alerts (8) to trigger mitigation

actions (9).
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3. DELTA implementation

The developed DELTA system, with components as in

Figure 3, is divided into two macro sections, the first relating to

the collection of logs through the use of the Elastic components

and the second consisting of the textual analysis systems

provided by the DELTA tool. The following sections describe

the methodologies used to implement the system: Section 3.1

explains the use of the Elastic stack and the log flow within the

system; Section 3.2 is instead dedicated to the illustration of the

developed tool and how the log analysis and their re-elaboration

takes place.

3.1. Elastic stack

The acquisition of logs produced by distributed services

and systems is managed through the combined use of several

Elastic components, namely Filebeat, Logstash, Elasticsearch, and

Kibana, all assigned to preparing logs for analysis. Specifically,

Filebeat is responsible for real-time log collection, launching

probes on each distributed component output stream channel,

such as stdout and stderr, as well as on the log files written by

the system components, including docker logs. These probes,

called harvesters, send data collected from the sources defined in

the filbeat.yml configuration file to Logstash that aggregates and

stores them in the Elasticsearch database. The logs, normalized

by using data models, can thus be accessed through a single or

a few sources, enabling efficient log analysis and addressing the

problem due to many log files. After these steps, Elasticsearch

makes indexing of the entered data available for access via

queries and REST APIs. Elasticsearch indexed data are suitable,

additionally, to be accessed by Kibana, which uses them for real-

time consulting through a dashboard composed of customizable

cs and lists.

3.2. DELTA analyser

DELTA is aimed at processing the logs in the Elasticsearch

database to extract relevant information using Natural Language

Processing techniques to facilitate data monitoring and analysis

FIGURE 3

Structure of the system.
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operations. This occurs through a continuous activity of

detection of relevant patterns such as the presence of IP

addresses, as well as of processing on the following three

dimensions (Figure 4):

• Keywords extraction

• Category classification

• Sentiment analysis

The DELTA analytical components and the structure of

their relationship are illustrated in Figure 5, which can itself be

considered a specific instance of the Analyzer Core as part of the

overall architecture depicted in Figure 1.

3.3. Keywords extraction

Keyword extraction picks out words with the highest

informative impact on the text, thus making it possible to

conduct statistical analysis or associate keywords with the

triggering of events across vastly varying contexts. Moreover,

keywords can be exploited to boost monitoring effectiveness to

access the logs by filtering their content.

Many methods, techniques, and algorithms extract text

keywords or key phrases (e.g., TF-IDF, Rake, YAKE!). Since

DELTA was designed for a generic context, we cannot make

domain-oriented predictions about the input to be analyzed.

Vice versa, given the specificity that characterizes some

application contexts, extraction models may be based on

statistical concepts that ignore domain-related keywords. When

dealing with a distributed system that uses specific terms to

identify its components (for example, the word Tangle in the

context of the distributed ledger IOTA), such elements would

FIGURE 4

Structure of DELTA tool.

be ignored by most models based on word frequency or

dictionaries. These considerations led to the implementation

of both a keyword extraction technique based on the semantic

similarity of the words and a method based on the statistical

properties of the texts. Therefore, for keyword extraction, we

relied on two models, namely KeyBERT and YAKE!.

3.3.1. KeyBERT

KeyBERT is based on BERT (Bidirectional Encoder

Representations from Transformers) (Johri et al., 2021),

published by Google in 2018, a model that uses a transformer

(Wolf et al., 2019) architecture to map words, phrases and

text into number vectors that capture their meaning. BERT

is a bidirectional model, which makes it able to interpret

a word based on the context of the sentence, regardless of

whether the relevant information is left or right, unlike left-

to-right architectures, which look only at the words preceding

the one being processed (Devlin et al., 2018). Furthermore,

BERT does not resort to recursive levels unlike LSTM-based

technologies (Hochreiter and Schmidhuber, 1997), but instead

exploits the Self-Attention (Cui et al., 2019) mechanism.

The KeyBERT system can be implemented with different

transformer models, with the basic model all-MiniLM-L6-v2

having limited needs for computational resources with a

trade-off in precision levels. While, according to the official

documentation, the highest quality model turns out to be

all-mpnet-base-v2, we have chosen to use the less powerful

paraphrase-albert-large model, as log texts are generally

compact, so this model achieves excellent accuracy with lower

resource consumption.

3.3.2. YAKE!

YAKE! or Yake! or Yake, is an automatic keyword extraction

algorithm that stands out above all for its simplicity and an

excellent balance between computational resource requirements

and the quality of the analytics. It is an unsupervised

algorithm based on statistical textual characteristics extracted

from individual documents. Therefore, it does not need to be

trained on a particular set of documents or depend on external

dictionaries and corpora, nor has limitations regarding text sizes,

languages, or domains. It also does not use Part of Speech Tagging

(Voutilainen, 2003), which makes it language-independent,

except for using different but static stopword lists for each

language. This makes it easy to apply to languages other than

English, particularly low-diffusion languages for which open-

source language processing tools may be underperforming.

3.3.3. KeyBERT compared to YAKE!

KeyBERT and YAKE! thus provide alternative models for

keyword extraction. In testing the two algorithms on logs, we
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FIGURE 5

Structure of the DELTA implementation.

found that both offer high accuracy for short texts. Nevertheless,

themodel suggested by default isKeyBERT, in virtue of its higher

accuracy for longer texts. On the other hand, KeyBERT turns out

to be significantly more onerous in terms of performance and

waiting time. Therefore, DELTA provides both approaches to let

users choose the most suitable one for the analysis context.

3.4. Log classification

Classifying logs according to labels (i.e., classification

categories) can help analyze and monitor distributed systems.

First, it is thus possible to get an idea of the frequency with which

logs that share the same label occur to facilitate the identification

of related problems. Furthermore, through the analysis of the

logs of the same category, it is possible to identify the presence

of specific patterns usable to verify system functioning or detect

anomalies attributable to errors or tampering attempts. Finally,

labels offer a way to access content in addition to keyword-

based querying. The classification approach used in DELTA is

a hybrid that combines machine learning with rules, being a

Zero-Shot (Gera et al., 2022) classifier. As illustrated in Yin

et al. (2019), this methodology classifies text, documents, or

sentences without resorting to any previously tagged data by

using a natural language processing model, pre-trained in an

environment or domain that may be completely different from

the application domain, hence making it possible to classify texts

from heterogeneous contexts. It provides a probabilistic value

of whether the text belongs to a label by taking a text and a

list of possible labels as input. Thus, through a threshold, the

text is labeled according to the categories to which it belongs.

As used in DELTA, Zero-Shot provides multiple labels to be

assigned to a single log with different probabilistic scores by

exploiting the model output as an independent probabilistic

value for each supplied label. It follows a more detailed view

of the system behavior and the possibility of monitoring logs

in a more specific and targeted way. There are five preset

tags used within DELTA: Security, Connection, Communication,

Transaction and finally Operation, changeable according to

the context of use. The currently adopted model is the one

provided by Facebook: “facebook/bart-large-mnli” (Adaszewski

et al., 2021), but this too can be changed according to needs and

preferences.

3.5. Sentiment analysis

In addition to keyword extraction and classification analysis,

log sentiment analysis is also performed. Sentiment analysis

consists of language processing and analysis aimed at identifying

the subjective value of the text, with the primary goal to

determine the polarity of a document, i.e., to classify it

according to the degree of positivity, negativity, or neutrality

of the concepts expressed. As surprising as it may seem,

logs carry sentiment that can usefully shed light on what is

happening within the monitored system. A monitoring system

based on DELTA will indeed benefit from the identification

of logs loaded with negative sentiment indicative of errors

or malfunctions to detect anomalies and errors. For the

extraction of sentiment from the logs, the libraryVADER-lexicon

general is used, which, born as a sentiment analysis library

aimed at social media and customer feedback, has valuable

features that make it an excellent analyzer for short texts

and hence for logs too. Once a given text has been analyzed,

VADER responds with a polarity value called compound that

indicates the degree of positivity or negativity of the sentiment

of the analyzed text. The compound is later processed to

define a sentiment evaluation label through thresholds that

were tuned and set according to empirical evidence. Within

DELTA, it is also possible either to modify the values of the

thresholds or to add new ones to refine positivity or negativity

levels.
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3.6. Additional log processing

Further processing was carried out to bring intrinsically

relevant information to the fore. First of all, elements deemed

irrelevant for the analysis were removed. We also worked on

the Logstash component responsible for collecting data and

creating a very detailed structure containing all the possible

information directly observable from the log generation sources.

This structure has been stripped down and simplified as far as

possible to facilitate future analyses and speed up information

sharing. Furthermore, regarding security aspects and the control

of the use of the system, the extraction of IP addresses and

connection ports, if present in the logs, was carried out. Finally,

the information relating to the log output standard was also

extracted, thus making it possible for the aggregation filters to

operate in a simplifiedmanner based on the type of log produced

by the system’s Listing 1 in Appendix.

4. Application to Hyperledger Fabric

We briefly describe a DELTA application to Hyperledger

Fabric (Androulaki et al., 2018; Dalla Palma et al., 2021), the

most adopted platform for building private distributed ledgers.

The challenges presented by blockchain and DL management

were, in fact, the initial motivation for DELTA, even if its

construction was then generalized to all systems that can be

containerized and distributed through technologies such as

Docker and Kubernetes.

Like any distributed ledger, Fabrics goals include ensuring

a secure environment. However, it has known vulnerabilities

(Andola et al., 2019; Dabholkar and Saraswat, 2019; Paulsen,

2021) that provide attack points for malicious users. While these

can be mitigated, there is a lack of a monitoring system that

can detect potential attacks and act promptly. This problem can

be addressed by using DELTA to analyze the logs produced by

the system during the attack phase. Log checking is performed

to identify attack patterns, and then these are used to develop

a monitoring system to spot and mitigate threats in real time.

Since Fabric blockchains are distributable using the Docker

engine, DELTA is a close fit for log analysis of the entire

Fabric network. The monitoring system is based on the logs

generated by the Docker containers and then analyzed and

processed by DELTA in real-time. DELTA provides REST APIs,

used to make queries to filter data written in logs and bring

applicants such as monitoring systems the data related to attack

detection; in their turn, monitoring systems will send alerts to

the mitigation services to contain the attack if certain conditions

associated with the attack patterns are met. To this aim, several

additional valuable data are extractable, such as name, unique

ID image, execution status, and installed volumes of Docker

containers. To guarantee generality, the detection logic can be,

of course, customizable. Moreover, DELTA provides keywords,

sentiment, and the types of the log, which can be Security,

Connection, Communication, Transaction, and Operation. All

the information extracted by DELTA is available on Kibana,

which provides customizable dashboards and charts to make

visible, what is happening in the system, and integrate, the

NLP information extracted by DELTA, namely, sentiment, most

relevant keywords, and classification.

DELTA has been successfully used to detect network-based

attacks on Hyperledger Fabric (Pilla et al., 2022), especially

against Distributed Denial of Service (Lau et al., 2000),

which exploits some vulnerabilities of Fabric, such as the

relatively lower level of decentralization, compared to other

blockchains, resulting from design choices like the use of a

centralized Ordering Service for transaction management, and

the exposition of on-chain services provided by the Blockchain

as a Service (BaaS), which enables clients to requests transactions

and receive results, elaborated by on-chain smart contracts.

Analyzing distributed systems logs, DELTA can classify and

detect attacks, giving information to clients who call DELTA

APIs. Hence, all the information provided byDELTA can be used

by monitoring systems. The monitoring system implemented

in our prototype aims to manage the prevention of network

attacks and works by sending queries to DELTA. Whenever it

detects patterns related to attacks, relying on DELTA to identify

possible dangers, and once the anomalous behavior is confirmed,

it proceeds to activate a mitigation service that sends warning

messages via webhook to all configured addresses on the basis of

the detections carried out.

A real test case of DELTA monitoring DDOS attacks

on the Ordering Service highlighted its effectiveness over

traditional methods. The typical way the attack scenario is

realized is by continuously requesting access to clog the

information flow of the Ordering Service until it gets completely

bogged down (Andola et al., 2019; Dabholkar and Saraswat,

2019). The traditional way to mitigate this attack is complex

and challenging, involving, as it does, constantly monitoring

performance and resource usage metrics, such as throughput

and transaction latency, for early detection of compromised

availability. With the proposed log analysis strategy, we can

monitor the attack scenario simply by analyzing the logs in real

time thanks to DELTA, following the flow illustrated in Figure 2.

An alert will be launched as soon as the system produces the

logs associated with the Ordering Peer requests. Subsequently,

the attack can be mitigated based on the customizable policies

of the user organizations in charge of system governance. For

example, one possible approach may be to close the channel of

request-flooding peers.

5. Related work

We have already mentioned in the Introduction the tools

currently used for the security of cloud-based systems (Kufel,
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2016) and highlighted their limitations concerning the auditing

requirements of blockchains and distributed ledgers. Several

contributions (Cucurull and Puiggali, 2016; Ahmad et al., 2018;

Li et al., 2020; Ali et al., 2022) should be mentioned that are

orthogonal to ours, in that rather than the analytics on logs

generated in distributed environments such as blockchains and

distributed ledgers, they are aimed at using blockchains for

secure log management. The approach described in Regueiro

et al. (2021) is in line with those above. However, it comes close

to ours in the use of Elastic Search and Kibana for log indexing

and visualization, but then, while we are platform-independent,

is bound in its implementation to Quorum, the permissioned

blockchain used for log management, and does not provide for

advanced analytics capabilities such as log sentiment analysis

and classification.

In a completely different category belong commercial

systems based on artificial intelligence dedicated to defending

organizations from various cyber-attacks, ranging from denial-

of-service to ransomware. The most well-known providers of

this type of solution are companies such as Darktrace (2022) and

Vectra (2022). On the one hand, these approaches have common

groundwith ours due to their extensive use of advanced analytics

techniques based on artificial intelligence and machine learning;

on the other hand, they diverge in how they build defenses

due to the very different organizational contexts they target.

These tools focus on individual organizations, even though

they are committed to dealing with attacks that originate in

a highly distributed and diversified external world and can

come from various fronts and directions. Thus they function

by empowering and automating with artificial intelligence

and machine learning a knowledge base built from the

experience of these organizations in defending against external

attacks. By contrast, our framework targets inter-organizational

vulnerabilities that arise within multi-organization ecosystems

that rely on and evolve on the infrastructure provided by

distributed systems such as blockchains and distributed ledgers.

The future will increasingly see the emergence of business

ecosystems characterized by multi-company governance in

support of complex production interdependencies in the context

of trends such as the development of global supply chains and

frameworks such as Industry 4.0. All this will give more and

more space for systemic approaches like ours, aimed at listening

to what the system tells us and complementing and extending

those monitoring the individual organizations that make it up.

6. Conclusion and future work

The exponential growth of distributed systems in recent

years, including blockchains and distributed ledgers, has led to

greater attention to these systems’ security and analysis issues.

In particular, the security of the information present within

distributed systems is paramount because these systems are

increasingly deployed in contexts characterized by sensitive

information. For this purpose, we have defined a general

architecture for log auditing in distributed systems. On its

basis, we have designed and implemented the DELTA tool that

collects and stores logs generated by the services that make up

the system through some of the components provided by the

Elastic search ecosystem for data analytics. Once the logs are

suitably processed to simplify their analysis, their text content

goes through Natural Language Processing to extract keywords

and sentiment and is classified according to relevant categories.

Keywords enable effective log search, and their extraction can

be done according to needs by choosing between KeyBERT,

more precise, and YAKE!, faster and lighter. Sentiment analysis

is performed through the VADER algorithm to measure the

degree of text sentiment, where a significant degree of negativity

warns about the need to carry out thorough checks on what is

happening to the system. Classified logs can be set based on the

characteristics of the execution system to access them according

to classification. The purpose of these analytical capabilities is

to effectively provide the information extracted from the logs

to external monitoring processes, which can thus carry out

specific and detailed analyses based on the problems at hand and

mitigate them. To this endDELTAwasmade customizable and is

interfaceable with other platforms through REST APIs to query

the system and suitably filter content.

The DELTA tool provides an initial log auditing approach

specific to distributed systems with a focus on blockchain

and DLT platforms. However, it is limited to the Docker

engine. Although widely used and suitable for distributed

systems, Docker does not scale effectively to very large systems.

Consequently, the next step will be to integrate DELTA with

Kubernetes (Mondal et al., 2022), an open-source platform,

initially developed by Google, for managing workloads and

orchestrating containerized services, which simplifies both

system configuration and automation of service delivery

practices in very large systems.
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Appendix

Structure of Processed Logs

1 {
2 " _ index " : " d a t a _p a r s e d " ,
3 " _ t ype " : " _doc " ,
4 " _ id " : " HkEy0n8BYv2pyDWhsjXR " ,
5 " _ s c o r e " : 1 . 0 ,
6 " _ sou r c e " : {
7 " @timestamp " : " 2022−03−20T12 : 48 : 09 . 287Z " ,
8 " t yp e " : "ERROR" ,
9 " message " : " [ 31m2022−03−20 12 : 48 : 09 . 287 UTC 007d ERRO [

0m [ co r e . comm] [ 31 ; 1mServerHandshake [ 0m −>
S e r v e r TLS handshake f a i l e d in 607 . 238772ms wi th
e r r o r s e r v e r =Ordere r r emo t e add r e s s =167 . 94 . 138 . 4

6 : 45236 " ,
10 " s en t imen t " : " v e r y n e g a t i v e " ,
11 " i d _ l o g " : "MQhep38BYv2pyDWh9xpE " ,
12 " c o n t a i n e r " : {
13 " i d " : " 0 c 06 a22 e 0 a 5 f 43b7d2 e f 9b6 b f b f a 227 ae 828 a3 fd 2 be 0 e

1 ab44 e 3 f 46926106640 " ,
14 " name " : " o r d e r e r . example . com " ,
15 " image " : {
16 " name " : " h y p e r l e d g e r / f a b r i c−o r d e r e r : 2 . 4 . 2 "
17 }
18 } ,
19 " keywords " : [
20 [
21 " 1mserverhandshake " ,
22 " r emo t e add r e s s " ,
23 " f a i l e d "
24 ]
25 ] ,
26 " c l a s s i f i c a t i o n _ l a b e l s " : [
27 [
28 " Communication " ,
29 " S e c u r i t y " ,
30 " Connec t ion "
31 ]
32 ] ,
33 " i p " : [
34 " 167 . 94 . 138 . 46 : 45236 "
35 ] ,
36 " name_image_doc " : {
37 " name " : " h y p e r l e d g e r / f a b r i c−o r d e r e r : 2 . 4 . 2 "
38 } ,
39 " s t r e am " : " s t d e r r "
40 }
41 }

Listing 1 Simplified structure of processed logs used on Hyperledger

Fabric network.
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