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Airborne lidar is a technology for mapping surface spatial information and has

been widely used in many areas of geospatial information disciplines. The

filtering process of removing non-ground points has always been the focus

of research. PTD (Progressive Triangular Irregular Network Densification)

filtering algorithm is a widely used filtering algorithm for airborne lidar data.

However, this algorithm has shortcomings in retaining ground points in steep

areas, leading to large type Ⅰ errors. Therefore, this paper proposes an improved

PTD algorithm. The improvement is the addition of the seed points filtering.

Specifically, after the potential seed points are obtained by the progressive

morphological filter, the seed points filtering is performed on it to remove the

non-ground points, so that the obtained seed points are more accurate. The

benchmark dataset of ISPRS (International Society for Photogrammetry and

Remote Sensing) Working Group III is used to assess the proposed method.

Results show that the method is effective in decreasing type Ⅰ error in steep

areas. Comparing with the classic PTD algorithm, the type Ⅰ error and total error

are decreased by 8.46% and 5.06% respectively. In addition, the proposed

method shows a great advantage in computational efficiency, that is eight times

more efficient than the classic PTD algorithm.
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1 Introduction

Airborne lidar shows great advantages in accurately acquiring 3D terrain information

(Zhang et al., 2013), and has been utilized in many environmental applications (Zhang

and Lin, 2013). For instance, reconstruction of DTM (Digital Terrain Model) (Mongus

and Zalik, 2012; Polat and Uysal, 2015; Xiangyun et al., 2015), 3D building modeling

(Rutzinger et al., 2009; Wang, 2013), hydrological modeling (Linde, 2010; Massimo et al.,
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2015), landslide assessments (Huang et al., 2021), highwall slopes

surface measurement of open-pit mines (Nguyen et al., 2018),

roof bolt classification (Singh et al., 2021), forest inventory and

management (Koch et al., 2006; Liu et al., 2013). For these

applications, the key processing step is the classification of the

irregular point cloud (Shen et al., 2012).

However, how to accurately extract terrain information from

irregular point clouds is the problem to be solved (Zhang, 2010), and

one of the crucial processing steps is filtering. In short, it is tofind out

which is returned from the ground and which is returned from the

objects on the ground in the disordered and discrete 3D point clouds

(Meng et al., 2010). For example, in landslide susceptibility

prediction (Huang et al., 2020) and reliability analysis (Jiang and

Huang, 2018), most scholars use lidar. However, due to the influence

of vegetation, it is difficult for lidar to collect landslide data, it is

necessary to obtain high-precision DEM (Digital Elevation Model)

through filtering to establish a landslide model.

Filtering algorithms can be classified according to the theoretical

background. According to the concept of filtering, Sithole and

Vosselman classify filters into four categories: slope-based

(Susaki, 2012; Wu et al., 2016), block-minimum (Streutker and

Glenn, 2006; Glenn et al., 2011), clustering/segmentation (Hu et al.,

2013; Yang et al., 2013), and surface-based algorithms (Sithole and

Vosselman, 2004). The principle of surface-based filtering

algorithms is to create a surface that is closest to the bare ground

surface (Nie et al., 2017). It is classified as morphology-based filters

(Li et al., 2013; Pingel et al., 2013), iterative interpolation-based filters

(Polat et al., 2015), and progressive-densification-based filters

(Zhang and Lin, 2013; Nie et al., 2017). We briefly review

morphological-based filters and progressive densification-based

filters as they are related to our proposed method.

Morphology-based filters are based onmorphology open and

close operations (Zhang et al., 2003; Najman and Talbot, 2011).

Zhang et al. (2003) processed point clouds by changing the

window size. If the distance between raw gridded point clouds

and gridded point clouds after opening operations was greater

than thresholds, the grid is marked as a non-ground grid. Chen

et al. (2007) used an increasing window size morphological

opening operation to remove buildings. Li et al. (2013)

propose a gradient-constrained morphology algorithm that

decreases the object removal operation and improves the

accuracy of the algorithm. Pingel et al. (2013) classified points

by changing the elevation threshold.

The progressive densification-based filter first constructs an

initial TIN (Triangular Irregular Network) with some ground

seed points and performs iterative densification until no more

points can be added to the TIN. Axelsson (2000) first divides

irregular point clouds into grids, using the lowest point in each

grid as the initial ground point. Then a TIN is used as the

reference surface. In each iteration, the angles and distances of

the remaining points to the triangle are judged by thresholds, and

the points that satisfy the conditions are added to the TIN. Before

the next iteration, add all currently classified ground points to the

TIN until all points are classified. Nie et al. (2017) propose a

revised PTD algorithm, which revised the existing TIN and

iteration steps, decreasing the three types of errors.

Among these filtering algorithms, the PTD filtering

algorithm is robust. This method has two key steps,

selecting seed points and constructing the initial TIN,

iterative densification of the TIN (Axelsson, 2000).

However, the PTD algorithm directly defines the lowest

point as the seed point that will lead to errors. And the

algorithm cannot correctly detect potential ground points

in steep areas (Nie et al., 2017). In addition, when the

amount of points is particularly high, this method takes

lots of memory space and a long computing time.

To solve the above problems, we propose an improved

PTD filtering algorithm to optimize the selection of seed

points and the computational efficiency. After acquiring

potential ground seed points through the progressive

morphological filtering algorithm, the seed point filtering is

applied to them. The purpose is to remove the non-ground

points in the potential ground seed points. These potential

ground points are used as the seed points of TIN, and ground

points acquired after iterative progressive densification are

closer to the terrain, which can reduce the type Ⅰ error and the

total error.

2 Methods

The classic PTD algorithm assumes potential ground points

as seed points for subsequent filtering by default, resulting in

large errors. To solve the limitations of the classic PTD algorithm,

we proposed an improved PTD filtering algorithm combined

with the progressive morphological filter, the flow chart is shown

in Figure 1. The proposed method includes the following four

steps.

Firstly, the method of elevation histogram is built to remove

outliers.

Secondly, the initial potential seed points close to the terrain

are obtained by using the opening operation of the progressive

morphological algorithm.

Thirdly, the potential seed points are filtered to obtain more

accurate ground seed points.

Fourthly, the acquired seed points as the initial seed points to

construct the initial TIN, and iterative progressive densification is

started to obtain the final ground points.

2.1 Outliers removal

Many point clouds include noise and outliers (Ren et al.,

2021) (as shown in Figure 2). Outliers are one of the situations

that may cause filtering algorithms to fail (Sithole and

Vosselman, 2004). Therefore, this paper introduces a
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method to remove outliers based on the histogram of point

cloud elevation distribution. There are three key steps,

including:

(a) The elevation histogram is built and examined by visualizing

the distribution of elevation values, and then elevation

thresholds were determined to eliminate the lowest and

highest tails from the distribution

(b) The outliers missed in the previous step are searched by

determining the minimum elevation difference between each

point and the surrounding points.

(c) Manually correct errors during outliers’ removal.

2.2 Selecting potential ground seed points

To select potential ground seed points, the irregular point

cloud needs to be divided into regular grids. The lowest point

elevation value is used as the grid value to form the minimum

elevation surface, for which a progressive morphological filtering

open operation is performed.

In each opening operation, points with angle and distance

above thresholds are marked as non-ground points. Points that

are not marked are considered as potential ground seeds. The

specific steps are as follows:

A. The grid is divided as shown in Figure 3A. The raw

point cloud is divided into uniform grids according to the

basic window size. The lowest point in grids (blue point in

FIGURE 1
Flow chart of the improved filtering algorithm in this paper.

FIGURE 2
Outliers are present in sample11.
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grids) is selected, and the elevation value of the lowest point is

used as the grid value. Since the grid data may have null values,

it is necessary to interpolate the grid in eight neighborhoods

(Figure 4, with point “P0” as the starting point, and

interpolate to the surrounding eight grids). The minimum

value of the elevation in the null grid is taken as the average of

the elevation sum of the neighboring grids. If the

interpolation fails, the elevation value of the grid is

assigned to “0”, such as the red points in the grid in

Figure 3B. The interpolation process avoids the missing

point clouds in places with large slopes due to the lack of

laser scanning, which affects the correct selection of

subsequent seed points. The minimum elevation surface is

obtained after the above operation, and it is used as the input

for the subsequent progressive morphological opening

operation.

B. Progressive morphological filtering. The minimum

elevation surface obtained in the previous step is used to

start the progressive morphological filtering, which uses a

multi-scale progressive window to perform a progressive

morphological opening operation on the ground seed

points. In Figure 5, the initial filtering is performed at

window size W1. When the height difference hp,1between

point “P” and the filtering surface is less than or equal to

the height difference threshold hT,1, the classification P is a

ground point. hmax(t),1 is the maximum height difference

between the ground before filtering and the filtering

surface. If hmax(t),1 is less than hT,1, all ground points on

the terrain surface are retained. In the second filtering, the

window size is increased to W2. If the maximum height

difference hmax(t),2 between the previous filtering surface

and this filtering surface is smaller than the height

difference threshold hT,2, all ground points whose height

difference is less than hmax(t),2 from this filtering surface are

retained. Similarly, if the minimum height difference hmin (t),2

of the building between the last filtering operation and the

filtering operation is greater than hT,2, the building is

removed.

In the xth filtering, the window size is increased toWk. If the

height difference hp,k between a point “N” and the filtering

surface is less than or equal to the height difference threshold

hT,k, the classification P is a ground point. hT,k is usually the

minimum height of buildings in the area.

In each of the above filtering processes, the window size Wk

and the height difference threshold hT,k need to be determined.

Wk is calculated in both Eqs. 1, 2.

Wk � 2kW0 + 1 (1)

FIGURE 3
(A) Point cloud grid before interpolation; (B) Point cloud grid after interpolation.

FIGURE 4
Eight-neighborhood interpolation.
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In Eq. 1, k is the number of iterations, w0 is the initial window

size, and the final add one is to ensure thatwk is an odd number and

the window is symmetrical. However, if a study area has very large

buildings, Eq. 1 increases the window size too slowly and takes more

time. Therefore, a second approach can be used to change the

window size by exponential growth, calculated as follows:

Wk � 2Wk
0 + 1 (2)

The growth rate in this way is much faster than in Eq. 1. It is

closely related to the slope of the terrain in the study area, which

can be determined by Eq. 3.

hT,k �
⎧⎪⎨
⎪⎩

h0 Wk ≤ 3
S(Wk −Wk−1)c + h0 Wk ≥ 3

h max hT,k > h max

(3)

In the equation, h0 is the initial height difference, s is the terrain

slope, c is the grid size, hmax is the maximum height difference. The

relationship between the terrain slope s and the window sizes Wk,

Wk-1 and the maximum height difference hmax(t),k is shown in Eq. 4.

s � hmax(t),k
Wk−Wk−1

2

(4)

A new filter window size and a different elevation

interpolation threshold are calculated until the window size is

above the preset maximum window size, and points that are not

marked are considered as potential ground seed points.

2.3 Seed points filtering

The potential ground seed points generally cannot be directly

applied as initial seed points of the PTD algorithm, otherwise, it

will lead to type Ⅰ error that cannot be well reduced. For example,

Xiangguo and Jixian (2014) use the “Segmentation-Based

Filtering algorithm” with type Ⅰ error of up to 62.22%. Nie

et al. (2017) use the “Revised PTD filter algorithm” with type

Ⅰ error of up to 52.026%.

In the actual processing of progressive morphological filtering, it

is difficult to select the optimal parameters to remove these ground

points at one time, as steep slopes or building roofs are often missed

in the ground points due to the abrupt change of elevation. The

analysis of the acquired potential ground seed points reveals that

building roofs or high vegetation noise points usually float in clusters

on the ground points with large height differences.

Therefore, this paper proposed a seed points filtering method

to remove the non-ground points in the potential ground seed

points. Considering non-ground points will form larger or

narrow triangles, and the aggregated high noise points will

form small, locally prominent elevation surfaces. The

proposed seed points filtering process mainly has the

following principles:

FIGURE 5
Schematic diagram of the progressive morphological filter.

FIGURE 6
Schematic diagram of the triangular network.
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1. Finding the triangular network with the larger side length

of the triangular surface piece, and then traversing the vertices,

the vertex with the largest elevation is identified as a noise point.

2. The triangular network clusters formed by noise points

generally contain narrow triangular facets (the triangular

network formed by red noise points and blue ground points

in Figure 6), the noise facets can be removed based on these

features to obtain more accurate ground seed points. Performing

Floodfill algorithm on the triangulation, finding the surrounding

adjacent triangulation, and identifying the triangulation without

noise points as a cluster (the triangle network formed by the blue

ground in Figure 6) until all triangle networks clusters are found.

The ground points obtained are closer to the actual terrain

after the above filtering process, and these points are used as seed

points of PTD algorithm for progressive densification. Then the

next step is to get the ground points.

2.4 Obtaining ground points

When using the TIN model for topographic representation,

narrow triangles should be prevented Figure 7A. Therefore, the

method of constructing a buffer zone in the literature (Zhao et al.,

2016) is introduced in this paper Figure 7B. Proceed in these steps:

the seed point cloud is projected into the XY plane corresponding to

the seed points, expanding the seed point cloud externally to form a

buffer zone, and interpolating uniformly along the buffer zone. This

can avoid the loss of the triangular network at the boundary, which

causes the points at the boundary to be unavailable for iterative

computation (Zhao et al., 2016). The next step is the iterative

densification of the triangulation network.

The traditional iterative densification of triangulation networks

are performed by stepwise insertion. After determining that the point

is ground, insert it into the TIN constructed in the previous step.

However, the insertion of single points is less efficient, and

this paper makes a small improvement here by iterating

through all the non-ground points at each iteration. The

points that satisfy the conditions are inserted into the

constructed TIN as ground points at one time and continue

to iterate the remaining non-ground points. Depending on the

new TIN, calculating the iterator angle and iterator distance,

and using the points that meet the conditions as new ground

seed points. Repeating the above-mentioned network

construction process and iterative process until the number

of iterations exceeds the threshold or no new ground points

are added to seed points so that obtained seed points contain

all ground points. Since there are interpolated points in the

first step of gridding and triangular networks iterative

densification but these points do not belong to the actual

ground, removing these points, the final obtained points are

the actual ground points.

3 Experiments and results analysis

3.1 Experimental data

The airborne LIDAR sample data provided by the ISPRS

Working Group III in 2003 were used for filtering tests.

The eight datasets (four from the urban and four from the village)

were acquired by anOptechALTMscanner (Chen et al., 2020). Fifteen

samples were extracted from these eight datasets for later quantitative

analysis. These 15 samples represent different environments

consisting of steep slopes, vegetation, dense buildings, railway

stations, multi-story, bridges, tunnel entrances, and quarries

(Sithole and Vosselman, 2004). These samples have been corrected

by semi-automatic filtering and visual discrimination, and all points

have been accurately classified. Each point was marked with a

FIGURE 7
(A) Raw triangle network without a buffer zone; (B) triangle network after adding a buffer zone.
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category (Figure 8), where blue points are real ground points and red

points are real non-ground points.

3.2 Parameters description

The proposed method requires presetting six parameters,

including max building size, initial window size, max terrain

angle, number of iterations, iterator angle, and iterator distance.

1) Max building size: The length threshold, which the algorithm

can handle buildings not exceeding, is used to define the size

of grid cells;

2) Initial window size: Input parameters for progressive

morphological filtering, used to control local seed points;

3) Max terrain angle: Slope threshold that decides whether to

judge unclassified points by mirroring;

4) Number of iterations: By increasing the number of iterations,

some points of steep slope can be iterated to ground points;

5) Iterator angle and Iterator distance: Calculating whether a

point is a ground point;

3.3 Results analysis

Three accuracy indexes proposed in the literature (Chen

et al., 2007) are used to analyze the accuracy of the algorithm,

which include type Ⅰ error, type Ⅱ error, and total error

(Table 1).

Type Ⅰ error reflects the ability in retaining ground points.

Type II error reflects the ability in removing non-ground points.

Total error reflects the balance and practicability of the

algorithm. The parameters in (Table 1), “a” and “d” are the

number of correctly recognized ground points and non-ground

points respectively, “b” and “c” are the numbers of misclassified

ground points and non-ground points respectively. Table 2 lists

the test results of three kinds of errors of 15 samples provided by

ISPRS by this algorithm and the PTD algorithm.

The total error of 15 samples for both filters in Table 2 is less

than 32.67%. As shown in Figure 9, the type I error (T.I) and total

error (T.E) of our method are significantly lower than the classic

PTD algorithm. Specifically, among 15 samples, the T. I error of

our method is lower than that of the classic PTD algorithm in

12 samples, and the T.E error is lower than that of the classic PTD

algorithm in 10 samples (Figure 9, Figure 10). In average, the T. I

error and T.E error of our method is decreased by 8.46% and

5.06%. Nevertheless, the T. II error of the classic PTD algorithm

is higher than our method in four samples (Figure 11). The above

disadvantages of our method are not fatal. Since correcting type

II error is less than correcting type I error (Sithole and

Vosselman, 2004).

3.3.1 Filtering results analysis of four samples
In addition, this paper also lists the filtering result of four

representative sample data to show the details of filtering, namely

Sample11, Sample23, Sample42, and Sample53, and the specific

experimental results and analysis are as follows.

TABLE 1 Calculation equation for three types of errors.

Point cloud after filtering

Ground points(T) Non-ground points(F)

Reference point cloud Ground points(T) a b

Non-ground points (F) c d

e=a+b+c+d

T.I b/(a+b)

T.II c/(c+d)

T.E (b+c)/e

FIGURE 8
Point cloud of sample 12.
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The main data features of Sample11 are vegetation and

structures located on steep terrain, this type of terrain is

generally testable for the filtering algorithm, most filtering

algorithms have a large error here. Our method reduces the

type I error by 16.81% and the total error by 7.85% compared

with the classic PTD algorithm, which reflects the accuracy of the

algorithm. Figure 12A is the raw image of the sample, the red

point in Figure 12B is the type Ⅰ error, and the blue point in

Figure 12C is the type Ⅱ error. In Figure 12B, type Ⅰ error is

mainly distributed in a small part of the building area in the

marked circle, but in the steep areas (the rectangular part in

Figure 12B), our method still accurately identifies ground points.

The main data features of sample 23 are buildings and a small

amount of vegetation. There are special closed circular terrains in

the buildings, the interiors are ground points, and the boundaries

are buildings, which is a test of the algorithm’s ability to judge

complex structures. Our method reduces the type Ⅰ error by

10.88% and the total error by 3.4%. As can be seen in the filtering

results, the buildings are filtered out, the circular structure in the

middle is excluded, and the type Ⅰ error is basically outside the

circle. As seen in the rectangular part in Figure 13B, our method

can extract most of the road information. Part of the

discontinuity is due to the interference of different materials

and noise points, but overall, better road information can be

obtained.

As the relatively regular topographic structure characteristics

of sample 42, the data filtering results of both algorithms are

more satisfactory. Our method reduces type Ⅰ error by 7.82% and

the total error by 1.22%. As in Figure 14C, the basic feature blocks

TABLE 2 Comparison results.

T.I T.Ⅱ T.E

PTD Our PTD Our PTD Our

sample11 46.68 29.87 3.4 7.59 28.21 20.36

sample12 15.6 15 1.92 7.21 8.93 11.2

sample21 0.78 5.07 10.47 9.18 2.93 5.98

sample22 36.84 17.57 3.23 9.43 26.36 15.03

sample23 35.33 24.45 3.82 8.75 20.42 17.02

sample24 40.3 17.59 12.54 12.05 32.67 16.07

sample31 3.93 15.79 3.55 6.31 3.76 11.42

sample41 60.34 41.24 0.91 3 30.55 22.07

sample42 12.13 4.31 1.45 2.97 4.58 3.36

sample51 4.91 0.68 3.8 11.27 4.67 2.99

sample52 19.2 22.42 4.95 6.22 17.7 20.72

sample53 26.66 10.35 1.44 3.96 25.64 10.09

sample54 8.76 8.44 2.53 2.53 5.41 5.26

sample61 18.52 2.58 2.82 2.24 17.98 2.57

sample71 16.81 4.57 3.5 8.76 15.3 5.04

Average 23.12 14.66 4.02 6.76 16.34 11.28

FIGURE 11
Type Ⅱ error comparison chart.

FIGURE 9
Total error comparison chart.

FIGURE 10
Type I error comparison chart.
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are distinguished, which provides a good basis for the subsequent

filtering judgment, and the filtering effect is ideal.

The data features of sample 53 are mainly discontinuous

terrain and steep slopes. Although there are fewer buildings, the

terrain structure is more complex, the steep slopes are

disconnected, and the buildings are mainly distributed on

different steep slopes. Our method reduces the type Ⅰ error by
16.31% and the total error by 15.55%. The filtering results are

generally ideal. There are barely any non-ground points in

Figure 15B, which is enough to prove that this algorithm has

its advantages in retaining ground points in steep areas.

3.3.2 Filtering results analysis of eight filtering
algorithms

In addition, the proposed method and eight filters proposed

by (Sithole and Vosselman, 2004) are quantitatively evaluated in

FIGURE 12
Filtering results for sample 11: (A) initial point cloud; (B) filtered point cloud (blue points), red points are the type Ⅰ error; (C) filtered point cloud
(red points), blue points are the type Ⅱ error.

FIGURE 13
Filtering results for sample 23: (A) initial point cloud; (B) filtered point cloud (blue points), red points are the type Ⅰ error; (C) filtered point cloud
(red points), blue points are the type Ⅱ error.
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Figure 16. Figure 16A and Figure 16C show that out of these

15 samples, there are three samples where our method is second

lowest and five samples where our method is second lowest.

Moreover, our method has 11 samples below the type I error

average value, and the total error also has nine samples below the

average value.

4 Discussions

Lidar provides a quick and precise solution for high-

precision, large-area data acquisition (Kukko and Hyyppä,

2009), and is increasingly being used as a means of generating

DEMs (Hill et al., 2000). DEM is an important terrain model and

a basic requirement for many applications. Conventional

methods of DEM generation are time-consuming (Polat et al.,

2015). As research has advanced, lidar has become a main means

for generating DEM. High-precision DEM and DTM play an

important role in urban mapping (Lm et al., Zahdi and Nagai,

2021), forest management (Wang et al., 2016; Cai et al., 2019),

landslide assessment and other fields (Han et al., 2014). Liu

and Lim (2018) proposed a voxel-based morphological

filtering algorithm to generate DEM in complex forest

areas, and applied it in forest management, so as to make

rational planning and utilization of forest and agriculture.

Chen et al. (2012) proposed an upward-fusion filtering

algorithm to establish an urban DTM, saving a lot of

manual collection time. Huang et al. (2021) used DEM as a

data source to assess landslides and performed better than

hydrological methods in both accuracy and efficiency.

However, the point cloud data obtained from LIDAR is

discrete and irregular, which requires filtering the raw

point cloud data to generate accurate DEM and DTM

(Axelsson, 2000).

Therefore, the filtering algorithm proposed in this paper is

compared with the widely used PTD filtering algorithm. Through

FIGURE 14
Filtering results for sample 42: (A) initial point cloud; (B) filtered point cloud (blue points), red points are the type Ⅰ error; (C) filtered point cloud
(red points), blue points are the type Ⅱ error.

FIGURE 15
Filtering results for sample 53: (A) initial point cloud; (B) filtered point cloud (blue points), red points are the type Ⅰ error; (C) filtered point cloud
(red points), blue points are the type Ⅱ error.

Frontiers in Earth Science frontiersin.org10

Chen et al. 10.3389/feart.2022.1015153

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1015153


the analysis of 15 samples, it is concluded that this paper has advantages

in reducing the T. I error and T.E error. Comparing with the classic

PTD algorithm, the DEM and DTM obtained are more accurate.

However, the proposed method contains six parameters that

require manual debugging, whichmay affect the efficiency. The type

II error of our method is higher than the classic PTD algorithm in

11 samples (Figure 11). Consequently, future research should aim at

automating of the algorithm parameters and the reduction of type II

error to make the algorithm more efficient.

5 Conclusion

Point cloud filtering is an important part of lidar data

processing, and several filtering algorithms have been proposed.

Among them, PTD is widely used, but it may not be able to retain

ground points in areas with steep terrain. Therefore, this paper

proposes an improved PTD filtering algorithm combined with the

progressivemorphological filter, after obtaining the potential ground

seed points, seed points filtering is performed on it. The obtained

seed points are closer to the actual terrain.

The experimental results demonstrate that the method performs

effectively in reserving ground points in steep areas. Reducing the type

Ⅰ error and total error by 8.46% and 5.06% respectively. At the same

time, our method shows a great advantage in computational

efficiency, the cost time of the classic PTD algorithm is 16.35s and

the cost time of the algorithm proposed byNie et al. (2017) is 102.14s,

the cost time of our method is only 2.25s. Therefore, our improved

PTD algorithm has a great improvement in accuracy and efficiency.

In four representative samples, good filtering results were achieved.

Improves the accuracy and efficiency of the PTD algorithm.
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FIGURE 16
Results of the eight filters and the proposed method in three
types errors: (A) type I errors; (B) type II errors; (C) total errors.
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