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Department of Gynecology and Obstetrics, West China Second University Hospital, Sichuan
University, Chengdu, China, 4Institute of Blood Transfusion, Chinese Academy of Medical Sciences,
Chengdu, Sichuan, China
Studies have shown that fetal immune cell activation may result from potential

exposure to microbes, although the presence of microbes in fetus has been a

controversial topic. Here, we combined metagenomic and virome techniques

to investigate the presence of bacteria and viruses in fetal tissues (small

intestine, cecum, and rectum). We found that the fetal gut is not a sterile

environment and has a low abundance but metabolically rich microbiome.

Specifically, Proteobacteria and Actinobacteria were the dominant bacteria

phyla of fetal gut. In total, 700 species viruses were detected, and Human

betaherpesvirus 5was themost abundant eukaryotic viruses. Especially, we first

identified Methanobrevibacter smithii in fetal gut. Through the comparison

with adults’ gut microbiota we found that Firmicutes and Bacteroidetes

gradually became the main force of gut microbiota during the process of

growth and development. Interestingly, 6 antibiotic resistance genes were

shared by the fetus and adults. Our results indicate the presence of microbes in

the fetal gut and demonstrate the diversity of bacteria, archaea and viruses,

which provide support for the studies related to early fetal immunity. This study

further explores the specific composition of viruses in the fetal gut and the

similarities between fetal and adults’ gut microbiota, which is valuable for

understanding human fetal immunity development during gestation.
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Introduction

Immune system is crucial to recognize and exclude antigenic

foreign particles and maintain the stability of the internal

environment. The human immune system begins to develop

early in fetal development and has obvious sensitivity to external

antigens (1–3). The fetal immunity is likely influenced by

fragments and metabolites of maternal gut microbes, whereas

the presence of the microbiome in utero has been a controversial

topic (4). Earlier reports have shown that the amniotic cavity and

placenta are sterile (5–10). The superior defenses of placenta

mean it’s extremely difficult for microbes to enter the

uterine environment.

It is widely known that the placenta is an essential organ for

material exchange and the primary barrier between the mother

and the fetus during human pregnancy. The placenta composed

of amnion, villous trees and decidua basalis, has the function of

defense, synthesis and immunity. Anchoring villi, an integral

part of the villous tree, are attached to decidua basalis by

extravillous trophoblasts (EVTs). Fetal blood passes through

the umbilical artery to the villous capillaries and exchanges

material with maternal blood in the intervillous space, but

fetal blood and maternal blood are not directly connected. The

villous trees of placenta at full term are covered by

syncytiotrophoblast, and there is a layer of cytotrophoblasts

below which is discontinuous. The inner layer of

cytotrophoblasts layer is the basement membrane, which acts

as the placental barrier (11). In addition, syncytiotrophoblasts

and cytotrophoblasts both provide effective protection against

viral and non-viral pathogens. Among them, the surface of

syncytiotrophoblast has unique physical properties, and the

physical barrier formed by syncytiotrophoblast limits the

vertical transmission of pathogens at multiple stages of

pregnancy (12–16).

However, with the development of microbial detection

technology, more and more evidence suggest the presence of

microbes in human placenta and fetus (17–26). Studies

supporting the sterile womb hypothesis suggest that the

microbial signals detected in the womb are actually due to

contamination of samples and the DNA purification kits (21,

27). Researches supporting the presence of a low biomass

placental microbiome suggest that after filtering out

contaminants and low-quality sequences according to negative

controls, some microbial signals still exist (26, 28, 29). Excitingly,

a recent study showed that microbial exposure reduces fetal

immune cells early in human development. This study

demonstrated the presence of microbes in fetal organs by

inoculating fetal tissue in culture media and visualizing fetal

guts, and suggested that these bacteria induce the activation of

syngeneic memory T cells in fetal mLN T cells. And the question

of how do microbes get into the uterine environment, has it been

shown that pathogens (Zika virus, Toxoplasma gondii, HIV,

Cytomegalovirus, etc.) might target multiple cells in the decidua
Frontiers in Immunology 02
to reach the extravillous trophoblasts (EVTs) layer and

eventually bypass the syncytial layer (13, 30, 31). Microbes

might use this mechanism to breach the placental barrier, but

are more likely to evolve distinct strategies at different stages of

pregnancy (11).

Most of the recent studies on fetal microbes are based on 16S

rRNA gene amplicon sequencing and metagenomic sequencing

(10, 26, 32, 33). Metagenomic data includes bacterial, archaear,

protozoa, virus, fungus and host genomes. Compared to 16S

rRNA sequencing, the DNA used for metagenomic sequencing is

not amplified by PCR, and the metagenomic results are relatively

unbiased. Besides, the composition, abundance and function of

microbiota can be obtained by metagenomic sequencing (34).

However, due to the low biomass of fetal samples, it is difficult to

detect archaea and virus signals using 16S rRNA and

metagenomic sequencing. Virome is a combination of

metagenomic theory and existing virus molecular biological

detection technology, mainly used for the studies of all viruses

genetic material in the environment (35). Therefore, in order to

detect as many microbial signals as possible, virome sequencing

were used in this study to explore the fetal gut microbiome based

on the metagenomic results.
Materials and methods

Sample collection

Human fetal tissues were obtained in accordance from West

China 2nd University Hospital with ethic approval of Ethics

Committees of West China 2nd University Hospital. All women

gave written consent to the use of fetal tissues according to

internationally recognized guidelines (36). All fetal tissues (gut)

were obtained from 2nd trimester (12-22 weeks) elective

pregnancy terminations. The fetus was considered structurally

normal on ultrasound examination prior to termination and by

gross morphological examination following termination. Fetal

tissues from 2nd trimester of gestation were used for this study.

The participant (or mother, in the case of fetal samples) gave

written informed consent. Mid-trimester terminations were

medically induced and the fetus was delivered through the

birth canal. Fetal organs were collected under sterile

conditions in a tissue culture hood. Aseptic equipment was

used for collecting the intestinal contents of fetal small

intestine, cecum and rectum. The main experimental route

was shown in Figure 1.
Metagenomic sequencing

Fetal samples were sent to Chengdu Life Baseline

Technology Co., Ltd. for metagenomic sequencing. The DNA

samples were extracted using Tiangen DNA Stool Mini Kit
frontiersin.org
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(TIANGEN Biotech Co., Ltd. China) with the manufacturer’s

instructions. In total, 0.2 mg DNA per sample was used for the

DNA library preparations after DNA extraction. Sequencing

library was generated using NEBNext® UltraTM DNA Library

Prep Kit for Illumina (NEB, USA, Catalog #: E7370L). The

assessment of library quality and quantity was performed by

Agilent 5400 system(Agilent, USA) and QPCR (1.5 nM),

respectively. The qualified libraries were sequenced on

Illumina NovaSeq 6000 with pair-end 150bp reads.
Virome sequencing

Virome sequencing was performed in Chengdu Life Baseline

Technology Co., Ltd. To remove debris and cells, samples were

centrifuged at 2,500 x g for 5 minutes, and supernate was passed

through a 0.45 mm filter after another centrifugation (5,000 x g,

20 min). After the treatment with 2 ul lysozyme (50 mg/ml) at

37 °C for 30 minutes, samples were treated with 0.2x volume

chloroform at RT for 10 minutes. Then 10U Tubro DNase I

(Ambion), 2 ug RNase A (Roche) or 20 U of RNase I

(ThermoFisher Scient ific) were added to the new

centrifugation supernate (17,000 x g, 10 min) followed by heat
Frontiers in Immunology 03
inactivation at 65 °C for 10 minutes. VLPs DNA extraction and

quantification were performed by Qiagen MinElute virus kit and

Qubit dsDNA HS Assay Kit (ThermoFisher Scientific),

respectively. After the library preparation, sequencing was

performed on an Illumina Nova Seq 6000 platform using pair-

end 150bp reads.
Data analyses

To compare the gut microbiota of the fetus and adults, we

downloaded 13 gut metagenomic data of healthy adults from

public database (https://www.ncbi.nlm.nih.gov/). The raw data

obtained from metagenomic and virome sequencing was used

for subsequent analysis. Trimmomatic was used to remove the

adapters and low-quality reads of raw reads after the sequencing

with the setting of average quality per base >20 and minimum

length 90 bp (37). The host contamination was removed by

Bowtie2 with human reference genome (38). MEGAHIT (39)

was used to the de novo assembly (–min-contig-len 300). We

performed gene prediction and translation of amino acid

sequences by Prodigal (40) and DIAMOND (41), respectively.

The taxonomic annotation were assigned by Kraken2 (42) with
FIGURE 1

Graphical scheme and flow chart of experiment design.
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option “–use-mpa-style”. Functional annotations, including

microbial metabolic pathway and ARGs, were assessed by

using HUMANn3 (43) and comprehensive antibiotic

resistance database (CARD) (44).
Results

Microbial composition identified by
metagenomic analysis

Metagenomic sequencing was performed on the contents of

the fetal small intestine, cecum and rectum, a total of 486 species

of bacteria were detected, including 8 phyla and 238 genera

(Figure 2A–C). Among the 486 species, 120 species were shared

by small intestine, cecum and rectum, 172 species were the

peculiar species of small intestine, and the number of peculiar

species in rectum was 55 (Figure 2D). As shown in Table 1, the top

3 phyla in the small intestine and cecum were Proteobacteria,

Actinobacteria and Bacteroidetes. However, Firmicutes replaced

Bacteroidetes as the third phylum in the rectum. At the genus

level, the top 3 of the small intestine (specificallyMicrobacterium,
Frontiers in Immunology 04
Burkholderia and Rhizobium) and rectum (specifically

Microbacterium, Rhizobium and Burkholderia) were similar.

While there were significant changes in cecum, the top 3 genera

of cecum were Burkholderia , Microbacterium and

Paraburkholderia. At the specie level, the top 3 in relative

abundances of the small intestine and rectum were

Microbacterium sp. LKL04, Methylorubrum populi and

Agrococcus sp. SGAir0287, while the top 3 species of cecum

were Agrococcus sp. SGAir0287, Paraburkholderia fungorum

and Burkholderia multivorans. In addition, very tiny amounts of

viruses and archaea were detected. To further explore the function

of fetal gut microbiome, we performed the functional enrichment

analysis by HUMANn3, and there was no pathway enriched.
Microbial composition identified by
virome analysis

In order to explore the presence of virus in fetal gut and

detect as many other microbes as possible, we performed virome

sequencing and relaxed the filtering conditions of the virus

sequence. Compared with metagenomic data, more viruses,
BA

DC

FIGURE 2

Metagenomics analysis of gut microbiota. (A) The top 10 abundant phyla in three different parts of fetal gut. (B) The top 10 abundant genera in
three different parts of fetal gut. (C) The top 10 abundant species in three different parts of fetal gut. (D) Upset plot and venn plot of fetal gut
microbiota in species level. The column above indicates the intersection of several samples in the row of which the point is in.
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bacteria and archaea were detected. In total, 700 species viruses

(including 14 phyla and 432 genera, Figure 3A–C), 267 species of

archaea (including 8 phyla and 118 genera, Figure 3D–F) and

5,477 species of bacteria (including 40 phyla and 1,475 genera)

were detected (Figure 3G–I).

In terms of viruses, 11 species were shared by small intestine,

cecum and rectum, 189 species were the peculiar species of small

intestine, and the number of peculiar species in rectum was 1

(Figure 4A). The top 3 phyla of small intestine and rectum were

Uroviricota, Nucleocytoviricota and Peploviricota, while only

Uroviricota was detected in cecum. The top 3 genera of small

intestine were Lillamyvirus, Muminvirus and Inovirus, while

Pahexavirus, Muminvirus and Lillamyvirus were the top 3

genera of rectum. And no viral genera were detected in the

cecum, which is consistent with species level. At the specie level,

Clostridium phage phiCT453A was the most abundant species in

small intestine and rectum, and Human betaherpesvirus 5 was

detected in the rectum (Table 2).

As shown in Figure 4B, in terms of archaea, 19 species were

shared by small intestine, cecum and rectum, 2 species were the

peculiar species of small intestine. The top 3 phyla of small intestine,

cecum and rectum were roughly the same, mainly included

Euryarchaeota, Thaumarchaeota and Crenarchaeota. At the genus

level, Halorubrum, Methanosarcina and Methanobrevibacter were

the top 3 of small intestine, Halorubrum, Methanosarcina and

Thermococcus were the top 3 of rectum, only Halovivax And

Methanobacterium were detected in cecum. At the specie level,

Methanobrevibacter smithii, Salinadaptatus halalkaliphilus and

Salinigranum rubrum were the top 3 of small intestine,
Frontiers in Immunology 05
Salinadaptatus halalkaliphilus, Halopiger xanaduensis and

Methanobrevibacter smithii were the top 3 of rectum, Halovivax

ruber was the only specie detected in cecum (Table 3).

In terms of bacteria, 1,963 species were shared by small

intestine, cecum and rectum, 21 species were the peculiar species

of small intestine (Figure 4C). Proteobacteria, Actinobacteria and

Firmicutes were the predominant phyla in three different parts of

fetal gut. The top 3 genera in relative abundances of small intestine

and rectum were Ralstonia, Pseudomonas and Bradyrhizobium.

Pseudomonas, Ralstonia and Mesorhizobium were the top 3 of

cecum. At the specie level, the top 3 of small intestine, cecum and

rectum were all composed of Ralstonia pickettii, Cutibacterium

acnes and Mesorhizobium terrae (Table 4).

Indeed, the results of functional enrichment analysis showed

that the microbes of small intestine and rectum are mainly

enriched in the synthesis and metabolism pathways of amino

acids and energy metabolism pathways, such as L-valine

biosynthesis, ureide biosynthesis, superpathway of glyoxylate

bypass and TCA, L-tyrosine degradation I and TCA cycle I

prokaryotic (Figures 5A, B). Moreover, the identification results

of antibiotic resistance genes (ARGs) showed that a total of 25

ARGs were detected, including 8 in small intestine and 24 in

rectum, while no ARG was detected in cecum (Figures 5C, D).
The gut microbial composition of adults

For adults’ microbiota, a total of 5385 species of bacteria (40

phyla and 1471 genera), 47 species of viruses (4 phyla and 20
TABLE 1 Top 5 bacteria at phylum, genus and species level (metagenomics).

Level Small intestine Cecum Rectum Adult gut

Phylum

Proteobacteria Proteobacteria Proteobacteria Firmicutes

Actinobacteria Actinobacteria Actinobacteria Bacteroidetes

Bacteroidetes Bacteroidetes Firmicutes Actinobacteria

Firmicutes Firmicutes Bacteroidetes Proteobacteria

Cyanobacteria Planctomycetes Planctomycetes Verrucomicrobia

Genus

Microbacterium Burkholderia Microbacterium Bacteroides

Burkholderia Microbacterium Rhizobium Phocaeicola

Rhizobium Paraburkholderia Burkholderia Faecalibacterium

Paraburkholderia Agrococcus Neorhizobium Bifidobacterium

Neorhizobium Rhizobium Agrococcus Roseburia

Species

Microbacterium sp. LKL04 Agrococcus sp. SGAir0287 Microbacterium sp. LKL04 Phocaeicola vulgatus

Methylorubrum populi Paraburkholderia fungorum Methylorubrum populi Faecalibacterium prausnitzii

Agrococcus sp. SGAir0287 Burkholderia multivorans Agrococcus sp. SGAir0287 Bacteroides uniformis

Microbacterium oleivorans Microbacterium sp. LKL04 Neorhizobium galegae Roseburia intestinalis

Neorhizobium sp. NCHU2750 Methylorubrum populi Microbacterium oleivorans Bifidobacterium longum
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genera) and 258 species of archaea were detected (6 phyla and

112 genera, Figure 6A). As shown in Table 1, the top 3 phyla

were Firmicutes, Bacteroidetes and Actinobacteria. At the genus

level , the top 3 were Bacteroides , Phocaeicola and

Faecalibacterium. The top 3 species were Phocaeicola vulgatus,

Faecalibacterium prausnitzii and Bacteroides uniformi. Since

very tiny amounts of viruses and archaea were detected in fetal

metagenomic sequencing, we compared the archaea and viruses

detected in adults’ metagenomic sequencing to the virome data.

In terms of viruses, the top 3 phyla were Uroviricota,

Hofneiviricota and Nucleocytoviricota. The top 3 genus were

Toutatisvirus, Brigitvirus and Oengusvirus. At the species level,

the top 3 were Faecalibacterium virus Toutatis, Faecalibacterium

virus Brigit and Faecalibacterium virus Oengus (Table 2). As

shown in Table 3, Euryarchaeota, Crenarchaeota and

Candidatus Thermoplasmatota were the top 3 phyla.

Methanosarcina, Methanobrevibacter and Thermococcus were

the top 3 genera in relative abundances of adults’ microbiota.

The top 3 species were Methanobrevibacter smithii ,

Methanosalsum zhilinae and Methanococcus maripaludis.

Moreover, we characterized the global function of adults’ gut

microbiota by using HUMANn3. As shown in the Figure 6B, the
Frontiers in Immunology 06
metabolic pathways of adults’ gut microbiota were mainly

enriched in sucrose biosynthesis II, glycolysis IV, dTDP &beta;

L-rhamnose biosynthesis and L-valine biosynthesis pathways.

To further explore the differences in the microbiota diversity

and composition of adults and the fetus, we performed a-
diversity and b-diversity analysis. Our results show that there

was significant difference in Chao1 and ACE indexes (p<0.05,

Figures 6C, D). As the principal co-ordinates analysis (PCoA)

shown, fetal samples and adult samples were significant

separated (p<0.05, Figure 6E). Besides, total 71 ARGs were

detected in adults’ gut microbiota. Among them, rsmA, tet(W/

N/W), adeF, tetO, lnuC and APH(6)-Id were shared by the fetus

and adults (Figure 6F).
Discussion

The presence of microbes in fetal gut has long been

controversial. After strict experimental conditions and

environmental control settings, our results showed that there

were indeed microbes in fetal gut, including bacteria, archaea

and viruses.
B C

D E F

G H I

A

FIGURE 3

Distribution of microbiota in different parts of fetal gut detected by virome. (A) The top 10 abundant virus phyla in three different parts of fetal
gut. (B) The top 10 abundant virus genera in three different parts of fetal gut. (C) The top 10 abundant virus species in three different parts of
fetal gut. (D) The top 10 abundant archaea phyla in three different parts of fetal gut. (E) The top 10 abundant archaea genera in three different
parts of fetal gut. (F) The top 10 abundant archaea species in three different parts of fetal gut. (G) The top 10 abundant bacteria phyla in three
different parts of fetal gut. (H) The top 10 abundant bacteria genera in three different parts of fetal gut. (I) The top 10 abundant bacteria species
in three different parts of fetal gut.
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The integration results of metagenomics and virome showed

that Proteobacteria, Actinobacteria, Firmicutes and

Bacteroidetes were the dominant phyla of fetal gut at the

phy lum leve l . At the genus l eve l , Pseudomonas ,

Bradyrhizobium, Microbacterium, Burkholderia and Ralstonia
Frontiers in Immunology 07
were the dominant genera of fetal gut, of which Ralstonia and

Burkholderia were detected in the environmental control groups

in recent studies (26). However, Ralstonia insidiosa, as a member

of Ralstonia, was a resident at the maternal-fetal interface in

another research (45). Indeed, we also detected a high

abundance of Ralstonia pickettii and Ralstonia insidiosa in

fetal gut. Our results confirm that a recent study by Mishra

et al. analyzed fetal microbes and found that Pseudomonas and

Bradyrhizobium were enriched in fetal samples (26).

Besides, we detected 700 species viruses, which together with

other gut microbial communities maintain the dynamic balance

of gut and are key players in the regulation of intestinal

homeostasis and inflammation, including 130 species of

bacterial viruses (bacteriophages) and 570 species of eukaryotic

viruses in fetal gut. (46, 47). Among the 570 species of eukaryotic

viruses, Human betaherpesvirus 5 (also termed human

cytomegalovirus) was the most abundant, which is a common

cause of congenital viral infection in fetuses and neonates and a

major non-genetic cause of congenital sensorineural hearing loss

and neurological disability (48, 49). Humans are the only host of

human cytomegalovirus (HCMV), which can replicate in most

types of cells. HCMV can lead to infection in the developing

fetus through vertical transmission during maternal infection

(50, 51), and the transmission rate in the first, second, and third

trimesters are 26%, 28%, and 65% (52–55). Among the 198

species of bacteriophages that can interact with bacteria to

regulate bacterial composition, phages of Clostridium,

Escherichia and Flavobacterium were the predominant species.

Moreover, we detected crAssphage, which is not only the most

abundant virus known to exist in humans but also almost

ubiquitous (56), suggesting that crAssphage was acquired in

early life. This was contrary to the research from Lim et al. (57).

Most studies currently focused on bacteria, fungi or virus, while

archaea are often overlooked. However, the interaction between

archaea and host can affect the host in many ways, as archaea were

proposed to use for the prevention of trimethylaminuria and

cardiovascular disease (58); archaea found on human skin may be

related to age and skin physiology (59); archaea participate in the

pro-inflammatory process (60). Methane-producing archaea were

the predominant component of the archaeome, including

Methanobacteriales and Methanomassiliicoccales (61).

Methanobrevibacter smithii is the most abundant methanogen in

the human gut and was isolated as the first representative nearly 40

years ago (62). Take the advantage of virome sequencing, 262

archaeal species (including 8 phyla and 117 genera) were detected in

fetal gut. Euryarchaeota was the most abundant phylum, which

contained most of the species of archaea (Methanogens, halophiles

and Thermophiles). Methanobrevibacter smithii was the most

abundant specie, and this is the first ever detection in fetal gut of

Methanobrevibacter smithii, which confirmed the hypothesis from

Sereme et al. that Methanobrevibacter smithii was an in-utero

member of gut microbiota (63). Our results opposed the

hypothesis that breast milk is the source of Methanobrevibacter
B

C

A

FIGURE 4

Upset plot and venn plot of fetal gut microbiota detected by
virome (species level). (A) Upset plot and venn plot of fetal gut
virus in three different parts. (B) Upset plot and venn plot of fetal
gut archaea in three different parts. (C) Upset plot and venn plot
of fetal gut bacteria in three different parts.
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smithii in premature neonates (64). The study from Grine et al.

showed that Methanobrevibacter smithii was detected in vaginal

fluid only in cases of vaginal disease (65), although the fetus passed

through the vagina, the mother of our study without bacterial

vaginosis. Besides, more methanogens such as Methanobrevibacter
Frontiers in Immunology 08
millerae, Methanobrevibacter olleyae, Methanobrevibacter

ruminantium and Methanosphaera stadtmanae were detected in

fetal gut.

Both metagenomic and virome sequencing results showed

that rectal microbial species were higher than those of small
TABLE 2 Top 5 viruses at phylum, genus and species level (virome).

Level Small intestine Cecum Rectum Adult gut

Phylum

Uroviricota Uroviricota Uroviricota Uroviricota

Nucleocytoviricota Hofneiviricota Nucleocytoviricota Hofneiviricota

Peploviricota Peploviricota Peploviricota Nucleocytoviricota

Hofneiviricota Artverviricota Artverviricota Pisuviricota

Artverviricota Pisuviricota

Genus

Lillamyvirus Lillamyvirus Pahexavirus Toutatisvirus

Muminvirus Kalppathivirus Muminvirus Brigitvirus

Inovirus Inovirus Lillamyvirus Oengusvirus

Obolenskvirus Anaposvirus Cytomegalovirus Taranisvirus

Pandoravirus Muminvirus Pandoravirus Skunavirus

Species

Clostridium phage phiCT453A Clostridium phage phiCT453A Clostridium phage phiCT453A Faecalibacterium_virus_Toutatis

Clostridium phage phiCT9441A Curvibacter virus P26059B Human betaherpesvirus 5 Faecalibacterium_virus_Brigit

Escherichia virus M13 Escherichia virus M13 Flavobacterium virus Filifjonk Faecalibacterium_virus_Oengus

Human betaherpesvirus 5 Synechococcus virus SCAM1 Clostridium phage phiCT9441A uncultured_crAssphage

Escherichia virus T4 Clostridium phage phiCT9441A Lactococcus phage P335 sensulato Faecalibacterium_virus_Taranis
TABLE 3 Top 5 archaea at phylum, genus and species level (virome).

Level Small intestine Cecum Rectum Adult gut

Phylum

Euryarchaeota Euryarchaeota Euryarchaeota Euryarchaeota

Thaumarchaeota Crenarchaeota Thaumarchaeota Crenarchaeota

Crenarchaeota Thaumarchaeota Crenarchaeota Candidatus Thermoplasmatota

Candidatus Thermoplasmatota Candidatus Thermoplasmatota Thaumarchaeota

Candidatus Lokiarchaeota Candidatus Lokiarchaeota Candidatus_Lokiarchaeota

Genus

Halorubrum Halovivax Halorubrum Methanosarcina

Methanosarcina Methanobacterium Methanosarcina Methanobrevibacter

Methanobrevibacter Methanobrevibacter Thermococcus Thermococcus

Natrinema Natronococcus Methanobrevibacter Methanococcus

Methanobacterium Halorubrum Methanobacterium Methanosalsum

Species

Methanobrevibacter smithii Halovivax ruber Salinadaptatus halalkaliphilus Methanobrevibacter_smithii

Salinadaptatus halalkaliphilus Methanobacterium congolense Halopiger xanaduensis Methanosalsum_zhilinae

Salinigranum rubrum Natronococcus occultus Methanobrevibacter smithii Methanococcus_maripaludis

Halopiger xanaduensis Methanobrevibacter millerae Methanothrix soehngenii Methanosarcina_barkeri

Salinarchaeum sp. Harcht-Bsk1 Metallosphaera hakonensis Haloterrigena turkmenica Methanocorpusculum_labreanum
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TABLE 4 Top 5 bacteria at phylum, genus and species level (virome).

Level Small intestine Cecum Rectum

Phylum

Proteobacteria Proteobacteria Proteobacteria

Actinobacteria Actinobacteria Actinobacteria

Firmicutes Firmicutes Firmicutes

Bacteroidetes Bacteroidetes Bacteroidetes

Planctomycetes Planctomycetes Planctomycetes

Genus

Ralstonia Pseudomonas Pseudomonas

Pseudomonas Ralstonia Ralstonia

Bradyrhizobium Mesorhizobium Bradyrhizobium

Mesorhizobium Bradyrhizobium Mesorhizobium

Cutibacterium Sphingomonas Corynebacterium

Species

Ralstonia pickettii Ralstonia pickettii Ralstonia pickettii

Cutibacterium acnes Mesorhizobium terrae Cutibacterium acnes

Mesorhizobium terrae Cutibacterium acnes Mesorhizobium terrae

Bradyrhizobiaceae bacterium SG-6C Methylorubrum extorquens Corynebacterium jeikeium

Clostridium botulinum Methylotenera versatilis Bradyrhizobiaceae bacterium SG-6C
F
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FIGURE 5

(A) Pathway enrichment analyses of small intestine microbiota. (B) Pathway enrichment analyses of rectum microbiota. (C) ARGs analysis of
small intestine microbial. (D) ARGs analysis of rectum microbial.
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intestine and cecum in different classification levels (phylum,

genus and specie). Besides, the composition and functional

pathway of the small intestine and rectum were more similar.

The difference between the cecum and the other two sites might

be due to the host contamination of the cecum was more severe

than that of the small intestine and rectum.

We compared the fetal gut microbiota to the adults’ and found

that the diversity of adults’ gut microbiota was significantly higher

than that in fetal group. The composition of gut microbiota between

two groups was significantly different. Specifically, Proteobacteria

and Actinobacteria were the dominant bacteria phyla in fetal gut.

While the dominant bacteria phyla in adults’ gut were Firmicutes

and Bacteroidetes, which indicated that Firmicutes and

Bacteroidetes gradually replaced Proteobacteria and

Actinobacteria as the main force of gut microbiota during the

process of growth and development. For viruses and archaea, the

dominant phyla in both groups were similar. Besides, we found 6

ARGs in fetal group were consistent with adult group, suggesting

that microbes carried ARGs might transmit vertically

during pregnancy.

In conclusion, we detected a variety of microbes in fetal gut

through metagenomic and virome sequencing, including

bacteria, virus and archaea. Especially, we first identified

Methanobrevibacter smithii in fetal gut, which was the most

prevalent and abundant methanogen. In addition, by comparing
Frontiers in Immunology 10
the fetal and adults’ gut microbiota, we found that gut bacterial

composition changed greatly during the growth and development

process and the same ARGs existed in fetuses and adults. Thus, we

suggest the fetal gut is not a sterile environment and has a low

abundance but metabolically rich microbiome. Our study

provided valuable resource for understanding human fetal

immunity development during gestation.
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and adult groups. (E) The PCoA plot based on Bray-Curtis distance. (F) The distribution of all ARGs in fetal and adult groups. ** means p<0.05,
and we chose p value cutoff of 0.05 as the significance level.
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