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A high interferon gamma
signature of CD8+ T cells
predicts response to
neoadjuvant immunotherapy
plus chemotherapy in
gastric cancer
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Background: While the tumor microenvironment (TME) affects immune

checkpoint blockade (ICB) efficacy, ICB also reshapes the characteristics of

TME. Thus far, studies have focused on the TME evolution during neoadjuvant

or adjuvant ICB therapy in gastric cancer (GC). However, the interaction

between TME characteristics and neoadjuvant immunotherapy plus

chemotherapy remains to be elucidated.

Methods: We performed single-cell RNA sequencing on ten GC specimens

pre- and post-neoadjuvant camrelizumab plus mFOLFOX6 to determine the

impact of the TME on the efficacy of the combination therapy and the

remodeling of TME by the therapy.

Results: A high baseline interferon gamma (IFN-g) signature in CD8+ T cells

predicts better responses to the combination therapy. We also observed that

the IFN-g signature significantly decreased in multiple cell types, and the

exhausted signature of CD8+ T cells was significantly suppressed during the

neoadjuvant therapy.
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Conclusions: Our data reveal interactions between the TME and neoadjuvant

immunotherapy plus chemotherapy in GC. Importantly, it also highlights the

signature of CD8+ T cells in predicting response to the combination therapy in

GC.
KEYWORDS
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Introduction

Gastric cancer (GC) is a highly aggressive malignant tumor,

ranked fifth for incidence and fourth for mortality with an

estimated 769,000 deaths globally in 2020 (1). Early-stage GC

is associated with a 5-year survival rate of ~95%, whereas,

patients with advanced/metastatic GC have a median survival

of 9-10 months (2). Immune checkpoint blockade (ICB) has

paved the way to a new era of GC immunotherapy (2–4). The

phase III checkmate 649 trial demonstrated that nivolumab plus

chemotherapy compared to chemotherapy as first-line treatment

improved the overall survival (OS) and progression free survival

(PFS) of patients with advanced gastric or gastro-oesophageal

junction (GC/GEJ) adenocarcinoma cancer, whether the PD-L1

positive score was more than 5 or not (5). Due to the

achievements of immunotherapy in advanced GC/GEJ

adenocarcinoma cancer, more studies have begun to explore

the neoadjuvant therapy at present. However, not all GC patients

respond to neoadjuvant ICB. Therefore, there is a need to

explore underlying mechanisms and associated markers to

screen GC patients who might benefit from immunotherapy.

The tumor microenvironment (TME) plays an important

role in the response of gastic cancer to immunotherapy (6).

Previous studies have explored the TME features using bulk

sample-based experiments or mathematical models (7–9).

However, the TME of GC is complex and heterogeneous, and

the bulk sample-based experiments obscure the signatures of

distinct cell populations. Therefore, it is necessary to elucidate

the molecular and cellular landscape, their dynamics, and

functional characteristics of TME in GC patients with

ICB therapy.

In recent years, high-throughput single-cell RNA sequencing

(scRNA-seq) opened a new way for dissecting heterogeneous

tumors and deciphering the transcriptional features

betweencancer cells, microenvironment components, and their

interactions (10–12). In GC, scRNA-seq has been utilized to

characterize the transcriptional heterogeneity of gastric tumoral

and normal tissues (13–16). Wang et al. reported on the

intratumoral diversity of metastatic GC by scRNA-seq
02
profiling of peritoneal carcinomatosis and identified a new

prognostic gene signature related to tumor cell lineage and

state compositions (17). Kim et al. revealed the early

remodeling of the TME in patients with advanced gastric

cancer during first-line chemotherapy by scRNA-seq.

Response to chemotherapy in advanced GC was associated

with on-treatment TME remodeling including NK-cell

recruitment, decreased tumor-associated macrophages, M1-

macrophage repolarization, and increased effector T-cell

infiltration (18). Unfortunately, few studies focus on the

cellular diversity and dynamic changes of TME in response to

ICB therapy in GC.

In this study, we performed scRNA-seq of 5 paired tumor

specimens pre-treated and on-treatment with 4 cycles of

chemotherapy plus anti-PD-1 antibody (camrelizumab) as

neoadjuvant therapy in locally advanced GC/GEJ. We showed

inter- and intra-tumor cellular heterogeneity and transcriptional

changes of diverse cell types during the neoadjuvant therapy. An

IFN-g signature was enriched in pre-treated tumors; specifically,

a high IFN-g signature in CD8+ T cells correlated to positive

response to the combined therapy This study sheds light on

transcriptional dynamics at the single-cell level within GC

during immunochemotherapy and provides new insights for

the use of neoadjuvant ICB in GC.
Materials and methods

GC patients and clinical study

Patients were pathologically diagnosed with GC/GEJC at

Zhengzhou University Affiliate Cancer Hospital and enrolled in

the prospective single-arm, phase 2 study of Camrelizumab

combined with mFOLFOX6 as neoadjuvant therapy for

resectable, locally advanced GC/CEJC (clinical trial

information: NCT03939962). They received 4 cycles of

mFOLFOX6 plus anti-PD-1 antibody (camrelizumab) as

neoadjuvant treatment followed by a gastrectomy with D2

lymph node dissection. All patients gave informed consent for
frontiersin.org
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collection of clinical information and tumor tissue for research

testing. Five patients with mismatch repair protein proficient

(pMMR), or microsatellite stable (MSS), that underwent a

gastrectomy with D2 lymph node dissection were selected

randomly. Pre- and on-treatment paired tumor samples of the

five patients were collected for following scRNA-seq.
Preparation of single-cell suspensions

Fresh tumor tissue samples were obtained from 5 GC

patients by endoscopic ultrasonography-guided biopsy from

surgery before and after treatment. Tissue was immediately

immersed in RPMI 1640 medium (Thermo, 11875-085) for

subsequent single-cell isolation. Tissue dissociation was

performed with Tumor Dissociation Kit (Miltenyi Biotec, 130-

095-929) at 37°C for 30-45 min and filtered using a 40mm cell

strainer (BD, 352340). Erythrocytes were removed by RBC lysis

buffer (Solarbio, R1010). Cell suspensions were washed 2 times

with PBS containing 0.04% BSA at 300g for 5 min at 4°C. Cell

viability was measured with Trypan Blue (Thermo fisher,

15250061) staining. Cell concentration was measured with

hemocytometer and adjusted to 700-1,500 cells/mL.
Single-cell capture, library preparation
and sequencing

The single-cell suspensions were then subjected to single-cell

capture using the Chromium platform (10× Genomics).

Chromium platform is a droplet-based system in which GC

single cells, gel beads with barcoded oligos, and reagents were

mixed and captured as droplets in oil emulsion. Single-cell

library preparation was performed using 10× Genomics Single

Cell 3’ Reagent v3 Kit according to the manufacturer’s

instructions. Library quality was assessed with Agilent 2100

Bioanalyzer (Agilent). Libraries were pooled and sequenced on

the Illumina HiSeq X Ten platform (Illumina) and generated at

least 50K 150bp pair-end reads per cell.
Single-cell RNA-seq data preprocessing
and clustering of major cell types

The CellRanger software package (version 3.1.0) was adopted

to process the 10× Genomics raw data based on the human

reference genome GRCh38. Raw gene expression matrices were

analyzed using Seurat R package (version 3.1.4) with the following

criteria for cell filtering: (1) all cells expressing lower than 200 or

larger than 6000 genes were removed; (2) cells containing 50% or

more of UMIs mapped to mitochondrial or ribosomal genes were

eliminated if they met one of the standards. With the remaining

35,884 cells, gene expression matrices were normalized and
Frontiers in Immunology 03
subsequently dimensionally reduced based on 2,000 highly

variable genes detected by the “FindVariableGenes” function.

For the clustering of major cell types, the top 50 principal

components were selected with a resolution parameter equal to

0.8. Finally, major cell clusters projected in the two-dimensional

Uniform Manifold Approximation and Projection (UMAP)

representation were annotated to known cell types using well-

recognized marker genes.
Re-clustering of immune and non-
immune cell populations

To identify sub-populations within immune and non-

immune cell clusters from pre- and on-treatment samples,

cells were extracted via the “SubsetData” function. Then, we

re-clustered the selected cells by the second-round UMAP

reduction. The number of principal components in each

subtype was independently determined by the “Elbowplot”

function implemented in Seurat. The sub-clusters were

annotated by the dominantly expressed cell markers in

previous studies (19–21).
Identification of marker genes of cell
sub-clusters

To identify marker genes for each sub-cluster within T cells or

other cell types, the “FindAllMarkers” function in Seurat was used

to compare cells of the studied sub-cluster with all other sub-

clusters of this cell type. Marker genes of sub-clusters were defined

as having a threshold fold change > 0.25 in the studied sub-cluster

compared to the other sub-clusters and with detectable expression

in > 25% of the cells in that sub-cluster. Additionally, marker

genes were required to have the highest mean expression in the

studied sub-cluster compared to all other sub-clusters.
RNA sequencing and analysis in bulk
tumor tissues

Pre- and on-treatment paired tumor tissue samples from 14

GC patients in our cohort were obtained for bulk RNA

sequencing. Total RNA was extracted from tumor samples

using TRIzol LS reagent (Thermo) and quatified by Agilent

2100 Bioanalyzer (Agilent). The ribosomal RNA was depleted by

Ribo-Zero™ rRNA Removal Kit (Illumina). Finally, the mRNA

sequencing library was constructed according to the protocols of

TruSeq Stranded Total RNA Library Prep Kit (Illumina). RNA

sequencing was performed with paired-end 2 × 150bp on

Illumina Hiseq X Ten platform (Illumina). The clean reads of

mRNA were aligned to the human reference genome GRCh38

using HISAT2.
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Cell-type infiltration analysis in bulk
tissue based on scRNA-seq data

To estimate the proportions of our defined major cell

populations and subpopulations in bulk RNA-seq data, we

used the online tool CIBERSORTx to create a reference

signature matrix from our scRNA-seq data (22).
Differential expression and
pathway analysis

Differentially expressed genes (DEGs) between different cells

or time courses were identified using the “FindMarkers”

functions in Seurat with a threshold for logFC > 0.25 and

expression in a minimum fraction of cells > 25%. The R

package hypeR (v1.8.0) and the Hallmark gene sets were used

for pathway analysis on DEGs of different groups.
Definition of cell scores and signatures

We used the average expression levels (measured by log2
(normalized counts)) of 7 cytotoxicity associated genes (PRF1,

IFNG, GNLY, NKG7, GZMB, GZMA, CST7 and TNFSF10) and

5 exhausted markers (CTLA4, HAVCR2, LAG3, PDCD1 and

TIGIT) to define the cytotoxic and exhausted scores for CD8+

and CD4+ T cells (19). The IFN-g and expanded immune

signature were defined by 6 and 18 genes, respectively (23). To

calculate the M1/M2 polarization and anti-/pro-tumor potential

of macrophage cells, M1 or M2-associated genes were used to

define the signature of macrophages (24, 25).
Trajectory analysis of CD8+ T cells

We performed the trajectory analysis viaMonocle 2 (version

2.20.0) (26) to explore the effect of treatment on CD8+ T cell in

our scRNA-seq data. First, the function “newCellDataSet” was

applied to construct the Monocle subject. The gene signatures

used to annotate the Monocle components are the marker genes

of sub-clusters within CD8+ T cells. The “reduceDimension”

function was applied to reduce dimensions, and we placed cells

onto the pseudotime trajectory with default parameters by

“orderCells” functions. The phase gene sets of CD8+ T cell

trajectory were enriched by gene set enrichment analysis

(GSEA) with the Hallmark and Reactome pathway.
Copy number analysis of epithelium

To further distinguish malignant and non-malignant

epithelial cells, we calculated CNVs in epithelial cells based on
Frontiers in Immunology 04
our scRNA-seq data using R package inferCNV (version 1.6.0)

as described previously (27). T cells served as the background to

calculate the CNV score of epithelium. This package compared

the expression intensities of genes across epithelium and related

this to expression in T cells. The k-means clustering was used to

exhibit possible non-malignant cells which had similar modified

expression levels with T cells.
Constructing cell interaction network
via CellPhoneDB

CellPhoneDB Python package (2.1.7) (28) used the cluster

annotation and counts from our scRNA-seq data to compute

cell-cell communication between CD8+ T cells and other cells

(epithelium and macrophages) pre- and post-treatment. The

default ligand-receptor pair information was used in this

process. A p value ≤ 0.05 indicated significant enrichment of

the interacting ligand-receptor pair in each interacting pair of

cell subtypes, and only receptors and ligands expressed in more

than 10% of the cells in the interacting subpopulations were

considered. Log2 mean referred to the log2-transformed total

mean of the individual partner average expression values in the

corresponding interacting pairs of cell subtypes.
Survival analysis

The Kaplan-Meier Plotter analysis tool (http://kmplot.com/

analysis/) was used to access the association between gene

expression status and prognosis in GC patients. The Kaplan-

Meier Plotter database incorporated multiple GEO datasets and

TCGA GC cohort for predicting prognosis (29).
Statistical analysis

All data processing was performed using R 3.6.1 software.

The statistical tools, methods, and thresholds for each analysis

are explicitly described in Materials and Methods or detailed in

the Figure legends. All statistical results with a p-value < 0.05

were considered to indicate statistical significance.
Results

Single-cell transcriptome profiling of GC
tumors during the neoadjuvant therapy

Between July 2019 and February 2021, 60 patients were

recruited in the trial. Eventually, fifty-two (86.7%) patients

underwent D2 radical gastrectomy with evaluable pathological
frontiersin.org
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tumor response. Five of the 52 patients (9.6%) achieved a

pathological complete response (pCR) and 11 (21.2%) patients

experienced a near pCR (Table S1). The results showed that the

combination of camrelizumab and mFOLFOX6 as neoadjuvant

therapy for locally advanced GC/GEJ adenocarcinoma cancer

significantly enhanced the anti-tumor effect. We obtained tumor

tissues from 5 patients pre- and on-treatment neoadjuvant

therapy. All patients completed 4 cycles of camrelizumab

(200mg ivgtt on day1, q2w) plus mFOLFOX6 (oxaliplatin
Frontiers in Immunology 05
85mg/m2 ivgtt, calcium levofolinate 200mg/m2 ivgtt, 5-Fu

400mg/m2 iv followed by 2.4mg/m2 CIV 46 hours on day 1,

q2w) and underwent gastrectomy with D2 dissection. All of

them gained R0 resection (100%), 1 patient (20%) achieved pCR,

and 1 patient (20%) reached tumor pathology regression grade

(TRG) 1. The patient that experienced pCR was HER-2 positive,

the remaining four patients were HER-2 negative. Expression

levels of EBV were negative for all. Clinical characteristics of the

five patients are shown in Table 1.
TABLE 1 Patients’ clinical characteristics of scRNA-seq (N=5)*.

Characteristics N %

Sex

male 4 80%

female 1 20%

ECOG (PS)

0 2 40%

1 3 60%

Clinical stage

T≥3 4 80%

N≥1 5 100%

Molecular-biological index (prior treatment)

HER-2 postive 1 20%

MMR deficient 0 0%

Postoperative pathology

Tumor pathology regression grade (TRG)#

0 1 20%

1 1 20%

2 2 40%

3 1 20%

T stage

0 1 20%

1 2 40%

2 0 0%

3 2 40%

N stage

0 4 80%

3b 1 20%

*Neoadjuvant therapy: mFOLFOX6 (oxalipltain 85mg/m2 ivgtt, LV 200mg/m2 ivgtt,5-FU 400mg/m2 iv followed by 2.4mg/m2 civ 46h hours on day 1, q2w) plus Camrelizumab
(200mg ivgtt on day 1, q2w).
#TRG0: No viable cancer cells, including lymph nodes.
TRG1: Single cells or rare small groups of cancer cells.
TRG2: Residual cancer cells with evident tumor regression but more than single cells or rate small groups of cancer cells.
TRG3: Extensive residual cancer with no evident tumor regression.
fro
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The site-matched tumor tissues of pre- and on-treatment

were subjected to scRNA-seq using 10× Genomics Chromium

platform (Figure 1A). After quality control and filtering, we

obtained 35,884 cells for further biological analysis (893-6,122

cells per sample), which generated ~334 million total mapped

reads and 1,573 detected genes per cell on average.

To define TME cell populations of our GC cohort, we

performed principal component analysis to evaluate variably

expressed genes and subsequently used graph-based clustering

to classify all cells. We identified and visualized 10 main cell

types in paired pre-treatment (PT) and on-treatment (OT)

samples using the Uniform Manifold Approximation and

Projection (UMAP) method (Figures 1B-D). Non-immune

cells (n = 11,090, 30.9%) primarily consisted of epithelium

(6,157 cells, 17.2%, marked by EPCAM, KRT8 and KRT18),

endothelium (634 cells, 1.8%, marked by PECAM1, ENG and

VWF), and fibroblast (4,299 cells, 12.0%, marked by THY1,

COL1A1 and COL1A2) cells based on the known markers
Frontiers in Immunology 06
(Figure 1E, Figure S1). Higher proportions of epithelial cells

were observed compared to endothelial cells or fibroblasts in

most samples (Figure 1F).

The identified immune cells (n = 24,794, 69.1%) contained

natural killer (NK) cells (1,000 cells, 2.8%, marked by NKG7,

GNLY and KLRF1), T cells (11,086 cells, 30.9%, marked by CD2,

CD3D and CD3E), B cells (4,930 cells, 13.7%, marked by MS4A1

and CD79A), myeloid cells (2,976 cells, 8.3%, marked by CD14

and CD68), mast cells (295 cells, 0.8%, marked by TPSAB1 and

CPA3), plasma cells (1,018 cells, 2.8%, marked by SDC1 and

IGKC) and neutrophils (3,489 cells, 9.7%, marked by BASP1 and

NAMPT) (Figure 1E, Figure S1). The infiltration levels of T cells

was relatively higher compared to other immune cells in most

PT and OT samples (Figure 1F). All immune cells showed

infiltration variances before or during the treatment, which

revealed the cellular heterogeneity among GC patients. Despite

this variability, samples shared the same immune and non-

immune cell types following treatment (Figure 1F). Considering
A B

D

E

F

G

C

FIGURE 1

scRNA-seq profiling of the GC microenvironment during the combined therapy. (A) Schematic plot of the experimental strategy for 10×
Genomics scRNA-seq. Ten site-matched endoscopic and surgical tumor samples were collected from 5 GC patients before and after 4 cycles
treatment. (B) The two-dimensional UMAP plot showed the annotation and color codes for 10 major cell types in the GC ecosystem. (C) UMAP
plot showed cell origins by patients and samples, the numbers represented patient ID, P represented “pre-treatment”, O represented “on-
treatment”. (D) UMAP plot displayed cell origins by pre-treatment (PT) and on-treatment (OT). (E) Heatmap displayed the expression of marker
genes of 10 major cell types. (F) Histogram indicated the proportion of major cell typesin each samples. (G) The cell proportion analysis of bulk
samples in paired PT and OT tumors based on scRNA-seq data by CIBERSORTx, a paired two-sided Student’s t-test was used to assess the
difference of cell infiltration. * p < 0.05; ** p < 0.01; ns, not significant.
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that the sample size of our scRNA-seq cohort was limited, we

performed a deconvolution algorithm CIBERSORTx to simulate

the cell-type-specific gene expression profiles and predict the

abundance of each cell type revealed by current scRNA-seq in

our bulk RNA-seq dataset. We found that epithelial cells had

higher proportions in both PT and OT samples, whereas

myeloid cells and fibroblasts showed significant changes in OT

compared with PT samples (Figure 1G). The bulk results

indicated a degree of consistency in cell proportions within the

scRNA-seq resullts.
An interferon-g signature of CD8+ T cells
predicted effective response to the
neoadjuvant therapy

T cells (n = 11,086) represented the most prevalent immune

cell type in the GC patients’ tumors. Further clustering of these
Frontiers in Immunology 07
T/NK cells revealed 11 sub-populations, including three clusters

of CD8+ T cells (CD8 CXCL13, CD8 GZMK and CD8

HSPA1A), five clusters of CD4+ T cells (CD4 CCL20, CD4

CCR7, CD4 CXCL13, CD4 FOXP3 and CD4 TCF7),

proliferative T cells, and NK cells (Figure 2A, Figure S2A).

Although most subtypes of T cells were shared between PT

and OT samples, CD4 CXCL13 and CD4 TCF7 cells were

mainly enriched in OT samples, while CD8 CXCL13 were

enriched in PT samples (Figures 2B, C).

Among three subtypes of CD8+ T cells, the CD8 CXCL13

cells showed high expression of inhibitory receptors (CTLA4,

PDCD1 and TIGIT) and cytokines/effectors (CXCL13, GNLY

and GZMA), suggesting that cytotoxic and exhausted states

coexisted in the CD8 CXCL13 population (Figure 2D). The

CD8 CXCL13 cells had significantly higher scores of cytotoxic

and exhausted signatures than CD8 GZMK and CD8 HSPA1A

cells (Figures 2E, F). We then analyzed differentially expressed

genes (DEGs) and pathway enrichment of CD8+ T cells between
A B

D E F G

IH J K

C

FIGURE 2

The changes of expression signatures in CD8+ T cells during the therapy. (A) UMAP plot showed the re-clustered T/NK cells labeled in different
colors. (B, C) UMAP plot showed cell origins by samples (B) or the course of treatment (C). (D) Heatmap indicated the expression of selected
gene sets in T/NK subtypes, including naive, resident, inhibitory, cytokines, co-stimulatory, transcriptional factors, Treg markers and cell type. (E,
F) Violin plot indicated the cytotoxic (E) and exhausted (F) scores in three subtypes of CD8+ T cell, significance was determined by unpaired
Wilcoxon test. * p < 0.05; **** p < 0.001. (G) Pathway enrichment results of DEGs from CD8+ T cells between PTs and OTs. (H) The IFN-g score
of CD8+ T cells between PTs and OTs. (I, J) The IFN-g signature of CD8+ T cells (I) or whole T cells (J) in baseline between TRG0-1 and TRG2-3
group. (K) The IFN-g signature of bulk samples in PTs between TRG0-1 and TRG2-3 group. Significance of IFN-g signature between two groups
was determined by paired Wilcoxon test.
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PT and OT samples. Results revealed that up-regulated genes

within OT samples were enriched in p53 and IL2 STAT5

pathways, while PT sample up-regulated genes were related to

an IFN-g/a response (Figure 2G, S2B). Accordingly, we found

that CD8+ T cells of PT samples had higher expression of IFN-g
compared with CD8+ T cells in OTs (Figure 2H). Interestingly,

patients of TRG0-1 group had a significantly higher IFN-g score
in CD8+ T cells or all T cell subtypes within baseline samples

compared to the TRG2-3 group (Figures 2I, J). More

importantly, the bulk sequencing data showed consistent

results in the IFN-g signature between TRG0-1 and TRG2-3

group (Figure 2K). In addition to the IFN-g signature, we also

found that the TRG0-1 group had a higher expression score of

expanded immune cells in CD8+ T cells or all T cells of PT

samples compared to TRG2-3 group (Figures S2C, D). These

results suggest that higher scores of IFN-g or an expanded

immune signature predicted a better response to the

combined therapy.

Among the five subtypes of CD4+ T cells, the CD4 CCL20

cells showed a relatively higher cytotoxic score, while CD4 CCL20

and CD4 CCR7 had a lower exhausted signature. In addition, an

immunecheckpoint signature was up-regulated in CD4 CXCL13,

CD4 FOXP3, and CD4 TCF7 cells (Figure S2E-G). Compared to

OT samples, all CD4+ T cell subtypes in PT samples showed
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up-regulation of TNF-a signaling via NF-kB and an IFN-g/a
response (Figure S2H).
Trajectory analysis uncovered dynamic
changes in CD8+ T cells
during treatment

To uncover dynamic functional changes of CD8+ T cells in

PT and OT samples, we adopted the Monocle 2 algorithm to

chronologically order CD8+ T cells in pseudotime and indicate

their trajectories (Figure 3A). The results showed that the

trajectory path began with the CD8 CXCL13 cells, followed by

the CD8 GZMK cells, and ended with CD8 HSPA1A cells

(Figure 3B). We observed that CD8 CXCL13 cells were mainly

found in PT samples harboring both cytotoxic and exhausted

signatures, while more CD8 HSPA1A cells were aggregated in

OT samples with low cytotoxic or exhausted signatures.

Moreover, CD8 GZMK cells were enriched in both PT and

OT samples, which appeared to be an intermediate state between

cytotoxic and exhausted signatures (Figures 2E, F). Accordingly,

the exhausted signature of CD8+ T cells decreased (Figure 3C),

whereas the cytotoxic signature, despite an ultimate decrease,

had a relatively higher score compared to the exhausted
A B

D

E F

GC

FIGURE 3

Analysis of the dynamic changes of CD8+ T cells during the treatment. (A) Monocle 2 trajectory analysis of CD8+ T cells labeled by pseudotime.
(B) The trajectory analysis of CD8+ T cells labeled by CD8+ T cell subtypes. (C, D) Pseudotime plot showed the dynamics of exhausted (C) and
cytotoxic signatures (D) in CD8+ T cells from PT and OT samples. (E, F) The cytotoxic (E) and exhausted scores (F) of CD8+ T cells displayed by
violin plot between PTs and OTs, statistical analyses were paired Wilcoxon rank-sum test. (G) Heatmap indicated the dynamic changes in gene
expression along the pseudotime (lower panel). The distribution of CD8+ T cell subtypes was divided into 3 phases along with the pseudotime.
CD8+ T cell subtypes are labeled by colors (upper panel).
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signature along the trajectory (Figure 3D). Indeed, the cytotoxic

and exhausted scores of CD8+ T cells in PT samples were

significantly higher thanOT samples (Figures 3E, F). These

data indicate a coincidence of the pseudotime and the time

course of changes in CD8+ T cells during treatment. However,

we did not identify this coincidence in CD4+ T cells by

pseudotime analysis.

We next investigated the transcriptional changes of CD8+ T

cell associated with trajectory and found that the three clusters of

CD8+ T cells could be categorized into 3 phases (Figure 3G). CD8

CXCL13 cells were primarily found in phase 1 and characterized

by up-regulated expression of CTLA4, GZMA, HLA-A and

PDCD1. Pathway enrichment analysis showed that MYC

targets, the IFNg response, and cytokine signaling were enriched

in phase 1 (Figure 3G). Phase 2 had the most CD8 GZMK cells

expressing EIF3E, GZMK and TGFB1, and genes involved in

apical junctions and cellular responses to external stimuli

(Figure 3G). CD8 HSPA1A cells were mostly found in phase 3

with high expression of CD69, JUN, KLRB1, and proteins

enriched in TNFa signaling via NF-kB and p53 pathways.
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Intra-tumoral transcriptional response of
epithelial cells to the combined therapy

We re-clustered 6,157 epithelial cells and found 7 subtypes

in GC tumors (Figures 4A-C), including chief cells (marked by

PGC and LIPF), enterocytes (FABP1 and ANPEP),

enteroendocrine cells (CHGA and TPH1), goblet cells

(MUC2), metaplastic stem-like cells (EPHB2 and SOX9), pit

mucous cells (MUC5AC and TFF1) and proliferative cells

(MKI67 and BIRC5, Figure 4D, Figure S3). Most subtypes

were shared between PT and OT samples except for

enterocytes which were enriched in PT tumors (patient 042

and 043, Figures 4A-C). This suggests that the combined therapy

effectively reduced the proportion of enterocytes. The

CIBERSORTx analysis of all cell subtypes identified that

goblet, metaplastic stem-like, and proliferative cells were

significantly reduced, and chief cells were significantly

increased in bulk samples after therapy (Figure 4E). To reveal

transcriptional changes within epithelial cells in response to

therapy, we analyzed DEGs in PT and OT samples and found
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FIGURE 4

Transcriptional changes of epithelium in response to the treatment in GC ecosystem. (A) UMAP plot showed the re-clustered epithelium
subtypes, EEC, enteroendocrine cell; MSLC, metaplastic stem-like cell; PMC, pit mucous cell. (B, C) UMAP plot showed epithelium origins by
samples (B) or the course of treatment (C). (D) Heatmap exhibited the expression of top markers in 7 subtypes of epithelium. (E) The cell
proportion analysis of epithelium subtypes in bulk samples between PTs and OTs by CIBERSORTx. (F) Volcano plot exhibited DEGs of epithelium
in comparison of PTs and OTs. (G) The GSEA results of DEGs in epithelium between PTs and OTs. (H) The inferred CNV results of epithelium
(lower panel) compared with T cells (upper panel). (I) The k-means clustering of epithelium and selected T cells based on the inferCNV results,
all cells could be divided into 7 classes. (J) Violin plot exhibited the CNVscores of 7 classes identified by k-means clustering. * p<0.05, ** p<0.01,
*** p<0.001, ns, not significant.
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558 genes were up-regulated after therapy, including CST6,

BPIFB1 and SMOC2 (Figure 4F). Pathway analysis revealed

up-regulation of MYC targets and oxidative phosphorylation

and down-regulation of TNF-a signaling via NF-kB and IFN-g
response after therapy (Figure 4G).

Additionally, we distinguished malignant and non-

malignant epithelial cells by inferring large-scale chromosomal

copy-number variations (CNVs) in single epithelial cells (27,

30). Results revealed most epithelial cells exhibit relatively

similars copy-number gain or losses compared to randomly

selected T cells (Figure 4H). The k-means analysis showed that

few epithelial cells were clustered with T cells in class 5 which

had a lower CNV score (Figures 4I, J), suggesting that tumor-

derived epithelial cells were mainly enriched in these samples.
Intra-tumoral transcriptional response of
fibroblast to the combined therapy

Cancer-associated fibroblasts (CAFs) (n = 4,299) showed

two distinct subtypes with unique gene signatures upon re-

clustering analysis. Common fibroblast markers such as
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COL1A1 and THY1 were extensively expressed in both sub-

populations, confirming their fibroblast identity (Figure 5A,

Figure S4A). Sub-cluster 1 of fibroblasts appeared in OT

sampels with strong expression of CFD, DPT and various

chemokines, including CXCL12 and CXCL14 (Figure 5B,

Figures S4B, C). This signature is similar to that of

inflammatory CAFs (iCAFs) described in pancreatic cancer

(31, 32). Sub-cluster 2 distributed between PT and OT samples

had high expression of RGS5 and ACTA2, which is similar to

myofibroblastic CAFs (myCAFs) (Figure 5B, S4B, C). These

results demonstrate that CAF populations within GC have

similar subtypes to other cancers (32, 33). The CIBERSORTx

analysis also validated that iCAFs are significantly increased in

OT samples, while myCAFs had no obvious change between PT

and OT samples (Figure 5C). Our analysis also identified

abundant DEGs for myCAFs and iCAFs (Figure 5D). Up-

regulated RGS5 and ACTA2 expression in myCAFs indicated

poor overall survival of GC patients in TCGA and GEO datasets

(Figures 5E, S4D). Coagulation and estrogen response pathways

were significantly up-regulated in iCAFs, while myCAFs had

upregulated oxidative phosphorylation and MYC targets

v1 (Figure 5F).
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FIGURE 5

Two distinct subtypes of CAFs showed transcriptional differences in GC ecosystem. (A) UMAP plot showed the re-clustered fibroblast subtypes,
iCAFs and myCAFs. (B) Feature plot displayed the expression levels of markers in iCAFs and myCAFs. (C) The cell proportion analysis of fibroblast
subtypes in bulk samples between PTs and OTs by CIBERSORTx. (D) Volcano plot exhibited DEGs of myCAFs compared with iCAFs. (E) The
survival analysis of mRNA expression of RGS5 and ACTA2 in TCGA GC cohort. (F) GSEA results showed the Hallmark gene sets enriched in iCAFs
or myCAFs. ***p<0.001.
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Intra-tumoral transcriptional response
of B and myeloid cells to the
combined therapy

Re-clustering of B cells (n = 4,930) showed 6 subtypes with

distinct distributions, including memory and naïve B cells in OT

samples and 4 sub-populations of B cells in PT and OT samples

(Figures 6A, S5A, B). Memory B cells displayed high expression

of HMGN2 and H2AFZ (Figure 6B), naïve B cells up-regulated

CD38 (Figure 6B), and other B cell clusters showed distinct

expression signatures (Figure 6C). We observed that patient 043

had high infiltration of B cells, both memory and naïve, in

response to the combined therapy (Figure S5A). Therefore, we

analyzed DEGs in the other four subtypes of B cells between PT
Frontiers in Immunology 11
and OT samples and found many genes showed differential

expression in response to the combined therapy (Figure 6D).

Similar to the T and epithelial cells,IFN response and TNF-a
signaling via NF-kB were enriched in B cells from PT

samples (Figure 6E).

Next, we analyzed innate immune cell populations and their

role tumor progression and response to immunotherapy. We

extracted myeloid cells (n = 2,976) via CD14 and CD68

expression, and re-clustered them into two subtypes of

monocytes (Mo CCL2 and Mo FCN1), two subtypes of

dendritic cells (DC CCR7 and DC CD1C), and three subtypes

of macrophages (Mac LYVE1, Mac MMP9 and Mac TREM2)

(Figure 6F). Most subtypes of myeloid cells could be found in

both PT and OT samples, while Mac LYVE1 and Mac MMP9
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FIGURE 6

Transcriptional diversity of B and myeloid cells in response to the treatment. (A) UMAP plot showed the re-clustered subtypes of B cells. (B)
Feature plot displayed the expression of markers in memory/naïve B cells. (C) Heatmap exhibited the expression of top markers in 6 subtypes of
B cells. (D) Volcano plot exhibited DEGs of B cell-1/2/3/4 in comparison of PTs and OTs. (E) The GSEA results of above DEGs in B cells between
PTs and OTs. (F) UMAP plot showed the re-clustered subtypes of myeloid cells, DC, dendritic cell; Mac, macrophage; Mo, monocyte. (G)
Heatmap indicated the expression of marker genes in myeloid subtypes. (H) Dotplot showed the percentage of cells in each subtype of myeloid
cells expressing immune checkpoint and evasion genes. (I) Heatmap of normalized expression for curated M1- and M2-associated genes within
macrophage subtypes.
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showed specific enrichment (Figures S5C, D). In addition, these

subtypes of myeloid cells differentially expressed marker genes

and immunomodulatory genes (Figure 6G, H).

Twoforms of macrophage polarization are M1 (or classic)

and M2 (or alternative) and are characterized by antitumor-

responses or suppression, respectively (24). We found Mac

LYVE1 highly expressed a set of M2-associated genes, while

the other two subtypes did not show tendentious expression

(Figure 6I). Many chemokines were differentially expressed

among macrophages, including M1 markers CCL5, M2

markers CCL13 and CCL18 (Figure 6I), as previously

described in GC (14, 34).
Complex cell–cell interactions in GC
TME during the neoadjuvant therapy

To uncover changes in cell-cell communication during

treatment, we used the CellPhoneDB to identify ligand–

receptor pairs and molecular interactions among major

cell populations.

Considering the significant role CD8+ T cells in

immunotherapy response, we explored interactions between

epithelial cells and three CD8+ T cell subtypes in the TME of

PT and OT samples. Of note, CD74 and the corresponding

receptors (APP, COPA and MIF) were significantly expressed in

epithelial and CD8+ T cells of PT samples (Figure 7A). In OT

samples, CXCR6-CXCL16 and EGFR-TGFB1 pairs were newly

identified, and CD74 receptors were decreased between

epithelial and CD8+ T cells (Figure 7B). This suggests that
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communication between tumor and CD8+ T cells is remodeled

by combined therapy in GC.

Additionally, we identified increased communication between

macrophages and CD8+ T cells (Figures 7C, D). Notably, ANXA1-

FPR1/2/3 and ICAM proteins were widely expressed and

mediated the interactions between macrophages and CD8+ T

cells in both PT and OT samples (Figures 7C, D). These results

indicate that the anti-inflammatory and intercellular adhesion

interactions remained stable during the treatment.
Discussion

ICB combined with chemotherapy has been shown to

improve survival for advanced GC patients (35, 36). More

specifically, our research revealed the combination of anti-PD-

1 antibody and chemotherapy achieved better pCR and R0

resection rates compared to the standard neoadjuvant

chemotherapy. Although immunotherapy can induce robust

and durable responses, the response only occurs in a minority

of patients. Establishment of predictive biomarkers for

immunotherapy is important to maximize therapeutic benefits.

In the present study, we comprehensively assessed intratumoral

transcriptomic changes at the single-cell level in GC patients

receiving neoadjuvant ICB. Although several studies have

characterized treatment-naïve microenvironment heterogeneity

with single-cell resolution in GC (13–15, 17), our study is the

first to report on exploring how the combined immunotherapy

and chemotherapy affects expression programs of immune and

non-immune cells in the GC microenvironment.
A B DC

FIGURE 7

Cell–cell interactions of CD8+ T cell and epithelium/macrophage during the combined treatment in GC ecosystem. (A, B) Bubble plots showed
the selected ligand-receptor interactions between CD8+ T cells and epithelium in PTs (A) and OTs (B). (C, D) Bubble plots showed the selected
ligand-receptor interactions between CD8+ T cells and macrophages in PTs (C) and OTs (D). P values were indicated by circle size with
permutation test. The log-transformed means of the average expression levels of interacting molecule 1 in cluster 1 and interacting molecule 2
in cluster 2 were indicated by color.
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In this study, we found that a high IFN-g signature within

CD8+ T cells had predictive value in the therapeutic outcome of

neoadjuvant ICB. Ayers et al. identified immune-related

signatures that correlate to clinical outcome using bulk tumor

samples in different clinical studies of pembrolizumab. This work

started with a small pilot study of melanoma and eventually

defined a pan-tumor T cell–inflamed gene expression profile in 9

cancers, including GC (23). Our study confirmed that an IFN-g
signature of 6 genes and an expanded immune signature of 18

genes in T cells could predict the efficacy of the combined anti-

PD-1 and chemotherapy. Moreover, the scRNA-seq and bulk

RNA-seq showed consistent results, which confirms that the IFN-

g or immune-related signatures can guide clinical prediction in

future neoadjuvant ICB in GC. However, we need more samples

to validate the IFN-g signature by scRNA-seq and further

elucidate the mechanism about the changes of IFN-g signature

pre and post neoadjuvant therapy.

CAFs are critical components of the tumor microenvironment

with both pro- and anti-tumorigenic effects in a context-dependent

manner (37, 38). The heterogeneity of CAFs have been

well described in other cancers by scRNA-seq, including

ovarian cancer (39), prostate cancer (10) and intrahepatic

cholangiocarcinoma (40). However, the diversity of CAFs in GC

is rarely reported. In our GC cohort, we found two CAF

subpopulations iCAF and myCAF, with different transcriptional

signatures. Jeong et al. also found distinct sub-clusters of fibroblasts

in diffuse-type GC. Among them, the Fibro2 cells were identified as

myofibroblasts and the Fibro1 possessed immune-mediated

inflammatory features with enhanced interferon signaling (41).

These results confirmed the heterogeneity of CAFs in GC.

However, our data showed that iCAFs were enriched in OT

samples with different TRG (one was complete tumor regression

and the other was TRG3), which does not support the association of

iCAFs with treatment efficacy of neoadjuvant ICB. However, an

increased sample size is needed to verify the relationship between

CAFs and therapeutic effect in GC.

Finally, we identified tumor-associated macrophages

(TAMs) as a heterogenous immune cell population that had

increased interactions with CD8+ T cells. The plural functions of

TAMs and their roles in immunotherapy have been extensively

reviewed (42, 43). Our work revealedmany cell–cell interactions,

such as intercellular adhesion proteins, between TAMs and

CD8+ T cells were insusceptible to the neoadjuvant ICB,

suggesting additional reciprocal regulation between TAMs and

CD8+ T cells warrant further functional experimentation.
Conclusions

In conc lus ion , our s tudy used scRNA-seq to

comprehensively identify the dynamic landscape of the intra-

tumoral cellular transcriptome in GC between pre- and on-

treatment with neoadjuvant immunotherapy combined
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chemotherapy. This work revealed a IFN-g signature of CD8+

T cells may possess potential value in predicting response to the

combined therapy in GC patients.
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SUPPLEMENTARY FIGURE 1

Feature plot displayed the expression of markers in 10 major cell types.

SUPPLEMENTARY FIGURE 2

The expression signatures of CD8+ and CD4+ T cells during the therapy.

(A) Heatmap indicated the expression of marker genes of T/NK cell
subtypes. (B) Volcano plot exhibited DEGs of CD8+ T cells in

comparison of PTs and OTs. (C, D) The expanded immune scores of
CD8+ T cells (C) or whole T cells (D) in baseline between TRG0-1 and

TRG2-3 group. (E-G) Violin plot indicated the cytotoxic (E), exhausted (F)
and immune (G) scores in five subtypes of CD4+ T cell, all statistical
analyses were Kruskal-Wallis test. (H) Pathway enrichment results of DEGs

from CD4+ T cells between PTs and OTs.

SUPPLEMENTARY FIGURE 3

Feature plot displayed the expression of markers in epithelial subtypes.

SUPPLEMENTARY FIGURE 4

Two subtypes of CAFs in GC ecosystem. (A) Feature plot displayed the

expression of markers of CAFs in two subtypes. (B, C) UMAP plot showed
cell origins by samples (B) or the course of treatment (C). (D) The survival

analysis of mRNA expression of RGS5 and ACTA2 in GEO GC cohorts.

SUPPLEMENTARY FIGURE 5

The re-clustering analysis of B andmyeloid cells. (A, B)UMAP plot showed
the origins of B cells by samples (A) or the course of treatment (B). (C, D)
UMAP plot showed the origins of myeloid cells by samples (C) or the
course of treatment (D).
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