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Multi-omic approaches are expected to deliver a broader molecular view of cancer.
However, the promised mechanistic explanations have not quite settled yet. Here,
we propose a theoretical and computational analysis framework to semi-
automatically produce network models of the regulatory constraints influencing a
biological function. This way, we identified functions significantly enriched on the
analyzed omics and described associated features, for each of the four breast cancer
molecular subtypes. For instance, we identified functions sustaining over-
representation of invasion-related processes in the basal subtype and DNA
modification processes in the normal tissue. We found limited overlap on the
omics-associated functions between subtypes; however, a startling feature
intersection within subtype functions also emerged. The examples presented
highlight new, potentially regulatory features, with sound biological reasons to
expect a connection with the functions. Multi-omic regulatory networks thus
constitute reliable models of the way omics are connected, demonstrating a
capability for systematic generation of mechanistic hypothesis.
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1 Introduction

The establishment of high-throughput technologies has made possible a systems biology
approach to cancer through multi-omics integration (Kristensen et al., 2014). The multi-omics
perspective takes advantage of the complementarity between different molecular levels of
description. However, the promise of attaining mechanistic explanations (Bersanelli et al., 2016)
has not settled yet.

Although there is a plethora of statistical approximations (Huang et al., 2017), sparse
multivariate methods are arguably nearer to the mechanistic explanation goal, given their
capacity to pinpoint potential regulators (Li et al., 2012; Sohn et al., 2013; Bose et al., 2022).
These approaches have even identified potential key regulators for each breast cancer subtype
(Huang et al., 2019), and for the subgroups of the triple-negative breast cancer subtype
(Chappell et al., 2021). The networks shown in some of these works (Li et al., 2012; Sohn et al.,
2013; Huang et al., 2019) constitute hypothesized models of the way regulators are connected,
demonstrating a capability for systematic production of testable regulatory mechanisms.

Here, we applied the sparse generalized canonical correlation analysis (SGCCA) to data on
DNA methylation and gene and miRNA expression from TCGA. The SGCCA is a statistical
method that outputs correlated features among a large collection by the use of LASSO
penalization (Tenenhaus et al., 2014). The SGCCA has been successfully used for
biomarker discovery from cancer (Fan et al., 2020) and non-cancer contexts (Garali et al.,
2018). In order to find not just the features but the connections between them, SGCCA was
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coupled with ARACNE (Margolin et al., 2006), a method for inference
of transcriptional networks, that has allowed our group to find
transcriptional master regulators (Tapia-Carrillo et al., 2019), to
document a loss of long-distance co-expression (García-Cortés
et al., 2020; Dorantes-Gilardi et al., 2021; García-Cortés et al.,
2021), and to evaluate the role that relevant miRNAs play in some
oncogenic processes (Drago-García et al., 2017; Zamora-Fuentes et al.,
2022), among other applications in the large-scale molecular study of
cancer. As an outcome, we describe some of the reconstructed
networks and their implications, highlighting their relevance to
understand cancer biology and potentially impact treatment. The
general pipeline is described in Figure 1.

2 Methods

All the analyses described hereafter were performed with R
programming language version 4.1.1 (R Core Team, 2021) and can
be found at http://csbig.inmegen.gob.mx/SGCCA/. Release 105 of
biomaRt was used all along and plots were produced with
ggplot2 (Wickham, 2016).

2.1 Data acquisition

TCGA data were obtained through the TCGAbiolinks R
package. We only used samples with Illumina Human Methylation
450, RNA-seq, and miRNA-seq data from unique patients. This
constraints the number of samples to 128 from the basal subtype,
46 from Her2-enriched, 416 from luminal A, 140 from luminal B, and
75 samples from normal adjacent tissue.

Pre-processing has been described before (Ochoa et al., 2021) and
follows published guidelines (Aryee et al., 2014; Tam et al., 2015; Tarazona
et al., 2015). As a first step, only protein-coding transcripts were kept since
for our purposes, these were considered the main functional effectors. This
restriction toward the study of non-coding features was chosen in order to
focus on the expression regulatory layers of DNA methylation, miRNA
expression and, hidden among the transcripts, the layer of transcription
factors. Length and GC content biases were checked with the NOISeq

package (Tarazona et al., 2015) and alleviated using EDASeq (Risso et al.,
2011) full normalization. Genes with zero counts were (the only ones)
discarded at the low count filter, TMM normalization was applied between
samples, and the batch effect was corrected. Since batch effects can be
induced by a priori-unknown factors, ARSyNseq was used to remove all
systematic noise not associated with the subtypes (Nueda et al., 2012).
Preprocessing of microRNAs is the same, except there is no length or GC
bias and the normalization used between samples is the median method.

Finally, CpG probes with over 25%missing values and non-mapped or
overlapping SNPs were discarded. The remaining missing values were
imputed vianearest neighbors and transformed intoM-valuematrices. This
way, datasets account for 393,132 methylation probes, 17,077 coding
transcripts, and 604 miRNA precursors.

2.2 Sparse generalized canonical correlation
analysis

Once pre-processing was performed, we normalized each omic by
the square root of the first eigenvalue and concatenated them

patient-wise, obtaining one matrix per breast cancer subtype and
one for the normal tissue. Using this normalization ensures the
influence of each omic over upcoming analysis depends on its
variance (De Tayrac et al., 2009).

Afterward, we approached the SGCCA as implemented in the
mixOmics package (Rohart et al., 2017) and largely followed the
Garali et al. guidance (Garali et al., 2018). The analysis takes as input
the different blocks of data and a sparsity parameter per block, the
number of components to recover (ncomp), a design matrix, and a
function to maximize the covariance. Sparsity parameters were chosen
for each omic from the sequence [0.01, 0.02, ..., 0.09, 0.1, ..., 0.9], by
cross-validation. With this purpose, a balanced dataset, composed of
10 samples per tumor subtype and 10 samples from normal tissue, was
randomly taken from the original data, 10 times per each sparsity
parameter value. Each time, a simple SGCCA was run, recovering only
one component and taking note of the selected number of features and
the average variance explained (AVE). Summing the different
combinations, in total, every value was tested 11,340 times per
omic. Sparsity parameters were chosen in order to obtain the
largest AVE with the lowest number of features (Supplementary
Figure S1), namely, 0.02 for CpG sites and transcripts and 0.05 for
microRNAs.

Data analytics included several stages: independent pre-processing
to deal with factors specific to the platforms, while normalization and
penalization concern appropriate data integration. Eigenvalue
normalization was further performed to equilibrate the still
disparate rank of the different values. Separate penalization
considers the different signal sizes the distinct omics may have.
Shrinking the same CpG coefficients and miRNA coefficients may
over-penalize relevant associations yet with effects smaller than those
coming from other omics Liu et al. (2018). After the fitting process, we
noticed that miRNAs are slightly less penalized than the other omics.

The definite SGCCA for each subtype and the normal tissue was
run using the fitted values. The smaller the sparsity value, the fewer
features get selected. For each subtype, we used the number of samples
minus 1 as ncomp, the default design matrix, and the centroid

function, which enables negative correlation.
Feature selection attained by SGCCA is expected to be a bit

unstable due to the LASSO penalization. Mimicking the filter used
in miRDriver (Bose and Bozdag, 2019), we re-run SGCCA
100 times per subtype, or the normal tissue, using a random subset
of half the samples each time. We only kept those features selected at
least 70% of the time.

2.3 Functional enrichment analysis

SGCCA results include a matrix of the loadings a feature has in
each component. The said matrix is quite sparse, except for the
features summarizing the relevant information between and within
omics. These non-zero loadings indicate co-selected features that can
be tested for functional enrichment.

With the idea of exploiting the full set of co-selected features, and
not just the transcripts, all the features, being CpG probes, miRNA
precursors, or transcripts, were mapped to Entrez gene IDs. Both
transcripts and miRNAs have a direct annotation at Entrez, (e.g., hsa-
mir-34b becomes MIR34B). To translate CpG probes to Entrez IDs,
we recovered the genes affected by each probe from the microarray
annotation file. This results in an amplification of CpG representation
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since one site can be associated with a whole cluster of genes and
assumes a methylation effect on overlapping genes, which is not
necessarily true. Both are cons of this mapping that need to be
considered.

Then, the group of features with non-zero loading in every
SGCCA component was submitted to a separate over-
representation analysis, taking Entrez IDs as input. Enrichment was
run using the clusterProfiler package (Wu et al., 2021) against
the pathways from the KEGG database (Kanehisa and Goto, 2000) and
against the biological process gene ontology (Consortium, 2021). A
significance threshold of FDR-corrected p-values < 0.01 was set. The
intersection between sets of enriched functions was plotted with the
UpSetR package (Gehlenborg, 2019). Functions exclusively enriched
in one dataset were tested for over-representation. With this purpose,
exclusively enriched functions were grouped according to GOslim and
KEGG classes. Dependence between grouped categories and the
subtypes was assessed with Fisher’s test, and p-values were adjusted
for multiple testing using the Bonferroni method.

In an independent manner, we ran a gene set enrichment analysis
(GSEA), only with transcript data, to check for functions affected by
differential expression. GSEA was also performed with the
clusterProfiler package, in this case, without a p-value cutoff.
The idea is to recover a GSEA enrichment score for every one of the
functions over-represented in the SGCCA results. Such scores would
answer if functions over-represented among the features related
through different omics are also enriched among genes with altered
expression. We must stress, however, that all discussed functions are
significantly over-represented (p-value < 0.01), but only the specified
ones also have a significant GSEA score.

2.4 Network reconstruction

Chosen functions were represented as networks to draw
potentially regulatory models. To achieve this, we estimated mutual
information (MI) between every pair of nodes using ARACNE
software (Margolin et al., 2006) and then filtered out all the pairs
with lower MI than the median value observed for known regulatory
interactions. Thus, for each chosen function, we recovered all the
features co-selected (co-varying) with the features responsible for the
functional enrichment and focused on this set.

1. We extracted a sub-matrix from the original dataset and run
ARACNE.

2. We retrieved regulatory interactions involving the selected features.
Again, this was performed with the microarray annotation file for
the CpGs, assuming position overlap is enough to affect gene
expression. The multiMiR package (Ru et al., 2014) was used
in the case of miRNAs and TFtargets (github.com/slowkow) for
the transcript coding for transcription factors. This latter package
queries several resources, namely, TRED, ITFP, ENCODE,
TRRUST, and the databases from Neph et al., 2012; Marbach
et al., 2016 (Jiang et al., 2007; Zheng et al., 2008; Consortium et al.,
2012; Neph et al., 2012; Han et al., 2015; Marbach et al., 2016),
which include validated and predicted interactions. We considered
those hits coming from ChIP-seq, DNaseI footprinting, and small-
scale experiments as validated.

3. We obtained MI values for such regulatory interactions, using the
infotheo package (Meyer, 2014) (the use of this specific tool

obeys the need to focus on a reduced set of given pairs, instead of
estimating all the pairs with a feature of interest in the adjacency
matrix, as ARACNE would perform).

4. We took the median MI value for the regulatory interactions as
the threshold. Since MI is expected to differ between the distinct
kinds of pairs, different thresholds were obtained for the
different types of edges: CpG–transcript, CpG–miRNAs, TF
transcript–transcript, and miRNA–transcript. The median
was preferred over the mean to avoid outliers dominating the
threshold.

5. The MI value distribution obtained with ARACNE was contrasted
between types of edges, via Kolmorogov–Smirnov tests. If
distributions were not significantly different, the lowest median
MI from regulatory interactions—obtained with infotheo—was
chosen as the unique threshold to pass, no matter the edge-type,
relaxing the threshold and increasing the MI interactions accepted
in the final network.

The output of these items is a table with predicted interactions and
weights that illustrate the largest statistical dependencies between the
features selected by the SGCCA.

2.5 Network analysis

Mutual information networks were analyzed with the igraph

package (Csardi and Nepusz, 2006) and represented with
Cytoscape (Shannon et al., 2003), making use of the
RCy3 package (Gustavsen et al., 2019).

Node colors represent logFC values between every subtype and the
normal tissue. MiRNA differential expression went through voom
normalization and eBayes limma function. Since the batch effect was
not corrected in methylation data, we used the missMethyl package
for the differential analysis. This tool removes systematic errors of
unknown origin, bypassing the lack of batch-effect correction
(Maksimovic et al., 2015).

The node degree was calculated for the whole network; however,
only those network components with features annotated as players of a
function are shown in the corresponding figures. Since Her2+ and
luminal B subtypes produce large networks, we further zoomed in the
graph by selecting only the first neighbors of functional features. Such
subnetworks may serve as a model of the regulatory pressures
influencing the function.

Every neighbor of a functional node was searched in PubMed,
together with the associated functions, to find out if some biological
role has already been suggested. PubMed was also queried with every
pair of interacting nodes, as well as the databases for predicted
regulatory links accessible through multiMir. Transcription
factor-related features are identified according to the list from
humantfs (Lambert et al., 2018). This achieves a fairly automated
way to build a regulatory model for the functions enriched in the
SGCCA.

3 Results and discussion

By applying SGCCA, we have identified, for each one of the breast
cancer subtypes, transcripts whose expression patterns better reflect
the variance in its own block, while also co-varying with the other
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blocks of data. The pattern of selected features by omics and subtype is
provided in Supplementary Figure S2.

SGCCA uses a LASSO penalization, which may select inconsistent
sets of features. Since this could affect the reliability of functional
enrichment, identifying functions dependent on unstable features, we
just proceeded with the features most consistently selected, whose
proportion is shown in Supplementary Figure S3. There are no
individual transcripts or miRNAs selected simultaneously across all
five datasets, but there are six CpG sites in this situation which
potentially affect MAPK8IP3, AFAP1, LFNG, and VSTM2B.

The transcripts repeatedly selected in the same subtype have
known associations with breast cancer. The top three transcripts
selected more often for the basal subtype are MCL1, CTNNA1,
and NOTCH3. MCL1 is an anti-apoptotic member of the
BCL2 family that is required for mammary stem cell function (Fu
et al., 2015), and it is expected to be overexpressed in tumors of this
subtype (Farrugia et al., 2015). Meanwhile, catenin alpha 1 is
postulated to act as a tumor suppressor in E-cadherin-negative
basal-like breast cancer cells (Piao et al., 2014), and
NOTCH3 seems to function as a promoter of the
epithelial–mesenchymal transition (Liang et al., 2018).

Her2 enriched has also been clearly associated with its most
selected transcripts: CEACAM5, ACACA, and PGK1. Though
heterogeneously expressed, Her2-enriched tumors tend to be
positive for CEACAM5 (Bechmann et al., 2020) and so this
adhesion molecule has been suggested as a target for T-cell bi-
specific antibodies (Messaoudene et al., 2019). Inhibitors of acetyl-
CoA carboxylase, ACACA, work over MCF-7 cells overexpressing
Her2 by interfering with cancer stem cell lipid biosynthesis and the
Warburg effect (Corominas-Faja et al., 2014). At last, PGK1 protein
has been found overexpressed in these tumors (Schulz et al., 2009),
while being linked to macrophages and stratifying patients at higher
risk (Li et al., 2021).

Interestingly, microRNAs from the let-7 family were among the
top selected for basal, Her2+, and luminal B subtypes, as well as for
normal breast tissue. These miRNAs regulate JAK-STAT3 and Myc
signaling pathways, thus affecting stemness and metastasis
(Thammaiah and Jayaram, 2016).

3.1 Functions enriched on SGCCA output
differ between datasets

After inspecting the overall output of SGCCA, we wanted to know
if there are functions involving the co-varying features. Enrichment
against GO biological processes and KEGG pathways allows us to
identify functions affected by the specific regulatory mechanisms
identified.

A total of 683 GO biological processes and 69 KEGG pathways
were found significantly over-represented (FDR adjusted p. value <
0.01) among the SGCCA co-selected features. Figure 2 shows the
intersections between subtypes. Few functions were found enriched
across all subtypes, and most of them are either exclusive or shared
only by a pair of subtypes. That is, functions associated with DNA
methylation and miRNA expression are not the same for all subtypes.

There are three biological processes significantly enriched (FDR-
corrected p-value ≤.0099, for the specific values, see Supplementary
Table S1) in the four subtypes and the normal tissue. These are the

developmental processes: metanephric nephron development (GO:
0072210), metanephros development (GO:0001656), and pattern
specification process (GO:0007389). Since GO:0072210 is a part of
GO:0001656, they may be considered the same.

Then, we wondered if functions linked with DNAmethylation and
miRNA expression in cancer and normal tissue maintain an intact
circuitry connecting CpGs, transcripts, and miRNAs. In more general
terms, does a function enriched twice involve identical features and
interactions?

3.2 Features responsible for the same
functional enrichment differ across subtypes

The first step toward a shared circuitry connecting CpGs,
transcripts, and miRNAs in different phenotypes would be to have
the same (or similar) features behind the functional enrichment. To
verify if this happens, we calculated the Jaccard index for every pair of
functions enriched more than once. The Jaccard index divides the size
of intersection between two sets by their union, measuring similarity
with a normalized value between 0 (fully disjoint sets) and 1 (the same
set). Distributions for the Jaccard index are shown in Figure 3A.

The obtained distributions are enough to state that, for most
functions, the CpG–transcript–miRNA circuitry is not the same across
datasets since the features involved are not the same. Only seven
biological processes enriched in a given pair of SGCCA results share
more than 50% of the involved features. Five of them are related to
development, while the other two are related to cell adhesion. These
are the functions that may share the interactions between CpG sites,
transcripts, and miRNAs.

If this index hints at the similarity between subtypes pertaining to
CpG–transcript–miRNA co-variation, the distance with Her2-
enriched subtype results are intriguing. This may be caused by a
bias induced by the low number of samples. Or perhaps this is
associated with the lower correlation with DNA methylation
patterns (Network et al., 2012). Not surprisingly, the pair with the
most similarly enriched functions corresponds to the two luminal
subtypes.

3.3 Exclusive category over-representation

To answer if functions exclusively found in one dataset bring to
light subtype-specific properties, we analyzed over-representation of
GOslim categories and KEGG classes. The proportion of biological
processes found for each dataset in every one of the categories is given
in Figure 3B, while the equivalent plot for KEGG pathways is found in
Supplementary Figure S4.

None of the KEGG classes is biased toward a given subtype, but
there is an enrichment for the categories: cellular component
organization in the basal SGCCA components, establishment of
localization in luminal A, and DNA metabolic process in the
normal tissue. There are seven biological processes behind the
cellular component organization over-representation, comprising
five processes related to axon extension, which are clustered with
regulation of the extent of cell growth. Collagen fibril organization is
not in the cluster and is the seventh process, suggesting a potential
bond between the basal subtype and invasiveness.
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In the case of luminal A, there are 62 biological processes behind
the over-representation of establishment of localization. These
processes affect transport and secretion and conform to
32 different clusters. Regarding over-representation in the normal
tissue, it is interesting that it is related to DNA alkylation and
methylation processes, perhaps implying that these processes are
somehow disarranged on the tumor subtypes.

3.4 Within subtypes, different functions can
be connected through correlated features

When checking the features responsible for the enrichment of a
given function, we discovered that several functions are enriched in the
exact same set of co-varying features, that is, the same set of SGCCA
components. This suggests some level of crosstalk between functions

that can be connected through correlated features. This observation
has been made subtype-wise and implies that a single network of
correlated features may actually span several functions.

Going through each subtype separately, we clustered functions by
the proportion of SGCCA components shared. Figure 4 shows
Her2 clusters. There are 11 clusters and six functions that cannot be
grouped since they involve features that are not related with the clusters.
Taking the bigger labels as a guide, purple, orange, and fuchsia clusters
are related with development of kidney structures. Green and blue
clusters at the bottom are linked with connective tissue development.
Pale pink nodes refer to distinct processes of morphogenesis, while the
nodes in yellow allude development of reproductive structures. The
small brown and pale green clusters are related to cardiac muscle and
neural cells, respectively. Finally, the small clusters in the center, in
bright green and pale orange, are linked with metabolism and loaded
with functions exclusively found in this subtype, a fact that may be

FIGURE 1
Overview of the steps followed.

FIGURE 2
UpSet plot for (A) biological processes and (B) KEGG pathways enrichment.
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FIGURE 3
Enriched functions. (A) Feature similarity between functions shared by the pair of datasets indicated. Functions with similarity over 0.5 are displayed. (B)
Bias of exclusive functions. An asterisk marks categories with significant over-representation (Fisher’s test, Bonferroni adjusted p-value < 0.05).

FIGURE 4
Functions enriched in Her2 SGCCA components. Both KEGG pathways and GO biological processes are represented together. Same-color clustered
nodes are enriched in the same components. Nodes in gray do not belong to any cluster. The size of nodes and labels reflect the number of features behind
the enrichment. Functions exclusively found in this subtype are highlighted with a red border.

Frontiers in Genetics frontiersin.org06

Ochoa and Hernández-Lemus 10.3389/fgene.2022.1078609

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1078609


interesting to explore further. The functions enriched with the most
genes do not form a part of any cluster.

Clustering exposes information that needs to be accounted when
discussing one particular enrichment. Functions exclusively
found in one subtype may reveal mechanistic explanations of
subtype-specific alterations, but, if exclusive functions are
clustered with others that are non-exclusive and better
represented, relevance may be debatable. Similarly, clusters
may help explain some odd enrichments, like the one found in
the luminal A dataset for morphine addiction. Morphine
addiction has been found enriched on methylation-driven
genes (Xu et al., 2019) but depends on features correlated with
those responsible for ECM–receptor interaction, suggesting co-
variation may be pulling up the enrichment for this addiction.
Even after considering clusters, there are enrichments hard to
figure out fully; however, some specific features can be actually
tracked (Supplementary Tables S1, S2).

In order to select functions to explore further, we repeated the
analysis described with Her2+ for each SGCCA result. While not all
clustering are displayed here, full groups and enrichment results are
supplied as Supplementary Files. A filtering step was necessary
because, even with the clustering, there are almost 500 sets of
functionally related features. It is interesting that the two cell
adhesion processes with the Jaccard index over 0.5 appear
consistently out of any cluster in the subtypes with such enrichment.

3.5 Network examples

In our path to answer if a function enriched twice involves
identical features and interactions, we found that a given function
is commonly enriched through distinct sets of features in two different
datasets. At the same time, we observed several functions over-
represented among the same sets of co-selected features and
wondered how functions were connected. Functions involving the
same features are already identifiable in the annotation databases,
but by means of this multi-omic integration strategy, we have been
able to find cross-linking paths across single layers and maybe even
connect seemingly independent functions through multi-omics
pattern co-variation. To check how this appears, we built mutual
information (MI) networks. The networks went through a stringent
threshold to keep just the interactions that are most likely regulatory.
To this end, we obtained the MI values accompanying true
regulatory interactions and took the median value as the
minimum MI required to consider an edge as possibly regulatory.
Within these reduced sets of interactions, the following figures show
the network components that contain those features annotated as
participating in the functions, though some of the obtained networks
extend further.

The intuition is that co-selected features, whose patterns are
correlated with those of functional features, may also be
participating in a given function. Beyond that, nodes for miRNAs,
CpGs, and transcripts that ultimately code for transcription factors
may be playing regulatory roles. The stringent threshold attempts to
filter out the interactions owed to simple co-variation. Two broad
possible scenarios are expected, 1) disconnected components per
function, each with its own potential regulators, or 2) functions
that crosstalk through common features, whose potential regulators
could be of medical interest. The different scenarios are exemplified

through the four subtypes and the normal tissue in the coming
sections.

3.5.1 HIF-1 signaling in the basal subtype
Hypoxia-inducible factor 1 (HIF-1) signaling is one of the KEGG

pathways enriched exclusively in the basal SGCCA results. HIF-1 is the
master regulator of oxygen homeostasis since it induces transcription
from at least 100 hypoxia-responsive elements (Corrado and Fontana,
2020). HIF-1 signaling is activated in tumors not only under hypoxic
conditions but also by oxygen-independent factors, like TP53 and
BRCA mutations (de Heer et al., 2020), which have been associated
with the basal subtype (Network et al., 2012).

The network we identified for this function is given in Figure 5.
AMPK signaling is enriched in a subset of the same SGCCA
components such as HIF-1 signaling, which is consistent with the
idea that these two pathways interplay in cancer metabolism re-
programming (Moldogazieva et al., 2020). However, after applying
the MI threshold, each pathway occupies disconnected components.

Only two functional features, that is, annotated as participants of
the function, pass theMI threshold, NOS3 and RPS6. It is important to
clarify that the enrichment does not rest only on these two features, but
we only find interactions over the threshold for them. There are also
two nodes that have been linked with the signaling pathway without
being participants as such. PEG3 gets upregulated after hypoxia in
mouse lungs (Wollen et al., 2013), while SUMO3 would be one of the
modifiers affecting HIF-1 stability (Matic et al., 2008). Thus, nodes
seem to be associated with the function.

On the other hand, the complete network is formed by
CpG–transcript interactions, more specifically, by edges linking a
CpG with a transcript coding for a ribosomal protein. Since CpG
sites are not in the same chromosome as the transcript, a direct
regulatory influence can be discarded. To account for indirect
relations, we estimated the mutual information between the
corresponding transcripts, even when these were not originally in
the SGCCA set of co-selected features. Obtained MI values are smaller
than the global threshold and smaller than the edges between CpGs
and ribosomal protein-coding transcripts. Hence, indirect effects
going through the transcript linked with the CpG do not seem to
fully explain the phenomenon.

Most nodes are not significantly different from the normal tissue,
either regarding expression or methylation values. This is consistent
with the lack of significance of the pathway GSEA score (NES = 0.9252,
adjusted p-value: 0.7937). HIF-1 signaling in the basal subtype is
transcriptionally comparable with that of the normal tissue.
Nevertheless, the pathway is not found enriched in the normal
tissue SGCCA output, suggesting a change in the correlation
between omics.

3.5.2 Positive regulation of stem cell differentiation
in the Her2-enriched subtype

Cancer stem cells are largely responsible for relapse and
metastasis. Her2 variants, observed in Her2+ patients with poor
clinical outcomes, have been reported to drive maintenance and
enrichment of breast cancer stem cells (Pupa et al., 2021). Positive
regulation of stem cell differentiation was found enriched exclusively in
Her2+ data, but related processes also appear in the other three
subtypes. The process is clustered with several other functions, as
shown in Figure 6, where we have focused on the first neighbors of the
functional features.The transcription factor SOX9 is the only feature
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from positive regulation of stem cell differentiation with edges passing
the MI threshold. SOX9 binds functions related with cell fate and sex
determination, while LHX1 and OSR1 are at the crossroads of most
functions. None of the edges has been previously reported, but several
nodes have known links with these functions. The relation between
CRISP3 and sex determination, for instance, may be explained by the
role of the protein in sperm function (Weigel Muñoz et al., 2019) and
its up regulation in prostate cancer (Pathak et al., 2016). DNAH10 is
another feature with a known bond with sex determination,

specifically with sperm flagella morphological abnormalities (Li
et al., 2022). The connection with ITGB6 is perhaps weaker since it
rests only on differential expression analysis of prostate cancer (Li
et al., 2013). CR1L is involved in B lymphocyte activation (Fernández-
Centeno et al., 2000) and may have a role in renal injury (He et al.,
2005). Finally, the somehow unexpected neural retina development is
related with the function of SHC3 (Nakazawa et al., 2002).

The functional implications of some of these nodes are specifically
dependent on DNA methylation. Although epigenetically altered

FIGURE 5
Features connected with HIF-1 signaling in the basal subtype. Circles represent CpGs, and squares are transcripts. When possible, CpGs are identified
with the symbol of the gene they affect; otherwise, the ID of the probe is used. The shades of red indicate the level of overexpression/methylation against the
normal tissue, while blue tones represent values under what is expected. The node size reflects its degree. A purple border identifies nodes whose protein
plays a transcription factor role. The weight of the link is the extent of mutual information between connected nodes. Dashed edges link MI components
with prior information.

FIGURE 6
Features connected with the regulation of stem cell differentiation in the Her2-enriched subtype. Node size reflects the betweenness centrality.
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CR1L is linked with Alzheimer’s and dementia (Bahado-Singh et al.,
2021), DNAH10 has emerged when studying renal carcinomas with a
CpG-island methylator phenotype (Arai et al., 2015). Finally, CpG
methylation of the lncRNA LINC02381 functions as a tumor
suppressor in colorectal cancer (Jafarzadeh et al., 2020). While all
of these features are represented by CpG sites in the network,
LINC02381 appearance highlights the complexity of transcription
regulation and the need to widen multi-omic analysis to include
more data layers.

Despite that transcription factors may be the obvious option to
explore the crosstalk between biological processes, less explored
options, like ALOX15B, CRISP3, and LRRC59, with elevated graph
betweenness, may result of interest.

3.5.3 Ras signaling pathway in the luminal A subtype
Ras signaling is one of the many pathways exclusively found

enriched in the luminal A subtype. It is a well-documented
pathway influencing cancer aspects like cell proliferation, survival,
migration, and differentiation. Although the pathway is more
frequently activated in the other subtypes, it has been reported as
an indicator of poor prognosis in luminal tumors (Wright et al., 2015).
Not surprisingly, Ras signaling components are under-expressed
relative to the normal tissue (NES: 1.5796, adjusted p-value:
0.0084) in this analysis.

Only one functional feature endures the MI threshold, GNB2.
The subunit beta 2 of G protein links the signaling pathway with a
set of CpGs associated with cell communication and brain
function, through the calcium sensor SYT13. Genes affected by
the CpGs include the brain active kinase, STK32C; MIDN, that is
predicted to enable kinase binding; OBP2B, which is supposed to
enable binding of small volatile molecules; a TF from early brain
development, RFX4; and SYCN, which is predicted to be active in
exocytosis.

Among the remaining nodes, the connection with the
CUX1 CpG site agrees with the cooperation observed between
this transcription factor and Kras-G12V mutant in lung cancer
(Ramdzan et al., 2014). In a similar way, PTBP1 overexpression is
known to co-occur with oncogenic KRAS mutations in colon
cancer (Hollander et al., 2016). Finally, a connection with the
transferrin receptor internalization protein, SH3BP4, has
been predicted before by a random forest classifier (Xin et al.,
2021).

Again, the network shown in Figure 7A links a transcript with
CpG sites all over the genome. Although it has been proposed that Ras
signaling controls aberrant DNA methylation (Patra, 2008), the
specific influence nodes may have over the signaling pathway
remains unclear.

3.5.4 Negative regulation of the Wnt signaling
pathway in the luminal B subtype

Wnt signaling normally controls organ development. In breast
cancer, Wnt signaling is involved in tumor proliferation and
metastasis, immune microenvironment regulation, stemness
maintenance, and therapeutic resistance (Xu et al., 2020). The
relevance of this function does not end here, but it has also been
associated explicitly with the luminal B subtype. Though generalized
DNA hypomethylation is common in cancer (Vidal Ocabo et al.,
2017), a fraction of luminal B tumors exhibit hypermethylation,
specifically affecting Wnt signaling (Network et al., 2012).

In our results, negative regulation of theWnt signaling pathway is
exclusively found enriched in this subtype, but related Wnt pathways
were also found for luminal A. The cross-talking functions shown in
Figure 7B are not in the same cluster but are found in a subset of the
SGCCA components, where negative regulation ofWnt appears. Since
these related functions makeup the largest network—after the
threshold—we have, and this network consists of a large single

FIGURE 7
Example networks for the luminal subtypes. (A) Features connected with the Ras signaling pathway in luminal A data. Node size indicates degree. (B)
Features connected with Wnt signaling in the luminal B subtype. Node size reflects betweenness centrality.
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component, we decided to focus on the first neighbors of the
functional features.

As expected, negative regulation of Wnt signaling and regulation of
Wnt share functional features. The transcription factor for skeletal
development, Sox9, is represented by its CpG at the crossroad between
Wnt signaling with the developmental processes, but there are also
multiple indirect paths. Since the genes coding collagen subunit
Col4a2 and cell adhesion molecule Ceacam6 are targeted by Sox9
(Sumi et al., 2007), and Sox9 acts in cooperation with Gli3 (Tan et al.,
2018), that pair of edges are easy to justify. Similarly, the link between
COL4A2 and NFATC4 could be explained by the inhibition of the
nuclear translocation of NFATc4 by Col4a2 in cardiomyocytes
(Sugiyama et al., 2020), while both COL4A2 and IGF2 code for
extracellular proteins deregulated under diseases with EMT (Bueno
et al., 2011). Additionally, bone marrow stromal cells induced with
IGFBP4, among other factors, overexpress SOX9 (Liu et al., 2012).
Insulin-like growth factor-binding protein 4 is also connected with
BMP2, as IGFBP4 overexpression impairs BMP2-induced osteogenic
differentiation (Wu et al., 2017).

In summary, there are sound biological reasons to expect co-
variation of the connected features. The question to solve is how such
connections affect Wnt signaling and luminal B cancer progression,
specifically what is the role of the node with the highest betweenness.
Exocyst complex component 2 is related with the Wnt pathway as an
effector of Hedgehog signaling (Arraf et al., 2020) and has been
associated with metastasis and different cancer types (Cerhan et al.,
2014; Hazelett and Yeaman, 2012; D’Aloia et al., 2018), but not with
breast cancer.

3.5.5 DNA methylation in the normal adjacent tissue
DNA methylation is exclusively enriched in the normal tissue, but

we choose to discuss it because of its relevance for cancer (Baylin and
Jones, 2016). In addition, unlike the other examples, this network does
contain microRNAs, including the top selected let-7a-2.

For consistency, we colored the nodes in Figure 8. However, since
the normal tissue is our reference value, we used the log fold changes
obtained by contrasting basal and normal tissue expression. This
subtype has significant overexpression of related genes (NES =
1.9251, adjusted p-values = 0.0031) and has been linked with
hypomethylation (Network et al., 2012). Yet, we have to emphasize
that DNA methylation is not enriched in the basal data, and so, the
relation between CpGs, miRNAs, and transcripts may not follow what
is suggested in this figure.

Despite none of the interactions has been reported, a couple of
nodes are somehow connected with the DNAmethylation machinery.
AKAP8L interacts with core subunits of the H3K4 histone
methyltransferase complexes (Bieluszewska et al., 2018), whose
action is interrelated with DNA modification (Rose and Klose,
2014). BCOR is part of the non-canonical polycomb repressive
complex 1 and is altered in distinct cancer types (Astolfi et al.,
2019). It has been observed that BANP can open the chromatin at
unmethylated CpG-island promoters, thus activating essential genes
in pluripotent stem and differentiated neuronal cells (Grand et al.,
2021). Finally, de novo DNA methyltransferase, DNMT3b, can
interact with CUL1, involving this node in aberrant methylation
(Shamay et al., 2010).

In contrast, another set of nodes hinges on epigenetic silencing, as
is the case of INPP5A in lung adenocarcinoma (Ke et al., 2020).
Together with ATP11A, INPP5A CpG methylation has shown
discriminatory capacity for colorectal cancer (Izquierdo et al.,
2021). In the same manner, ATP11A methylation distinguishes
several diseases including metastatic-lethal prostate cancer (Zhao
et al., 2017), while a methylation signature including the growth
regulation by estrogen in breast cancer 1 like GREB1L separates
gastric adenocarcinoma cases by overall survival, and
DBX2 methylation marks the serum from hepatocellular cancer
patients (Zhang et al., 2013). Similar to its paralog DNAH10,
DNAH2 aberrations are frequent in renal carcinomas with a CpG-
island methylator phenotype (Arai et al., 2015). Although unexpected,
the brain-specific transcription factor NPAS4, present in the form of a
CpG site, is known to be regulated by DNA methylation (Furukawa-
Hibi et al., 2015) and has been linked with colon adenocarcinoma
survival (Luo et al., 2021). Last, though ITGB1 methylation is expected
to be constant both in cancer and normal tissue (Strelnikov et al.,
2021), alteration of the gene expression has been observed in basal-like
tumors and cells with BRCA mutation, highlighting the relevance of
migration and mesenchymal properties for this subtype (Privat et al.,
2018).

Interestingly, the two miRNAs in the network are associated with
migration and invasion, although in opposite ways. The let-7 family
works as a tumor suppressor and is inhibited by DNAmethylation and
several regulators (Thammaiah and Jayaram, 2016). Contrastingly,
miR-103 acts as an oncogene in triple-negative tumors, and its over-
expression is linked with poor prognosis (Xiong et al., 2017). In spite of
the low fold changes, the expression of both miRNAs is coherent with
what would be expected in the basal subtype.

FIGURE 8
Features connected with DNA methylation in the normal adjacent tissue. Color corresponds to log fold changes in the basal subtype.
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4 Conclusion

Here, we have described the kind of multi-omic network models that
can be obtained through the sequential application of SGCCA and
ARACNE. The collection of interactions shown in any of these
networks suggests a multi-omic model that may or may not have
regulatory implications. To asseverate regulation, wet laboratory
testing would be needed. However, the nature of nodes as CpG
sites, microRNAs, or transcript coding for functional proteins
must be considered, as shown in the examples. Although further
testing is required, the examples embody the level of details we
can get in the way toward targeted experimental validation of
multi-omic regulatory phenomena.

Though the interactions encountered seem to be subtype-specific,
given the low values of the Jaccard index, there is no restriction to
believe these same associations could not be repeated in other
contexts, with somehow equivalent patterns of methylation and
expression. Instead, an interesting question arises about the
traceability of tissue and disease signals. A fair attempt to carry out
would be to compare cancer and tissue networks with the same nodes,
even if the edge weights are disparate, which were not produced here.
Also, it has to be noticed that the normal adjacent tissue may not be the
best control since it carries detected alterations across tissues (Aran
et al., 2017).

The use of SGCCA allowed us to identify the functions enriched in
features co-varying across DNA methylation, transcript, and
miRNA expression. This does not mean such functions may
not be influenced by other regulatory mechanisms: this simply
indicates the functions, like HIF signaling in the basal subtype,
depending the furthest on features whose methylation and
expression co-vary. The con of the method is the instability of
the LASSO, which forced us to keep just the features identified in
over 70% of subsamples. Even when other tools (Hernández-de
Diego et al., 2018; Meng et al., 2019) could achieve the multi-omic
functional enrichment without the instability issue, we prefer the
sparse method exactly because of the stable portion of the feature
set. Then, possible improvements include the elastic network
penalization, which overcomes the stability problem.

mixOmics output for the SGCCA includes a complete graph
connecting all the features selected in a component. However,
having found the same functions over-represented in different
components, we wanted to further explore the relations among all
the features co-varying with those associated with a given function.
The mutual information statistical dependency measure has desirable
properties for multi-omic integration, such as being able to capture
non-linear relations and being a parameterization invariant.
Moreover, we wanted to discern likely regulatory interactions, a
task that has been successfully achieved with ARACNE for
transcriptomics. With edges linking different types of nodes, such
discerning becomes harder because ARACNE’s data processing
inequality (DPI) cannot be used in a straightforward manner.
Thus, the setting of varying thresholds based on regulatory
interactions is established. In this case, MI ability to recover non-
linear relations may not be fully profited, being posterior to the lineal
filter of SGCCA. MI is, however, used as a way to bring together all the
results concerning a function and highlight some potentially
interesting pairs of nodes.

The DPI posed with ARACNE discards the lowest weighted edge
from a triad, as a likely indirect interaction driven by the other pair of

nodes. The difficulty of using it comes from the observation that
mutual information distributions change with the different omics
(Drago-García et al., 2017). While maintaining the treatment of lower
weighted interactions as indirect, the threshold we applied accounts
for the difference between omics by estimating MI values from known
regulatory interactions.

It is worth considering that MI has a dependency on the
number of observations, which varies between subtypes and the
normal tissue. Her2 enriched has a smaller number of samples than
recommended, and so special care must be taken with it. Given that
MI is rank-invariant, it is expected that, even with the stringent
threshold, only a subset of the interactions in Figure 6 keep
relevance when increasing dataset size. By progressing from a
set where every feature is correlated with one another to highly
significant interactions (Pethel and Hahs, 2014; Mukherjee et al.,
2020), we pursue an automatic assembly of regulatory models.
Tools better suited to find regulatory interactions (Kuijjer et al.,
2020; Sonawane et al., 2021) require prior information not always
available or heavier calculations (Weighill et al., 2021), making the
approach described here an accessible solution.

To end with the pros and cons’ discussion, here, we have
overlooked interactions between CpG sites because those are
beyond described regulatory mechanisms. Nevertheless, links
between CpG sites are accompanied by large MI values that
would surpass our threshold and may become of relevance in
the cancer context (Akulenko and Helms, 2013; Zhang and
Huang, 2017). On the other hand, links with miRNAs were
expected but only appeared in the normal tissue example.
Drago-García et al. had already reported lower MI values for
these types of links (Drago-García et al., 2017). Despite the
threshold attempted to incorporate this difference on the MI,
our multi-omic pipeline does not recover miRNA interactions as
well as other dedicated methods (Bose et al., 2022).

The networks produced in this way capture statistical
dependencies that may guide further work. However, such a
hypothetical future work depends on a user being able to find
these kinds of networks and research the reasons behind a
statistical dependency. Article databases can serve this purpose,
as we have done here, but may become unspecific. Instead, network
databases (Arif et al., 2021; Ben Guebila et al., 2022) may offer a
smoother connection between wet and dry laboratories, in order to
transcend statistical description toward actual knowledge
acquisition.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

Author contributions

SO organized data, performed calculations, analyzed data,
discussed results, and drafted the manuscript; EH-L designed the
study, contributed to the methodological approach, discussed results,
reviewed the manuscript, and supervised the project. Both authors
read and approved the final manuscript.

Frontiers in Genetics frontiersin.org11

Ochoa and Hernández-Lemus 10.3389/fgene.2022.1078609

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1078609


Funding

SO is a doctoral student from Programa de Doctorado en Ciencias
Biomédicas, Universidad Nacional Autónoma de México (UNAM) and
received fellowship 615847 from CONACYT. This work was partially
performed at cluster INMEGEN and received technical support from Israel
Aguilar-Ordoñez. The results published here are based upon data generated
by the TCGA Research Network: https://www.cancer.gov/tcga.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors, and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2022.1078609/
full#supplementary-material

References

Akulenko, R., and Helms, V. (2013). Dna co-methylation analysis suggests novel
functional associations between gene pairs in breast cancer samples. Hum. Mol. Genet.
22, 3016. doi:10.1093/hmg/ddt158

Arai, E., Gotoh, M., Tian, Y., Sakamoto, H., Ono, M., Matsuda, A., et al. (2015).
Alterations of the spindle checkpoint pathway in clinicopathologically aggressive c p g
island methylator phenotype clear cell renal cell carcinomas. Int. J. cancer 137, 2589–2606.
doi:10.1002/ijc.29630

Aran, D., Camarda, R., Odegaard, J., Paik, H., Oskotsky, B., Krings, G., et al. (2017).
Comprehensive analysis of normal adjacent to tumor transcriptomes. Nat. Commun. 8,
1077–1114. doi:10.1038/s41467-017-01027-z

Arif, M., Zhang, C., Li, X., Güngör, C., Çakmak, B., Arslantürk, M., et al. (2021).
Inetmodels 2.0: an interactive visualization and database of multi-omics data.Nucleic acids
Res. 49, W271–W276. doi:10.1093/nar/gkab254

Arraf, A. A., Yelin, R., Reshef, I., Jadon, J., Abboud, M., Zaher, M., et al. (2020).
Hedgehog signaling regulates epithelial morphogenesis to position the ventral embryonic
midline. Dev. Cell. 53, 589–602. doi:10.1016/j.devcel.2020.04.016

Aryee, M. J., Jaffe, A. E., Corrada-Bravo, H., Ladd-Acosta, C., Feinberg, A. P., Hansen, K.
D., et al. (2014). Minfi: A flexible and comprehensive bioconductor package for the
analysis of infinium dna methylation microarrays. Bioinforma. Oxf. Engl. 30, 1363–1369.
doi:10.1093/bioinformatics/btu049

Astolfi, A., Fiore, M., Melchionda, F., Indio, V., Bertuccio, S. N., and Pession, A. (2019).
Bcor involvement in cancer. Epigenomics 11, 835–855. doi:10.2217/epi-2018-0195

Bahado-Singh, R. O., Vishweswaraiah, S., Aydas, B., Yilmaz, A., Metpally, R. P., Carey,
D. J., et al. (2021). Artificial intelligence and leukocyte epigenomics: Evaluation and
prediction of late-onset alzheimer’s disease. PloS one 16, e0248375. doi:10.1371/journal.
pone.0248375

Baylin, S. B., and Jones, P. A. (2016). Epigenetic determinants of cancer. Cold Spring
Harb. Perspect. Biol. 8, a019505. doi:10.1101/cshperspect.a019505

Bechmann, M. B., Brydholm, A. V., Codony, V. L., Kim, J., and Villadsen, R. (2020).
Heterogeneity of ceacam5 in breast cancer. Oncotarget 11, 3886–3899. doi:10.18632/
oncotarget.27778

Ben Guebila, M., Lopes-Ramos, C. M., Weighill, D., Sonawane, A. R., Burkholz, R.,
Shamsaei, B., et al. (2022). Grand: A database of gene regulatory network models across
human conditions. Nucleic acids Res. 50, D610–D621. doi:10.1093/nar/gkab778

Bersanelli, M., Mosca, E., Remondini, D., Giampieri, E., Sala, C., Castellani, G., et al.
(2016). Methods for the integration of multi-omics data: Mathematical aspects. BMC
Bioinforma. 17, S15. doi:10.1186/s12859-015-0857-9

Bieluszewska, A., Weglewska, M., Bieluszewski, T., Lesniewicz, K., and Poreba, E. (2018).
Pka-binding domain of akap 8 is essential for direct interaction with dpy 30 protein. FEBS
J. 285, 947–964. doi:10.1111/febs.14378

Bose, B., and Bozdag, S. (2019). “mirdriver: A tool to infer copy number derived mirna-
gene networks in cancer,” in Proceedings of the 10th ACM international conference on
bioinformatics, computational biology and health informatics, 366.

Bose, B., Moravec, M., and Bozdag, S. (2022). Computing microrna-gene interaction
networks in pan-cancer using mirdriver. Sci. Rep. 12, 3717–17. doi:10.1038/s41598-022-
07628-z

Bueno, D. F., Sunaga, D. Y., Kobayashi, G. S., Aguena, M., Raposo-Amaral, C. E.,
Masotti, C., et al. (2011). Human stem cell cultures from cleft lip/palate patients show
enrichment of transcripts involved in extracellular matrix modeling by comparison to
controls. Stem Cell. Rev. Rep. 7, 446–457. doi:10.1007/s12015-010-9197-3

Cerhan, J. R., Berndt, S. I., Vijai, J., Ghesquières, H., McKay, J., Wang, S. S., et al. (2014).
Genome-wide association study identifies multiple susceptibility loci for diffuse large b cell
lymphoma. Nat. Genet. 46, 1233–1238. doi:10.1038/ng.3105

Chappell, K., Manna, K., Washam, C. L., Graw, S., Alkam, D., Thompson, M. D., et al.
(2021). Multi-omics data integration reveals correlated regulatory features of triple
negative breast cancer. Mol. Omics 17, 677–691. doi:10.1039/d1mo00117e

Consortium, E. P., et al. (2012). An integrated encyclopedia of dna elements in the
human genome. Nature 489, 57–74. doi:10.1038/nature11247

Consortium, G. O. (2021). The gene ontology resource: Enriching a gold mine. Nucleic
Acids Res. 49, D325–D334. doi:10.1093/nar/gkaa1113

Corominas-Faja, B., Cuyàs, E., Gumuzio, J., Bosch-Barrera, J., Leis, O., Martin, Á. G.,
et al. (2014). Chemical inhibition of acetyl-coa carboxylase suppresses self-renewal growth
of cancer stem cells. Oncotarget 5, 8306–8316. doi:10.18632/oncotarget.2059

Corrado, C., and Fontana, S. (2020). Hypoxia and hif signaling: One axis with divergent
effects. Int. J. Mol. Sci. 21, 5611. doi:10.3390/ijms21165611

Csardi, G., and Nepusz, T. (2006). The igraph software package for complex network
research. Cambridge, MA: NECSI, 1695.

D’Aloia, A., Berruti, G., Costa, B., Schiller, C., Ambrosini, R., Pastori, V., et al. (2018).
Ralgps2 is involved in tunneling nanotubes formation in 5637 bladder cancer cells.
Exp. Cell. Res. 362, 349–361. doi:10.1016/j.yexcr.2017.11.036

de Heer, E. C., Jalving, M., Harris, A. L., et al. (2020). Hifs, angiogenesis, andmetabolism:
Elusive enemies in breast cancer. J. Clin. investigation 130, 5074–5087. doi:10.1172/
JCI137552

De Tayrac, M., Lê, S., Aubry, M., Mosser, J., and Husson, F. (2009). Simultaneous
analysis of distinct omics data sets with integration of biological knowledge: Multiple
factor analysis approach. BMC genomics 10, 32. doi:10.1186/1471-2164-10-32

Dorantes-Gilardi, R., García-Cortés, D., Hernández-Lemus, E., and Espinal-Enríquez, J.
(2021). k-core genes underpin structural features of breast cancer. Sci. Rep. 11,
16284–16317. doi:10.1038/s41598-021-95313-y

Drago-García, D., Espinal-Enríquez, J., and Hernández-Lemus, E. (2017). Network
analysis of emt and met micro-rna regulation in breast cancer. Sci. Rep. 7, 13534. doi:10.
1038/s41598-017-13903-1

Fan, Z., Zhou, Y., and Ressom, H. W. (2020). Mota: Network-based multi-omic data
integration for biomarker discovery. Metabolites 10, 144. doi:10.3390/metabo10040144

Farrugia, M., Sharma, S., Lin, C., McLaughlin, S., Vanderbilt, D., Ammer, A., et al.
(2015). Regulation of anti-apoptotic signaling by kruppel-like factors 4 and 5 mediates
lapatinib resistance in breast cancer. Cell. death Dis. 6, e1699. doi:10.1038/cddis.2015.65

Fernández-Centeno, E., de Ojeda, G., Rojo, J. M., and Portolés, P. (2000). Crry/p65, a
membrane complement regulatory protein, has costimulatory properties on mouse t cells.
J. Immunol. 164, 4533–4542. doi:10.4049/jimmunol.164.9.4533

Fu, N. Y., Rios, A. C., Pal, B., Soetanto, R., Lun, A. T., Liu, K., et al. (2015). Egf-mediated
induction of mcl-1 at the switch to lactation is essential for alveolar cell survival. Nat. Cell.
Biol. 17, 365–375. doi:10.1038/ncb3117

Furukawa-Hibi, Y., Nagai, T., Yun, J., and Yamada, K. (2015). Stress increases dna
methylation of the neuronal pas domain 4 (npas4) gene. Neuroreport 26, 827–832. doi:10.
1097/WNR.0000000000000430

Garali, I., Adanyeguh, I. M., Ichou, F., Perlbarg, V., Seyer, A., Colsch, B., et al. (2018). A
strategy for multimodal data integration: Application to biomarkers identification in
spinocerebellar ataxia. Briefings Bioinforma. 19, 1356–1369. doi:10.1093/bib/bbx060

Frontiers in Genetics frontiersin.org12

Ochoa and Hernández-Lemus 10.3389/fgene.2022.1078609

https://www.cancer.gov/tcga
https://www.frontiersin.org/articles/10.3389/fgene.2022.1078609/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.1078609/full#supplementary-material
https://doi.org/10.1093/hmg/ddt158
https://doi.org/10.1002/ijc.29630
https://doi.org/10.1038/s41467-017-01027-z
https://doi.org/10.1093/nar/gkab254
https://doi.org/10.1016/j.devcel.2020.04.016
https://doi.org/10.1093/bioinformatics/btu049
https://doi.org/10.2217/epi-2018-0195
https://doi.org/10.1371/journal.pone.0248375
https://doi.org/10.1371/journal.pone.0248375
https://doi.org/10.1101/cshperspect.a019505
https://doi.org/10.18632/oncotarget.27778
https://doi.org/10.18632/oncotarget.27778
https://doi.org/10.1093/nar/gkab778
https://doi.org/10.1186/s12859-015-0857-9
https://doi.org/10.1111/febs.14378
https://doi.org/10.1038/s41598-022-07628-z
https://doi.org/10.1038/s41598-022-07628-z
https://doi.org/10.1007/s12015-010-9197-3
https://doi.org/10.1038/ng.3105
https://doi.org/10.1039/d1mo00117e
https://doi.org/10.1038/nature11247
https://doi.org/10.1093/nar/gkaa1113
https://doi.org/10.18632/oncotarget.2059
https://doi.org/10.3390/ijms21165611
https://doi.org/10.1016/j.yexcr.2017.11.036
https://doi.org/10.1172/JCI137552
https://doi.org/10.1172/JCI137552
https://doi.org/10.1186/1471-2164-10-32
https://doi.org/10.1038/s41598-021-95313-y
https://doi.org/10.1038/s41598-017-13903-1
https://doi.org/10.1038/s41598-017-13903-1
https://doi.org/10.3390/metabo10040144
https://doi.org/10.1038/cddis.2015.65
https://doi.org/10.4049/jimmunol.164.9.4533
https://doi.org/10.1038/ncb3117
https://doi.org/10.1097/WNR.0000000000000430
https://doi.org/10.1097/WNR.0000000000000430
https://doi.org/10.1093/bib/bbx060
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1078609


García-Cortés, D., de Anda-Jáuregui, G., Fresno, C., Hernández-Lemus, E., and Espinal-
Enríquez, J. (2020). Gene co-expression is distance-dependent in breast cancer. Front.
Oncol. 10, 1232. doi:10.3389/fonc.2020.01232

García-Cortés, D., Hernández-Lemus, E., and Espinal-Enríquez, J. (2021). Luminal a
breast cancer co-expression network: Structural and functional alterations. Front. Genet.
12, 629475. doi:10.3389/fgene.2021.629475

Gehlenborg, N. (2019). UpSetR: A more scalable alternative to venn and euler diagrams
for visualizing intersecting sets. Oxford, England: Oxford Academic.

Grand, R. S., Burger, L., Gräwe, C., Michael, A. K., Isbel, L., Hess, D., et al. (2021). Banp
opens chromatin and activates cpg-island-regulated genes. Nature 596, 133–137. doi:10.
1038/s41586-021-03689-8

Gustavsen, A., J., Pai, S., Isserlin, R., et al. (2019). Rcy3: Network biology using cytoscape
from within r. F1000Research doi:10.12688/f1000research.20887.3

Han, H., Shim, H., Shin, D., Shim, J. E., Ko, Y., Shin, J., et al. (2015). Trrust: A reference
database of human transcriptional regulatory interactions. Sci. Rep. 5, 11432–11511.
doi:10.1038/srep11432

Hazelett, C. C., and Yeaman, C. (2012). Sec5 and exo84 mediate distinct aspects of rala-
dependent cell polarization. PLoS One 7, e39602. doi:10.1371/journal.pone.0039602

He, C., Imai, M., Song, H., Quigg, R. J., and Tomlinson, S. (2005). Complement
inhibitors targeted to the proximal tubule prevent injury in experimental nephrotic
syndrome and demonstrate a key role for c5b-9. J. Immunol. 174, 5750–5757. doi:10.
4049/jimmunol.174.9.5750

Hernández-de Diego, R., Tarazona, S., Martínez-Mira, C., Balzano-Nogueira, L., Furió-
Tarí, P., Pappas, G. J., et al. (2018). Paintomics 3: A web resource for the pathway analysis
and visualization of multi-omics data.Nucleic acids Res. 46,W503-W509. doi:10.1093/nar/
gky466

Hollander, D., Donyo, M., Atias, N., Mekahel, K., Melamed, Z., Yannai, S., et al. (2016).
A network-based analysis of colon cancer splicing changes reveals a tumorigenesis-
favoring regulatory pathway emanating from elk1. Genome Res. 26, 541–553. doi:10.
1101/gr.193169.115

Huang, S., Chaudhary, K., and Garmire, L. X. (2017). More is better: Recent progress in
multi-omics data integration methods. Front. Genet. 8, 84. doi:10.3389/fgene.2017.00084

Huang, S., Xu, W., Hu, P., and Lakowski, T. M. (2019). Integrative analysis reveals
subtype-specific regulatory determinants in triple negative breast cancer. Cancers 11, 507.
doi:10.3390/cancers11040507

Izquierdo, A. G., Boughanem, H., Diaz-Lagares, A., Arranz-Salas, I., Esteller, M.,
Tinahones, F. J., et al. (2021). Dna methylome in visceral adipose tissue can
discriminate patients with and without colorectal cancer. Epigenetics 1–12, 665–676.
doi:10.1080/15592294.2021.1950991

Jafarzadeh, M., Soltani, B. M., Soleimani, M., and Hosseinkhani, S. (2020). Epigenetically
silenced linc02381 functions as a tumor suppressor by regulating pi3k-akt signaling
pathway. Biochimie 171, 63–71. doi:10.1016/j.biochi.2020.02.009

Jiang, C., Xuan, Z., Zhao, F., and Zhang, M. Q. (2007). Tred: A transcriptional regulatory
element database, new entries and other development. Nucleic acids Res. 35, D137–D140.
doi:10.1093/nar/gkl1041

Kanehisa, M., and Goto, S. (2000). Kegg: Kyoto encyclopedia of genes and genomes.
Nucleic acids Res. 28, 27–30. doi:10.1093/nar/28.1.27

Ke, H., Wu, Y., Wang, R., and Wu, X. (2020). Creation of a prognostic risk prediction
model for lung adenocarcinoma based on gene expression, methylation, and clinical
characteristics. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 26, 9258333–e925841. doi:10.
12659/MSM.925833

Kristensen, V. N., Lingjærde, O. C., Russnes, H. G., Vollan, H. K. M., Frigessi, A., and
Børresen-Dale, A.-L. (2014). Principles and methods of integrative genomic analyses in
cancer. Nat. Rev. Cancer 14, 299–313. doi:10.1038/nrc3721

Kuijjer, M. L., Fagny, M., Marin, A., Quackenbush, J., and Glass, K. (2020). Puma: Panda
using microrna associations. Bioinformatics 36, 4765–4773. doi:10.1093/bioinformatics/
btaa571

Lambert, S. A., Jolma, A., Campitelli, L. F., Das, P. K., Yin, Y., Albu, M., et al. (2018). The
human transcription factors. Cell. 172, 650–665. doi:10.1016/j.cell.2018.01.029

Li, J., Xu, Y.-H., Lu, Y., Ma, X.-P., Chen, P., Luo, S.-W., et al. (2013). Identifying
differentially expressed genes and small molecule drugs for prostate cancer by a
bioinformatics strategy. Asian Pac. J. cancer Prev. 14, 5281–5286. doi:10.7314/apjcp.
2013.14.9.5281

Li, W., Zhang, S., Liu, C.-C., and Zhou, X. J. (2012). Identifying multi-layer gene
regulatory modules from multi-dimensional genomic data. Bioinformatics 28, 2458–2466.
doi:10.1093/bioinformatics/bts476

Li, Y., Wang, Y., Wen, Y., Zhang, T., Wang, X., Jiang, C., et al. (2022). Whole-exome
sequencing of a cohort of infertile men reveals novel causative genes in teratozoospermia
that are chiefly related to sperm head defects. Hum. Reprod. 37, 152–177. doi:10.1093/
humrep/deab229

Li, Y., Zhao, X., Liu, Q., and Liu, Y. (2021). Bioinformatics reveal macrophages marker
genes signature in breast cancer to predict prognosis. Ann. Med. 53, 1019–1031. doi:10.
1080/07853890.2021.1914343

Liang, Y.-K., Lin, H.-Y., Dou, X.-W., Chen, M., Wei, X.-L., Zhang, Y.-Q., et al. (2018).
Mir-221/222 promote epithelial-mesenchymal transition by targeting notch3 in breast
cancer cell lines. NPJ breast cancer 4, 20–29. doi:10.1038/s41523-018-0073-7

Liu, J., Liang, G., Siegmund, K. D., and Lewinger, J. P. (2018). Data integration by multi-
tuning parameter elastic net regression. BMC Bioinforma. 19, 369. doi:10.1186/s12859-
018-2401-1

Liu, J., Liu, X., Zhou, G., Xiao, R., and Cao, Y. (2012). Conditioned medium from
chondrocyte/scaffold constructs induced chondrogenic differentiation of bone marrow
stromal cells. Anatomical Rec. Adv. Integr. Anat. Evol. Biol. 295, 1109–1116. doi:10.1002/
ar.22500

Luo, Y., Sun, F., Peng, X., Dong, D., Ou, W., Xie, Y., et al. (2021). Integrated
bioinformatics analysis to identify abnormal methylated differentially expressed genes
for predicting prognosis of human colon cancer. Int. J. General Med. 14, 4745–4756.
doi:10.2147/IJGM.S324483

Maksimovic, J., Gagnon-Bartsch, J. A., Speed, T. P., and Oshlack, A. (2015). Removing
unwanted variation in a differential methylation analysis of illumina
humanmethylation450 array data. Nucleic acids Res. 43, e106. doi:10.1093/nar/gkv526

Marbach, D., Lamparter, D., Quon, G., Kellis, M., Kutalik, Z., and Bergmann, S. (2016).
Tissue-specific regulatory circuits reveal variable modular perturbations across complex
diseases. Nat. methods 13, 366–370. doi:10.1038/nmeth.3799

Margolin, A. A., Nemenman, I., Basso, K., Wiggins, C., Stolovitzky, G., Dalla Favera, R.,
et al. (2006). Aracne: An algorithm for the reconstruction of gene regulatory networks in a
mammalian cellular context. BMC Bioinforma. Biomed. Cent. 7, S7. doi:10.1186/1471-
2105-7-S1-S7

Matic, I., van Hagen,M., Schimmel, J., Macek, B., Ogg, S. C., Tatham,M. H., et al. (2008).
In vivo identification of human small ubiquitin-like modifier polymerization sites by high
accuracy mass spectrometry and an in vitro to in vivo strategy. Mol. Cell. proteomics 7,
132–144. doi:10.1074/mcp.M700173-MCP200

Meng, C., Basunia, A., Peters, B., Gholami, A. M., Kuster, B., and Culhane, A. C. (2019).
Mogsa: Integrative single sample gene-set analysis of multiple omics data. Mol. Cell.
Proteomics 18, S153-S168–S168. doi:10.1074/mcp.TIR118.001251

Messaoudene, M., Mourikis, T., Michels, J., Fu, Y., Bonvalet, M., Lacroix-Trikki, M.,
et al. (2019). T-Cell bispecific antibodies in node-positive breast cancer: Novel therapeutic
avenue for mhc class i loss variants. Ann. Oncol. 30, 934–944. doi:10.1093/annonc/mdz112

Meyer, P. E. (2014). Infotheo: Information-Theoretic measures. Princeton, NJ: R.
package.

Moldogazieva, N. T., Mokhosoev, I. M., and Terentiev, A. A. (2020). Metabolic
heterogeneity of cancer cells: An interplay between hif-1, gluts, and ampk. Cancers 12,
862. doi:10.3390/cancers12040862

Mukherjee, S., Asnani, H., and Kannan, S. (2020). “Ccmi: Classifier based conditional
mutual information estimation,” in Proceedings of Machine Learning Research.

Nakazawa, T., Nakano, I., Sato, M., Nakamura, T., Tamai, M., and Mori, N. (2002).
Comparative expression profiles of trk receptors and shc-related phosphotyrosine adapters
during retinal development: Potential roles of n-shc/shcc in brain-derived neurotrophic
factor signal transduction and modulation. J. Neurosci. Res. 68, 668–680. doi:10.1002/jnr.
10259

Neph, S., Stergachis, A. B., Reynolds, A., Sandstrom, R., Borenstein, E., and
Stamatoyannopoulos, J. A. (2012). Circuitry and dynamics of human transcription
factor regulatory networks. Cell. 150, 1274–1286. doi:10.1016/j.cell.2012.04.040

Network, C. G. A., et al. (2012). Comprehensive molecular portraits of human breast
tumours. Nature 490, 61–70. doi:10.1038/nature11412

Nueda, M. J., Ferrer, A., and Conesa, A. (2012). Arsyn: A method for the identification
and removal of systematic noise in multifactorial time course microarray experiments.
Biostatistics 13, 553–566. doi:10.1093/biostatistics/kxr042

Ochoa, S., de Anda-Jáuregui, G., and Hernández-Lemus, E. (2021). An information
theoretical multilayer network approach to breast cancer transcriptional regulation. Front.
Genet. 12, 617512. doi:10.3389/fgene.2021.617512

Pathak, B. R., Breed, A. A., Apte, S., Acharya, K., and Mahale, S. D. (2016). Cysteine-rich
secretory protein 3 plays a role in prostate cancer cell invasion and affects expression of psa
and anxa1. Mol. Cell. Biochem. 411, 11–21. doi:10.1007/s11010-015-2564-2

Patra, S. K. (2008). Ras regulation of dna-methylation and cancer. Exp. Cell. Res. 314,
1193–1201. doi:10.1016/j.yexcr.2008.01.012

Pethel, S. D., and Hahs, D. W. (2014). Exact test of independence using mutual
information. Entropy 16, 2839–2849. doi:10.3390/e16052839

Piao, H.-l., Yuan, Y., Wang, M., Sun, Y., Liang, H., and Ma, L. (2014). α-catenin acts as a
tumour suppressor in e-cadherin-negative basal-like breast cancer by inhibiting nf-κb
signalling. Nat. Cell. Biol. 16, 245–254. doi:10.1038/ncb2909

Privat, M., Rudewicz, J., Sonnier, N., Tamisier, C., Ponelle-Chachuat, F., and Bignon, Y.-
J. (2018). Antioxydation and cell migration genes are identified as potential therapeutic
targets in basal-like and brca1 mutated breast cancer cell lines. Int. J. Med. Sci. 15, 46–58.
doi:10.7150/ijms.20508

Pupa, S. M., Ligorio, F., Cancila, V., Franceschini, A., Tripodo, C., Vernieri, C., et al. (2021).
Her2 signaling and breast cancer stem cells: The bridge behind her2-positive breast cancer
aggressiveness and therapy refractoriness. Cancers 13, 4778. doi:10.3390/cancers13194778

R Core Team (2021). R: A language and environment for statistical computing. Vienna,
Austria: R Foundation for Statistical Computing.

Ramdzan, Z. M., Vadnais, C., Pal, R., Vandal, G., Cadieux, C., Leduy, L., et al. (2014). Ras
transformation requires cux1-dependent repair of oxidative dna damage. PLoS Biol. 12,
e1001807. doi:10.1371/journal.pbio.1001807

Frontiers in Genetics frontiersin.org13

Ochoa and Hernández-Lemus 10.3389/fgene.2022.1078609

https://doi.org/10.3389/fonc.2020.01232
https://doi.org/10.3389/fgene.2021.629475
https://doi.org/10.1038/s41586-021-03689-8
https://doi.org/10.1038/s41586-021-03689-8
https://doi.org/10.12688/f1000research.20887.3
https://doi.org/10.1038/srep11432
https://doi.org/10.1371/journal.pone.0039602
https://doi.org/10.4049/jimmunol.174.9.5750
https://doi.org/10.4049/jimmunol.174.9.5750
https://doi.org/10.1093/nar/gky466
https://doi.org/10.1093/nar/gky466
https://doi.org/10.1101/gr.193169.115
https://doi.org/10.1101/gr.193169.115
https://doi.org/10.3389/fgene.2017.00084
https://doi.org/10.3390/cancers11040507
https://doi.org/10.1080/15592294.2021.1950991
https://doi.org/10.1016/j.biochi.2020.02.009
https://doi.org/10.1093/nar/gkl1041
https://doi.org/10.1093/nar/28.1.27
https://doi.org/10.12659/MSM.925833
https://doi.org/10.12659/MSM.925833
https://doi.org/10.1038/nrc3721
https://doi.org/10.1093/bioinformatics/btaa571
https://doi.org/10.1093/bioinformatics/btaa571
https://doi.org/10.1016/j.cell.2018.01.029
https://doi.org/10.7314/apjcp.2013.14.9.5281
https://doi.org/10.7314/apjcp.2013.14.9.5281
https://doi.org/10.1093/bioinformatics/bts476
https://doi.org/10.1093/humrep/deab229
https://doi.org/10.1093/humrep/deab229
https://doi.org/10.1080/07853890.2021.1914343
https://doi.org/10.1080/07853890.2021.1914343
https://doi.org/10.1038/s41523-018-0073-7
https://doi.org/10.1186/s12859-018-2401-1
https://doi.org/10.1186/s12859-018-2401-1
https://doi.org/10.1002/ar.22500
https://doi.org/10.1002/ar.22500
https://doi.org/10.2147/IJGM.S324483
https://doi.org/10.1093/nar/gkv526
https://doi.org/10.1038/nmeth.3799
https://doi.org/10.1186/1471-2105-7-S1-S7
https://doi.org/10.1186/1471-2105-7-S1-S7
https://doi.org/10.1074/mcp.M700173-MCP200
https://doi.org/10.1074/mcp.TIR118.001251
https://doi.org/10.1093/annonc/mdz112
https://doi.org/10.3390/cancers12040862
https://doi.org/10.1002/jnr.10259
https://doi.org/10.1002/jnr.10259
https://doi.org/10.1016/j.cell.2012.04.040
https://doi.org/10.1038/nature11412
https://doi.org/10.1093/biostatistics/kxr042
https://doi.org/10.3389/fgene.2021.617512
https://doi.org/10.1007/s11010-015-2564-2
https://doi.org/10.1016/j.yexcr.2008.01.012
https://doi.org/10.3390/e16052839
https://doi.org/10.1038/ncb2909
https://doi.org/10.7150/ijms.20508
https://doi.org/10.3390/cancers13194778
https://doi.org/10.1371/journal.pbio.1001807
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1078609


Risso, D., Schwartz, K., Sherlock, G., and Dudoit, S. (2011). GC-content normalization
for RNA-seq data. BMC Bioinforma. 12, 480. doi:10.1186/1471-2105-12-480

Rohart, F., Gautier, B., Singh, A., and Le Cao, K.-A. (2017). mixomics: An r package for
‘omics feature selection and multiple data integration. PLoS Comput. Biol. 13, e1005752.
doi:10.1371/journal.pcbi.1005752

Rose, N. R., and Klose, R. J. (2014). Understanding the relationship between dna
methylation and histone lysine methylation. Biochimica Biophysica Acta (BBA)-Gene
Regul. Mech. 1839, 1362–1372. doi:10.1016/j.bbagrm.2014.02.007

Ru, Y., Kechris, K. J., Tabakoff, B., Hoffman, P., Radcliffe, R. A., Bowler, R., et al. (2014).
The multimir r package and database: Integration of microrna–target interactions along
with their disease and drug associations. Nucleic acids Res. 42, e133. doi:10.1093/nar/
gku631

Schulz, D. M., Bollner, C., Thomas, G., Atkinson, M., Esposito, I., Hofler, H., et al.
(2009). Identification of differentially expressed proteins in triple-negative breast
carcinomas using dige and mass spectrometry. J. proteome Res. 8, 3430–3438. doi:10.
1021/pr900071h

Shamay, M., Greenway, M., Liao, G., Ambinder, R. F., and Hayward, S. D. (2010). De
novo dnamethyltransferase dnmt3b interacts with nedd8-modified proteins. J. Biol. Chem.
285, 36377–36386. doi:10.1074/jbc.M110.155721

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., et al. (2003).
Cytoscape: A software environment for integrated models of biomolecular interaction
networks. Genome Res. 13, 2498–2504. doi:10.1101/gr.1239303

Sohn, K.-A., Kim, D., Lim, J., and Kim, J. H. (2013). Relative impact of multi-layered
genomic data on gene expression phenotypes in serous ovarian tumors. BMC Syst. Biol. 7,
S9. doi:10.1186/1752-0509-7-S6-S9

Sonawane, A. R., DeMeo, D. L., Quackenbush, J., and Glass, K. (2021). Constructing
gene regulatory networks using epigenetic data. npj Syst. Biol. Appl. 7, 45–13. doi:10.1038/
s41540-021-00208-3

Strelnikov, V. V., Kuznetsova, E. B., Tanas, A. S., Rudenko, V. V., Kalinkin, A. I.,
Poddubskaya, E. V., et al. (2021). Abnormal promoter dna hypermethylation of the
integrin, nidogen, and dystroglycan genes in breast cancer. Sci. Rep. 11, 2264–2314. doi:10.
1038/s41598-021-81851-y

Sugiyama, A., Okada, M., and Yamawaki, H. (2020). Canstatin suppresses
isoproterenol-induced cardiac hypertrophy through inhibition of calcineurin/
nuclear factor of activated t-cells pathway in rats. Eur. J. Pharmacol. 871,
172849. doi:10.1016/j.ejphar.2019.172849

Sumi, E., Iehara, N., Akiyama, H., Matsubara, T., Mima, A., Kanamori, H., et al. (2007).
Sry-related hmg box 9 regulates the expression of col4a2 through transactivating its
enhancer element in mesangial cells. Am. J. pathology 170, 1854–1864. doi:10.2353/ajpath.
2007.060899

Tam, S., Tsao, M.-S., and McPherson, J. D. (2015). Optimization of mirna-seq data
preprocessing. Briefings Bioinforma. 16, 950–963. doi:10.1093/bib/bbv019

Tan, Z., Niu, B., Tsang, K. Y., Melhado, I. G., Ohba, S., He, X., et al. (2018). Synergistic
co-regulation and competition by a sox9-gli-foxa phasic transcriptional network
coordinate chondrocyte differentiation transitions. PLoS Genet. 14, e1007346. doi:10.
1371/journal.pgen.1007346

Tapia-Carrillo, D., Tovar, H., Velazquez-Caldelas, T. E., and Hernandez-Lemus,
E. (2019). Master regulators of signaling pathways: An application to the analysis
of gene regulation in breast cancer. Front. Genet. 10, 1180. doi:10.3389/fgene.2019.
01180

Tarazona, S., Furió-Tarí, P., Turrà, D., Pietro, A. D., Nueda, M. J., Ferrer, A., et al. (2015).
Data quality aware analysis of differential expression in rna-seq with noiseq r/bioc
package. Nucleic acids Res. 43, e140. doi:10.1093/nar/gkv711

Tenenhaus, A., Philippe, C., Guillemot, V., Le Cao, K.-A., Grill, J., and Frouin, V. (2014).
Variable selection for generalized canonical correlation analysis. Biostatistics 15, 569–583.
doi:10.1093/biostatistics/kxu001

Thammaiah, C. K., and Jayaram, S. (2016). Role of let-7 family microrna in breast
cancer. Non-coding RNA Res. 1, 77–82. doi:10.1016/j.ncrna.2016.10.003

Vidal Ocabo, E., Sayols, S., Moran, S., Guillaumet-Adkins, A., Schroeder, M. P., Royo, R.,
et al. (2017). A dna methylation map of human cancer at single base-pair resolution.
Oncogene 36 (40), 5648–5657. doi:10.1038/onc.2017.176

Weigel Muñoz, M., Carvajal, G., Curci, L., Gonzalez, S. N., and Cuasnicu, P. S. (2019).
Relevance of crisp proteins for epididymal physiology, fertilization, and fertility. Andrology
7, 610–617. doi:10.1111/andr.12638

Weighill, D., Burkholz, R., Guebila, M. B., Zacharias, H. U., Quackenbush, J., and
Altenbuchinger, M. (2021). DRAGON: Determining regulatory associations using
graphical models on multi-omic networks. Oxford, England: Nucleic Acids Res. [Epub
ahead of print]. doi:10.1093/nar/gkac1157

Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. New York: Springer-
Verlag.

Wollen, E. J., Sejersted, Y., Wright, M. S., Bik-Multanowski, M., Madetko-Talowska, A.,
Günther, C.-C., et al. (2013). Transcriptome profiling of the newborn mouse lung after
hypoxia and reoxygenation: Hyperoxic reoxygenation affects mtor signaling pathway, dna
repair, and jnk-pathway regulation. Pediatr. Res. 74, 536–544. doi:10.1038/pr.2013.140

Wright, K. L., Adams, J. R., Liu, J. C., Loch, A. J., Wong, R. G., Jo, C. E., et al. (2015). Ras
signaling is a key determinant for metastatic dissemination and poor survival of luminal
breast cancer patients. Cancer Res. 75, 4960–4972. doi:10.1158/0008-5472.CAN-14-2992

Wu, J., Wang, C., Miao, X., Wu, Y., Yuan, J., Ding, M., et al. (2017). Age-related insulin-
like growth factor binding protein-4 overexpression inhibits osteogenic differentiation of
rat mesenchymal stem cells. Cell. Physiology Biochem. 42, 640–650. doi:10.1159/000477873

Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai, Z., et al. (2021). Clusterprofiler 4.0: A
universal enrichment tool for interpreting omics data. Innovation 2, 100141. doi:10.1016/j.
xinn.2021.100141

Xin, S., Fang, W., Li, J., Li, D., Wang, C., Huang, Q., et al. (2021). Impact of
stat1 polymorphisms on crizotinib-induced hepatotoxicity in alk-positive non-small
cell lung cancer patients. J. Cancer Res. Clin. Oncol. 147, 725–737. doi:10.1007/s00432-
020-03476-4

Xiong, B., Lei, X., Zhang, L., and Fu, J. (2017). mir-103 regulates triple negative breast
cancer cells migration and invasion through targeting olfactomedin 4. Biomed.
Pharmacother. 89, 1401–1408. doi:10.1016/j.biopha.2017.02.028

Xu, N., Wu, Y.-P., Ke, Z.-B., Liang, Y.-C., Cai, H., Su, W.-T., et al. (2019). Identification
of key dna methylation-driven genes in prostate adenocarcinoma: An integrative analysis
of tcga methylation data. J. Transl. Med. 17, 311–315. doi:10.1186/s12967-019-2065-2

Xu, X., Zhang, M., Xu, F., and Jiang, S. (2020). Wnt signaling in breast cancer: Biological
mechanisms, challenges and opportunities. Mol. cancer 19, 165–235. doi:10.1186/s12943-
020-01276-5

Zamora-Fuentes, J. M., Hernández-Lemus, E., and Espinal-Enríquez, J. (2022).
Oncogenic role of mir-217 during clear cell renal carcinoma progression. Front. Oncol.
12, 934711. doi:10.3389/fonc.2022.934711

Zhang, J., and Huang, K. (2017). Pan-cancer analysis of frequent dna co-methylation
patterns reveals consistent epigenetic landscape changes in multiple cancers. Bmc
Genomics 18, 1045–1114. doi:10.1186/s12864-016-3259-0

Zhang, P., Wen, X., Gu, F., Deng, X., Li, J., Dong, J., et al. (2013). Methylation profiling of
serum dna from hepatocellular carcinoma patients using an infinium human methylation
450 beadchip. Hepatol. Int. 7, 893–900. doi:10.1007/s12072-013-9437-0

Zhao, S., Geybels, M. S., Leonardson, A., Rubicz, R., Kolb, S., Yan, Q., et al. (2017).
Epigenome-Wide tumor DNA methylation profiling identifies novel prognostic
biomarkers of metastatic-lethal progression in men diagnosed with clinically localized
prostate cancer. Clin. Cancer Res. 23, 311–319. doi:10.1158/1078-0432.CCR-16-0549

Zheng, G., Tu, K., Yang, Q., Xiong, Y., Wei, C., Xie, L., et al. (2008). Itfp: An integrated
platform of mammalian transcription factors. Bioinformatics 24, 2416–2417. doi:10.1093/
bioinformatics/btn439

Frontiers in Genetics frontiersin.org14

Ochoa and Hernández-Lemus 10.3389/fgene.2022.1078609

https://doi.org/10.1186/1471-2105-12-480
https://doi.org/10.1371/journal.pcbi.1005752
https://doi.org/10.1016/j.bbagrm.2014.02.007
https://doi.org/10.1093/nar/gku631
https://doi.org/10.1093/nar/gku631
https://doi.org/10.1021/pr900071h
https://doi.org/10.1021/pr900071h
https://doi.org/10.1074/jbc.M110.155721
https://doi.org/10.1101/gr.1239303
https://doi.org/10.1186/1752-0509-7-S6-S9
https://doi.org/10.1038/s41540-021-00208-3
https://doi.org/10.1038/s41540-021-00208-3
https://doi.org/10.1038/s41598-021-81851-y
https://doi.org/10.1038/s41598-021-81851-y
https://doi.org/10.1016/j.ejphar.2019.172849
https://doi.org/10.2353/ajpath.2007.060899
https://doi.org/10.2353/ajpath.2007.060899
https://doi.org/10.1093/bib/bbv019
https://doi.org/10.1371/journal.pgen.1007346
https://doi.org/10.1371/journal.pgen.1007346
https://doi.org/10.3389/fgene.2019.01180
https://doi.org/10.3389/fgene.2019.01180
https://doi.org/10.1093/nar/gkv711
https://doi.org/10.1093/biostatistics/kxu001
https://doi.org/10.1016/j.ncrna.2016.10.003
https://doi.org/10.1038/onc.2017.176
https://doi.org/10.1111/andr.12638
https://doi.org/10.1093/nar/gkac1157
https://doi.org/10.1038/pr.2013.140
https://doi.org/10.1158/0008-5472.CAN-14-2992
https://doi.org/10.1159/000477873
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1016/j.xinn.2021.100141
https://doi.org/10.1007/s00432-020-03476-4
https://doi.org/10.1007/s00432-020-03476-4
https://doi.org/10.1016/j.biopha.2017.02.028
https://doi.org/10.1186/s12967-019-2065-2
https://doi.org/10.1186/s12943-020-01276-5
https://doi.org/10.1186/s12943-020-01276-5
https://doi.org/10.3389/fonc.2022.934711
https://doi.org/10.1186/s12864-016-3259-0
https://doi.org/10.1007/s12072-013-9437-0
https://doi.org/10.1158/1078-0432.CCR-16-0549
https://doi.org/10.1093/bioinformatics/btn439
https://doi.org/10.1093/bioinformatics/btn439
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1078609

	Functional impact of multi-omic interactions in breast cancer subtypes
	1 Introduction
	2 Methods
	2.1 Data acquisition
	2.2 Sparse generalized canonical correlation analysis
	2.3 Functional enrichment analysis
	2.4 Network reconstruction
	2.5 Network analysis

	3 Results and discussion
	3.1 Functions enriched on SGCCA output differ between datasets
	3.2 Features responsible for the same functional enrichment differ across subtypes
	3.3 Exclusive category over-representation
	3.4 Within subtypes, different functions can be connected through correlated features
	3.5 Network examples
	3.5.1 HIF-1 signaling in the basal subtype
	3.5.2 Positive regulation of stem cell differentiation in the Her2-enriched subtype
	3.5.3 Ras signaling pathway in the luminal A subtype
	3.5.4 Negative regulation of the Wnt signaling pathway in the luminal B subtype
	3.5.5 DNA methylation in the normal adjacent tissue


	4 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


