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The worrying emergence of multiple resistance genes to last-resort antibiotics 

in food animals and human populations throughout the food chain and relevant 

environments has been increasingly reported worldwide. Enterobacteriaceae 

pathogens are considered the most common reservoirs of such antibiotic 

resistance genes (ARGs). Thus, a rapid, efficient and accurate detection method 

to simultaneously screen and monitor such ARGs in Enterobacteriaceae 

pathogens has become an urgent need. Our study developed a recombinase 

polymerase amplification (RPA) assay combined with a lateral flow dipstick 

(LFD) for simultaneously detecting predominant resistance genes to last-

resort antibiotics of Enterobacteriaceae pathogens, including mcr-1, blaNDM-1 

and tet(X4). It is allowed to complete the entire process, including crude DNA 

extraction, amplification as well as reading, within 40 min at 37°C, and the 

detection limit is 101 copies/μl for mcr-1, blaNDM-1 and tet(X4). Sensitivity analysis 

showed obvious association of color signals with the template concentrations 

of mcr-1, blaNDM-1 and tet(X4) genes in Enterobacteriaceae pathogens using a 

test strip reader (R2 = 0.9881, R2 = 0.9745, and R2 = 0.9807, respectively), allowing 

for quantitative detection using multiplex RPA-LFD assays. Therefore, the RPA-

LFD assay can suitably help to detect multiple resistance genes to last-resort 

antibiotics in foodborne pathogens and has potential applications in the field.
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1. Introduction

Imprudently using antibiotics in medicine and farming has 
resulted in increasingly severe bacterial resistance problems around 
the world (Fu et  al., 2022). According to the World Health 
Organization (WHO), antibiotic resistance remarkably threatens 
food security, and global health and development (World Health 
Organization, 2022). Multidrug resistance (MDR) occurs when 
bacteria obtain resistance to three or more categories of antibiotics, 
causing them to pose more urgent threats (Cheng et al., 2019). 
Among the currently available antibiotics, carbapenems, colistin as 
well as tigecycline are last-resort antibiotics for managing MDR 
bacterial infections, especially those caused by Enterobacteriaceae 
(Tang et al., 2021). Unfortunately, the worrying emergence of the 
predominantly plasmid-borne colistin resistance gene mcr-1, 
carbapenem resistance gene blaNDM-1 as well as tigecycline resistance 
gene tet(X4) in Enterobacteriaceae pathogens from different 
sources, such as animals, food and humans, has increasingly been 
reported in different continents (Singh et al., 2018; Zhong et al., 
2019; Anyanwu et al., 2022; Lu et al., 2022; Zhang et al., 2022). 
Additionally, tet(X) genes have regularly been reported to coexist 
with blaNDM-1 and/or mcr-1 genes (Chen et al., 2019; Sun C. et al., 
2019), and such plasmid-borne antibiotic resistance genes (ARGs) 
are capable of transferring between epidemic strains of 
Enterobacteriaceae (Leshaba et al., 2022). Thus, a fast, efficient and 
accurate detection method for simultaneously screening and 
monitoring the above-mentioned ARGs in Enterobacteriaceae 
pathogens has become urgently needed for managing the 
dissemination of resistance in food animal and human populations 
throughout the food chain and relevant environments.

The most widely used molecular-based method for MDR gene 
detection is polymerase chain reaction (PCR), including 
conventional PCR (Adekunle et al., 2021; Cooper et al., 2021), real-
time quantitative PCR (Park et al., 2021; Tolosi et al., 2021) and 
digital PCR (Xu et al., 2021; Merino et al., 2022). However, most 
farms in China are equipped with laboratories capable of isolating 
bacteria from environmental samples, but are generally not equipped 
with complex large-scale instruments such as qPCR (Ma et  al., 
2020). A method which is simpler to operate and less dependent on 
instruments is urgently needed. To date, researchers have developed 
novel simple, rapid and efficient and cost-effective molecular biology 
techniques, such as isothermal nucleic acid amplification, as 
alternative protocols for the rapid on-site evaluation of MDR genes 
(Wong et al., 2018; Li et al., 2019; Tran et al., 2022). Recombinase 
polymerase amplification (RPA) acts as a common nucleic acid 
isothermal amplification technologies first developed by Piepenburg 
et al. (2006). It adopts a phage recombinase for forming complexes 
with oligonucleotide primers, thereby facilitating oligonucleotide 
primers to bind to homologous sequences of the double-stranded 
DNA molecules (Lobato and O'Sullivan, 2018). It is allowed to 
accomplish amplification within 30 min at a constant low 
temperature around 37°C by combining with a single-stranded 
DNA binding protein and a strand-displacing polymerase (Lobato 
and O'Sullivan, 2018). In addition, only a few copies of target DNA 

are initially needed, and highly specific DNA amplification at 
detectable levels can be achieved within a short time (Kersting et al., 
2014). Furthermore, multiplexing RPA amplifications in the same 
solution is feasible, despite its strong dependence on the amplicon 
size, target sequences, as well as primer design (Kersting et al., 2014). 
Detection of RPA products is mainly completed via probe-based 
florescence (Kim and Lee, 2016), gel electrophoresis (Cao et al., 
2018), or visualization by nucleic acid lateral flow dipstick (LFD) 
immunoassays (Xu et al., 2018). Among these, LFD immunoassays 
are simple, fast (~5 min), cost-effective and accurate for detection of 
amplified products and are more suitable for point-of-care testing 
(Lin et al., 2022). Additionally, multiplex LFD immunoassays that 
analyze multiple targets simultaneously have emerged in several 
research fields. The most common solution is to prepare several test 
lines on one test strip (Di Nardo et al., 2021). For instance, Cavalera 
et al. reported a multi-target LFD immunoassay with two test lines 
that bound to several classes of immunoglobulins, which realized 
detection of total antibodies against SARS-CoV-2 (Cavalera et al., 
2021). Such designs further reduce cost and increase throughput of 
detection, which is vital to the study of MDR genes. Recently, to 
meet increased accuracy requirements for quantitative detection, test 
strip readers (Li et al., 2019) and image software (Wang et al., 2021) 
have been employed to scan and evaluate the color signals of LFD.

The study focused on developing an RPA-LFD method for 
simultaneously identifying the highly prevalent genes mcr-1, blaNDM-

1 and tet(X4) in certain Enterobacteriaceae pathogens isolated from 
different food and animal fecal samples. In addition, a TSR-200 test 
strip reader (Allsheng Instruments Co., Ltd., Hangzhou, China) 
assisted in evaluating color signals to use LFD for accurate 
quantitative analysis. This allows for immediate monitoring of 
MDR genes in pathogenic bacteria in the field and will inform risk 
assessment and remediation strategies in a timely manner.

2. Materials and methods

2.1. Bacterial strains

We used 19 MDR Enterobacteriaceae strains, including 14 
Escherichia coli strains, 1 Escherichia fergusonii strain, 2 Klebsiella 
pneumoniae strains and 2 Salmonella spp. strains, for confirming 
the multiplex RPA-LFD assay specificity and its application in the 
field in our study. Detailed information on isolates is shown in 
Supplementary Table S1. The three recombinant E. coli strains 
containing standard plasmids carrying mcr-1, blaNDM-1 or tet(X4) 
genes were previously constructed in our laboratory to be used as 
reference strains for optimizing the reaction system and analyzing 
the sensitivity (Supplementary Table S1).

2.2. DNA extraction

The standard DNA plasmids that carried mcr-1, blaNDM-1 and 
tet(X4) genes were extracted from recombinant E. coli Top10-
pUC-mcr-1, E. coli Top10-pUC-blaNDM-1 and E. coli 
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Top10-pUC-tet(X4) using a QIAGEN Plasmid Mini Kit (QIAGEN, 
Hilden, Germany) according to the manufacturer’s instructions.

The DNA of all Enterobacteriaceae strains was prepared using 
the previously described boil-up protocol with some modifications 
(Bordin et  al., 2019). Briefly, a 1 μl solution of each 
Enterobacteriaceae strain was added into 30 μl 10 mM Tris buffer, 
boiled for 5 min in a metal bath, cooled on ice for 2 min together 
with 2 min of centrifugation at 12, 000 × g. RPA-LFD assays took 
the supernatant as the DNA template.

2.3. Design of RPA primers and LF probes

The ARG sequences of mcr-1 (KP347127.1), blaNDM-1 
(NG_049326.1) and tet(X4) (MK134376.1) came from GenBank.1 
Multiple gene sequence alignments of mcr-1, blaNDM-1 and tet(X4) 
available from GenBank were analyzed using ClustalW. Based on 
the conserved sequences, Primer Premier 5 served for designing 
RPA primers and LF probes following the instruction manual 
provided by TwistDX (Cambridge, United  Kingdom). The 
specificity exhibited by all RPA primers and LF probes was 
evaluated in silico using the BLASTn tool of the NCBI database. 
In this study, the 5′ ends of the reverse primers for mcr-1, blaNDM-1 
and tet(X4) were all labeled with digoxin. The 5′ ends of the LF 
probes for mcr-1, blaNDM-1 and tet(X4) were labeled with biotin, 
cyanine 5 (Cy5) and carboxytetramethylrhodamine (TAMRA), 
respectively. The 3′ end of the LF probe was modified with 3′ 
spacer C3. The inside of the LF probe was modified with an 
internal abasic nucleotide analog dSpacer (tetrahydrofuran, THF) 
(Table 1). GENEray Biotechnology (Shanghai, China) helped to 
synthesize all PRA primers and LF probes.

2.4. LFD strip preparation and RPA-LFD 
assay visualization

LFD strips were prepared via methods described in 
previous studies with some modifications (Ma et al., 2020; Jin 

1 https://www.ncbi.nlm.nih.gov/gene/

et  al., 2022). Briefly, the LFD strips were composed of 
continuous superposition: sample pad, conjugate pad with 
gold nanoparticles (AuNPs), nitrocellulose filter (NC) 
membrane, adsorption pad as well as backing card. The AuNPs 
were synthesized using sodium citrate tannin reduction, 
labeled by anti-digoxin monoclonal antibody (mAb) and 
sprayed onto conjugate pads. We prepared the three test lines 
(T-lines) using anti-biotin mAb (0.65 mg/ml, for detection of 
mcr-1 in T1), anti-Cy5 mAb (0.3 mg/ml, for detection of 
blaNDM-1 in T2) and anti-TAMRA mAb (0.3 mg/ml, for 
detection of tet(X4) in T3). Immobilization of an anti-mouse 
polyclonal secondary antibody (pAb, 2.0 mg/ml) on the 
control line (C-line) was completed. The immobilized NC 
membrane received 12 h of drying treatment at 37°C and a 
cutter was used to cut it into 2.5 mm wide strips. We stored the 
assembled LFD test strips in a vacuum bag at room 
temperature before use. We  diluted the RPA amplification 
products 50 times (mixing 2 μl product with 98 μl running 
buffer containing phosphate buffered saline and 3% Tween20) 
and pipetted them onto the LFD strips. The labeled RPA 
products were then migrated by capillary action. A test strip 
reader assisted in scanning as well as calculating the T1–T3 
lines and C-line intensities within 5 min.

2.5. Single RPA-LFD assays

Single RPA assays were performed to test the validity of 
the primer/probe sets. The reaction components and 
conditions were set following the operating manual regarding 
the TwistAmp nfo kits (TwistDX) with some modifications. 
Each reaction had 29.5 μl rehydration buffer to dissolve the 
freeze-dried enzyme pellet, 2.1 μl of each reverse and forward 
primer (10 μM), 0.6 μl LF probes (10 μM), 2.5 μl magnesium-
acetate (280 mM), 2 μl DNA template and 11.2 μl nuclease-free 
water. The tube was mixed by inversion and brief 
centrifugation, and the single RPA amplification reaction 
proceeded for 20 min at 37°C. The RPA amplification products 
were diluted 50 times and pipetted onto LFD strips. The T1–
T3 lines and C-line intensities were analyzed within 5 min.

TABLE 1 Information of RPA primer and LF probe.

Name Sequences (5′-3′) Target gene

mcr-1-F1 CCCTACAGACCGACCAAGCCGAGACCAAGG mcr-1

mcr-1-R1-Dig Digoxin-CTGGCATAATGACTGCTGAACGCCACCACAG

mcr-1-P-Bio Bio-GGGTGTGCTACCAAGTTTGCTTGTGGCTTT-dSpacer(THF)-GTTAAGGTGGATTATCCG-C3-Spacer

blaNDM-1-F1 CAGTCGCTTCCAACGGTTTGATCGTCAGGG blaNDM-1

blaNDM-1-R1-Dig Digoxin-CCAGCCATTGGCGGCGAAAGTCAGGCTGTG

blaNDM-1-P-Cy5 Cy5-CCAGACCGCCCAGATCCTCAACTGGATCAAGC-dSpacer(THF)-GGAGATCAACCTGCCGGTC-3’C3 Spacer

tet(X4)-F1 TACCCATAACGATGATTGGAGATGCTGCTC tet(X4)

tet(X4)-R1-Dig Digoxin-GCTTCTTTGCCATAGATAAACATTTGCTGT

tet(X4)-P-TAMRA TAMRA-GCGTAAACAGCGGGTTGATGGATGCCTTGA-dSpacer(THF)-ATTGTCGGATAATCTGACCAA-3’C3 Spacer
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2.6. Optimization of multiplex RPA-LFD 
assays

Based on the single RPA assay, concentrations of the primer/
probe sets, reaction temperature, incubation time as well as 
magnesium-acetate concentration were optimized for multiplex 
RPA assays to simultaneously amplify mcr-1, blaNDM-1 and tet(X4) 
genes. First, the primer/probe concentrations were evaluated in the 
following ratios: (1) high primer/probe concentrations (mcr-1 
0.42 μM/0.12 μM, blaNDM-1 0.42 μM/0.12 μM and tet(X4) 
0.42 μM/0.12 μM); (2) medium primer/probe concentrations (mcr-1 
0.30 μM/0.09 μM, blaNDM-1 0.30 μM/0.09 μM and tet(X4) 
0.30 μM/0.09 μM; mcr-1 0.42 μM/0.12 μM, blaNDM-1 0.30 μM/0.09 μM 
and tet(X4) 0.15 μM/0.06 μM; mcr-1 0.30 μM/0.09 μM, blaNDM-1 
0.42 μM/0.12 μM and tet(X4) 0.15 μM/0.06 μM; mcr-1 
0.15 μM/0.06 μM, blaNDM-1 0.30 μM/0.09 μM and tet(X4) 
0.42 μM/0.12 μM; mcr-1 0.30 μM/0.09 μM, blaNDM-1 0.42 μM/0.12 μM 
and tet(X4) 0.30 μM/0.09 μM); and (3) low primer/probe 
concentrations (mcr-1 0.15 μM/0.06 μM, blaNDM-1 0.15 μM/0.06 μM 
and tet(X4) 0.15 μM/0.06 μM).

Second, multiplex RPA reactions were performed at a 
30–50°C temperature range (30, 35, 37, 39, 45 and 50°C). Finally, 
we assessed the optimal incubation time from 2.5 to 30 min.

2.7. Specificity and sensitivity analyses of 
multiplex RPA-LFD assays

For specificity analysis regarding the multiplex RPA-LFD 
assay, DNA from the recombinant E. coli strains containing mcr-1, 
blaNDM-1 or tet(X4) and E. coli ATCC25922 (quality control 
reference strain in all antimicrobial susceptibility tests) was 
extracted and added to the optimized reaction system.

For sensitivity analysis, the three standard recombinant 
plasmids for the mcr-1, blaNDM-1 and tet(X4) genes were chosen as 
the standard DNA templates. Concentrations of the standard 
DNA were determined using a BioDrop μLITE (BioDrop, 
Cambridge, United Kingdom). Below is the calculation formula 
of the copy number:

 
Copy number copies X a/ / .µL( ) = ×[ ]( )× ×660 6 02 1023

where X is the concentration of the standard DNA (g/μl) 
measured at 260 nm wavelength and a is the number of base pairs 
of the standard DNA molecule (bp).

The diluted standard DNA was prepared by serial 10-fold 
dilution in the range of 100 copies/μl to 107 copies/μl. Serially 
diluted plasmids containing the mcr-1, blaNDM-1 and tet(X4) genes 
served as the DNA templates, respectively, for sensitivity analysis 
of the multiplex RPA-LFD assay.

Quantitative analysis of the mcr-1, blaNDM-1 and tet(X4) genes 
in Enterobacteriaceae was also performed. The TSR-200 test strip 
reader (Allsheng Instruments Co. Ltd.) assisted in reading the 

RPA-LFD assay test results. Standard curves were established for 
the mcr-1, blaNDM-1 and tet(X4) genes in Enterobacteriaceae strains 
considering the T/C value of the LFD strips and the logarithm of 
the copy number of the corresponding target resistance gene.

2.8. Application analysis of multiplex 
RPA-LFD assays

Enterobacteriaceae strains for the application of multiplex 
RPA-LFD assays are listed in Supplementary Table S1. All isolates 
were confirmed to carry mcr-1, blaNDM-1 and/or tet(X4) genes by 
sequencing. The triplex RPA-LFD assays were compared with 
conventional PCR methods as described previously (Xu et al., 
2018; Ji et al., 2020; Ayfan et al., 2021).

2.9. Data analysis

We scanned the intensities exhibited by the T-line and C-line, 
and calculated the T/C value using a TSR-200 test strip reader 
(Allsheng Instruments Co. Ltd.). We carried out all experiments 
in triplicate, and the results are in the form of mean ± standard 
deviation. SPSS 20.0 (IBM Corp., Armonk, NY, United States) 
together with Origin 2021 (OriginLab, Northampton, MA, 
United States) served for the statistical analysis.

3. Results

3.1. RPA-LFD assay strategy

Here, a fast boil-up method for DNA extraction from 
Enterobacteriaceae strains was applied accrding to previous studies 
with some modification (Bordin et al., 2019; Liu et al., 2022). 
Compared with the commercial DNA extraction kits (taking 
around 30 min or more, Dimitrakopoulou et  al., 2020), our 
method significantly reduces extraction time (taking around 
10 min for the entire extraction process; Figure 1A).

A TwistAmp nfo kit served for conducting the triplex RPA 
amplification to generate three target amplicons. Various chemical 
groups were labeled for designing primers and LF probes 
compatible with the TwistAmp nfo technology. The resulting 
double-stranded DNA amplicons for the mcr-1 target were digoxin- 
and biotin-labeled, the amplicons for the blaNDM-1 target were 
digoxin- and Cy5-labeled and the amplicons for the tet(X4) target 
were digoxin- and TAMRA-labeled. These labeled double-stranded 
DNA amplicons could be detected by the LFD assay (Figure 1B).

On the LFD test strip, when amplicons moved on the 
conjugated pad, the digoxin-labeled amplicons combined with 
AuNP-labeled anti-digoxin mAb. With further migration, the 
biotin-, Cy5- and TAMRA-labeled amplicons combined with the 
AuNP-labeled anti-digoxin mAb were captured by a corresponding 
mAb coated on the T-lines. The uncaptured AuNP-labeled 
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anti-digoxin mAb continued moving and was captured by the pAb 
coated on the C-line (Figure  1C). Using the test strip reader, 
quantitative analysis was then achieved. First, the test strip reader 
served for scanning the intensities exhibited by T-line and C-line, 
and T and C values were calculated. The T/C value was positively 
correlated with the concentration of target DNA. Standard curves 
were plotted considering the T/C value and the copy number 
logarithm of target DNA (Figure 1D).

3.2. Optimization of triplex RPA 
amplification conditions

Triplex RPA amplification conditions for simultaneous 
detection of mcr-1, blaNDM-1 and tet(X4) using the TwistAmp nfo 
kit were optimized. For initial optimization, the concentration of 
the primer/probe set was optimized for the RPA reaction. As 
shown in Figure 2A, the results of RPA-LFD assays indicated that 

a medium concentration of primer/probe (mcr-1 0.30 μM/0.06 μM, 
blaNDM-1 0.42 μM/0.12 μM and tet(X4) 0.30 μM/0.09 μM) in a 50 μl 
reaction volume gave results similar to a high concentration of 
primer/probe (mcr-1 0.42 μM/0.12 μM, blaNDM-1 0.42 μM/0.12 μM 
and tet(X4) 0.42 μM/0.12 μM).

The RPA assay was run at incubation temperatures ranging 
from 30 to 50°C, and amplicons were run on LFDs to identify the 
optimal amplification temperature. As shown in Figure 2B, the 
results of RPA-LFD assays indicated that 37°C was confirmed as 
the optimal temperature.

Using the optimal concentrations of primer/probe sets and the 
optimal reaction temperature, the concentration of magnesium-
acetate was tested from 0 to 16.8 mM. The results showed that the 
optimal concentration of magnesium-acetate was 14 mM 
(Figure 2C).

Finally, the RPA reaction time was validated. As shown in 
Figure 2D, all T1–T3 lines were visible at or after 5 min. The T/C 
values of T1–T3 were not significantly different at 20 min 

A

B

C

D

FIGURE 1

RPA-LFD assay strategy. (A) DNA extraction of Enterobacteriaceae strains; (B) RPA amplification; (C) LFD lateral flow; (D) quantitative analysis.
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FIGURE 3

Specificity analysis of the triplex RPA-LFD assay. 1: 
Top10-pUC-mcr-1 + Top10-pUC-blaNDM-1 + Top10-pUC-
tet(X4); 2: Top10-pUC-mcr-1 + Top10-pUC-blaNDM-1; 3: 
Top10-pUC-mcr-1 + Top10-pUC-tet(X4); 4: Top10-pUC-
blaNDM-1 + Top10-pUC-tet(X4); 5: Top10-pUC-mcr-1; 6: 
Top10-pUC-blaNDM-1; 7: Top10-pUC-tet(X4); 8: ATCC25922; 9: 
negative control.

compared with 25 or 30 min. Thus, to shorten the detection time, 
a reaction time of 20 min was deemed sufficient.

3.3. Specificity of the triplex RPA-LFD 
assay

Standard recombinant E. coli strains carrying mcr-1, 
blaNDM-1 or tet(X4) and E. coli ATCC25922, which does not 
harbor mcr-1, blaNDM-1 or tet(X4), served for evaluating the 
specificity exhibited by the triplex RPA-LFD assay. Based on 
specificity analyses results, the triplex RPA-LFD assay 
performed equally well for specific samples containing the 
target resistance genes (Figure 3).

3.4. Sensitivity of the triplex RPA-LFD 
assay

The study focused on preparing the 10-fold serial dilutions 
of standard plasmid solutions for assessing the sensitivity 
exhibited by the triplex RPA-LFD assays. The concentration of 
the plasmids was measured, and the copy numbers of the 
plasmids were calculated. As shown in Figure 4A, when the 
concentration of the target gene was ≥101 copies/μl, the T-line 
was visible and T values of the T1, T2, and T3 lines were 
measurable with the test strip reader. Hence, the detection 
limit of the RPA-LFD assay for all three target resistance genes 
was 101 copies/μl.

The T/C value was positively correlated with the 
concentration of target DNA. Standard curves for the mcr-1, 

blaNDM-1 and tet(X4) genes in Enterobacteriaceae strains were 
established according to the T/C values of the LFD strips and 
the logarithm of the copy number of the corresponding target 
resistance gene. As shown in Figure 4B, the results indicated 
that there were significant linear correlations between the T/C 
values and the copy number logarithm of the target DNA. The 
standard linear equation and correlation coefficients (R2) of 
the mcr-1, blaNDM-1 and tet(X4) genes were y = 0.1215x − 0.0752 
(R2 = 0.9881), y = 0.1139x − 0.081 (R2 = 0.9745) and 
y = 0.1187x + 0.051 (R2 = 0.9807), respectively.

A B

C

D

FIGURE 2

Optimization of triplex RPA amplification conditions. (A) Concentration of primer/LF probe; (B) reaction temperature (1–6: 30, 35, 37, 39, 45, 
50°C); (C) concentration of magnesium-acetate (1–7: 0, 2.8, 5.6, 8.4, 11.2, 14, 16.8 mM); (D) reaction time (1–10: 0, 2.5, 5, 7.5, 10, 12.5, 15, 20, 25, 
30 min).

https://doi.org/10.3389/fmicb.2022.1062577
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Lu et al. 10.3389/fmicb.2022.1062577

Frontiers in Microbiology 07 frontiersin.org

3.5. Application analysis of the triplex 
RPA-LFD assay

The triplex RPA-LFD assay together with conventional PCR 
methods assisted in analyzing 19 different Enterobacteriaceae 
strains. As shown in Table 2, the two methods also served for 
detecting six mcr-1 positive strains, three blaNDM-1 positive strains, 
six tet(X4) positive strains and four mcr-1 and blaNDM-1 positive 
strains. The results for the target resistance genes were consistent 
for the two methods. The triplex RPA-LFD assay, including sample 
pretreatment, RPA amplification and LFD lateral flow, could 
be achieved within 40 min. In contrast, the PCR method, including 
sample pretreatment, PCR amplification and agarose gel 
electrophoresis, required at least 3 h. Thus, the triplex RPA-LFD 
assay consumes less time.

4. Discussion

Colistin, carbapenems and tigecycline are considered last-
resort antibiotics for defense against MDR bacterial infections 
(Tang et  al., 2021). However, these antibiotics become less 
effective because their respective predominant resistance genes, 
mcr, blaNDM and tet(X), emerge and spread in animals, food and 
humans (Singh et al., 2018; Zhong et al., 2019; Anyanwu et al., 
2022; Lu et al., 2022; Zhang et al., 2022). Among these last-resort 
antibiotics, colistin was heavily used in food-producing animal 
industries in China for a long period of time until it was banned 
as a growth promoter in 2017 (Walsh and Wu, 2016). However, 
colistin-resistant Gram-negative pathogens, especially 
Enterobacteriaceae pathogens, still have high presence in poultry/
livestock farm environments (Liu et al., 2016; Tang et al., 2022), 
and the plasmid-borne resistance gene mcr-1 is the main factor 
contributing to widespread colistin resistance (Arcilla et  al., 
2016). In addition, although the use of carbapenems, 

broad-spectrum β-lactam class antibiotics, is authorized only in 
clinics (Ahmad et al., 2019; Farhat and Khan, 2020; Nasser et al., 
2020), their main resistance gene, blaNDM-1, is still frequently 
identified in Enterobacteriaceae pathogens in poultry/livestock 
farm environments. This is because of the extensive application 
of all β-lactam antibiotics (except carbapenems) in the 
prophylaxis and growth promotion in food-producing animal 
industries over the last decade in China and have provided long-
term selective pressure for the blaNDM-1 gene (Shen et al., 2016; Shi 
et al., 2021). Similarly, although the animal husbandry field has 
never adopted tigecycline, a third-generation tetracycline, 
excessively using of first- and second-generation tetracyclines 
may have provided a selective pressure for the tet(X4) gene in 
poultry/livestock farm environments (Tang et al., 2021). Of note, 
a growing number of reports indicate that tet(X4) is often 
detected together with blaNDM-1 genes or mcr-1 genes (Bai et al., 
2019; Sun C. et al., 2019). Additionally, tet(X4)-positive strains 
also harboring both mcr-1 and blaNDM genes have been found in 
food animal samples (Sun J. et al., 2019).

MDR Enterobacteriaceae pathogens in poultry/livestock 
farm environments are considered the most common reservoirs 
of the mcr-1, blaNDM-1 and tet(X4) genes (Xiong et al., 2018; Xia 
et al., 2019; Shi et al., 2021). Besides, such ARGs may be spread 
along the food chain in poultry/livestock farm environments 
and meat production facilities, and finally be  applied in 
community and even hospital environments (Wang et al., 2017; 
Shi et al., 2021). As resistance genes to last-resort antibiotics 
potentially threaten the food safety as well as public health, 
predominant ARGs such as mcr-1, blaNDM-1 and tet(X4) in their 
common Enterobacteriaceae pathogen hosts should be more 
closely monitored along the food chain worldwide over the 
long-term (Shi et al., 2021). Therefore, it is in urgent need to 
develop a rapid, and accurate detection method to 
simultaneously screen and monitor multiple resistance genes to 
last-resort antibiotics in the field more effectively.

A B

FIGURE 4

Sensitivity analysis of the triplex RPA-LFD assay. (A) Results of RPA-LFD assays. Blank means only the running buffer was used. (B) Standard 
curves. The standard linear equation and correlation coefficient (R2) between the T/C value and the logarithm of the copy number of target DNA 
(copies/μl).
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Multiple nucleic acid detection methods, including 
multiplex PCR, multiplex loop-mediated isothermal 
amplification (LAMP) and multiplex RPA assays, can achieve 
rapid, accurate and simultaneous amplification of multiple 
resistance genes to last-resort antibiotics in a single reaction. 
However, multiplex PCR assays require thermal cycling steps 
and specialized instruments, giving them limited application 
in the field (Ma et al., 2020). Similarly, multiplex LAMP assays 
require more target-specific primers (normally four to six) for 
amplification under isothermal conditions between 60 and 
65°C in 40 to 60 min (Fang et al., 2018). Compared with these 
two methods, multiplex RPA assays require fewer target-
specific primers (two primers or two primers with one probe) 
for amplification, lower incubation temperatures (25–43°C) 
and shorter incubation times (less than 30 min) and have a 
high tolerance to sample impurities (Lillis et  al., 2014; Ma 
et  al., 2020). Thus, in our study, a fast, innovative boil-up 
method for crude DNA extraction (taking around 10 min for 
the entire extraction process) from Enterobacteriaceae 
pathogens was used to increase the time savings of the 
multiplex RPA procedure. Studies have confirmed the 
application of multiplex RPA assays for simultaneously 
detecting multiple foodborne pathogens (Ma et al., 2020; Jin 
et al., 2022). However, studies on its detection for ARG remain 
less. Our study focused on explaining certain and quantitative 

multiplex RPA-LFD method to simultaneously identify 
multiple resistance genes to last-resort antibiotics in certain 
Enterobacteriaceae pathogens when the temperature remained 
unchanged and no specialized instruments were used, which 
has great potential for applications in the field.

For multiplex RPA assays for ARG detection, primer/probe 
concentration, incubation temperature and time and 
magnesium-acetate concentration are the most vital extrinsic 
factors contributing to the assay’s maximum efficiency (Hu 
et  al., 2019; Ma et  al., 2020). Our study first adjusted the 
primer/probe concentration to 0.30 μM/0.06 μM for the mcr-1 
gene, 0.42 μM/0.12 μM for the blaNDM-1 gene and 
0.30 μM/0.09 μM for the tet(X4) gene with 14 mM magnesium-
acetate for obtaining an equivalent amplification for three 
ARGs. Second, we  set the optimal time at 20 min and the 
temperature conditions at 37°C. This reaction time is 
significantly faster than that of multiplex PCR (around 4 h) 
and multiplex LAMP (40–60 min) assays. Furthermore, it is 
allowed to complete the RPA reaction in a heating block or 
water bath, even at ambient temperature or body temperature 
(Lillis et al., 2014; Wang et al., 2017).

Experiments confirm LFD as a faster and simpler tool for 
detecting RPA product, featuring an antibody labeled with 
antigen-specific gold nanoparticles, thereby ensuring that it is not 
needed to clean up nucleotide. The resulting visualization can 

TABLE 2 Application analysis of the triplex RPA-LFD assay and PCR method.

Sample 
ID

Genotype Species Triplex RPA-LFD PCR

(copies/μl)

mcr-1 blaNDM-1 tet(X4) mcr-1 blaNDM-1 tet(X4)

JH-17 tet(X4) Escherichia coli − − 3.5 × 104 − − +

LS-62 tet(X4) Escherichia coli − − 7.8 × 105 − − +

TZ-118 tet(X4) Escherichia coli − − 9.4 × 104 − − +

HUZ-208 tet(X4) Escherichia coli − − 4.6 × 104 − − +

QZ-116 tet(X4) Escherichia fergusonii − − 8.5 × 103 − − +

NN-35 tet(X4) Klebsiella pneumoniae − − 2.1 × 103 − − +

JX-142 mcr-1 Escherichia coli 4.8 × 102 − − + − −

LS-44 mcr-1 Escherichia coli 3.5 × 104 − − + − −

LS-55 mcr-1 Escherichia coli 8.0 × 103 − − + − −

NB-303 mcr-1 Escherichia coli 3.2 × 102 − − + − −

HUZ-54 mcr-1 Salmonella Ngor 1.8 × 103 − − + − −

WZ-69 mcr-1 Salmonella Goldcoast 3.8 × 104 − − + − −

HUZ-215 blaNDM-1 Escherichia coli − 7.8 × 104 − − + −

JH-51 blaNDM-1 Escherichia coli − 5.4 × 103 − − + −

WZ-22 blaNDM-1 Escherichia coli − 6.0 × 103 − − + −

HAZ-2 blaNDM-1 + mcr-1 Escherichia coli 5.2 × 103 3.7 × 103 − + + −

HAZ-6 blaNDM-1 + mcr-1 Escherichia coli 1.1 × 102 9.8 × 101 − + + −

HAZ-13 blaNDM-1 + mcr-1 Escherichia coli 3.5 × 103 2.0 × 103 − + + −

HAZ-3 blaNDM-1 + mcr-1 Klebsiella pneumoniae 4.3 × 103 7.4 × 103 − + + −
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be observed within 5 min (Wu et al., 2017). To achieve triplex 
detection in our study, we  labeled each of the LF probes with 
biotin, Cy5 and TAMRA at the 5′ end, with a C3 spacer at the 3′ 
end and modified inside the LF probe with THF. We labeled all 
the reverse primers with digoxin at the 5′ end. We finally obtained 
3 detectable double-labeled amplicons. Besides, the preparation of 
LFDs with three test lines served for RPA amplicon visualization 
(Ma et  al., 2020). In general, LFD is a qualitative or semi-
quantitative detection method, but the current test strip reader, 
which combines facile colorimetric readouts with test strips, can 
realize quantitative detection (Wang et al., 2022). In our study, 
sensitivity analyses showed a close association of color signals with 
template concentrations of mcr-1, blaNDM-1 and tet(X4) genes in 
Enterobacteriaceae pathogens (R2 = 0.9881, R2 = 0.9745, and 
R2 = 0.9807, respectively). Use of the test strip reader also 
eliminates errors associated with assessment by eye.

Sensitivity and specificity analyses verified that RPA-LFD 
assays were practical for multiple resistance genes to last-resort 
antibiotics detection in Enterobacteriaceae pathogens. In our 
study, this assay simultaneously detected as few as 101 copies/μl 
of mcr-1, blaNDM-1 and tet(X4) genes in Enterobacteriaceae 
pathogens, with a sensitivity 10-fold higher than that of PCR (102 
copies/μl). Furthermore, such ARGs were specifically detected in 
different Enterobacteriaceae pathogens. These results showed that 
RPA-LFD is a suitable method for detecting multiple resistance 
genes to last-resort antibiotics in foodborne pathogens and has 
potential applications in the field.

5. Conclusion

In conclusion, the multiplex RPA-LFD method is fast, 
sensitive, specific and user-friendly for direct detection of the 
mcr-1, blaNDM-1 as well as tet(X4) genes of Enterobacteriaceae 
pathogens and does not require expensive equipment. It can 
provide immediate monitoring results of multiple resistance genes 
to last-resort antibiotics in foodborne pathogens in the field in a 
timely manner. On this basis, we  will further study the 
pretreatment technology of the complex sample, and establish the 
RPA-LFD method for direct analysis of ARGs in water, soil and 
feces and other environmental samples.
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