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Monte-Carlo random finite-difference analysis (MCRFDA) can incorporate the

spatial variability of soil properties into the analysis of geotechnical structures.

However, two factors, namely, the fineness of the generated elements

(reflected by the number of elements, Ne) and the number of MC simulation

iterations,NMC, considerably affect the computational efficiency of thismethod,

creating a barrier to its broad use in real-world engineering problems. Hence, an

MCRFDAmodel of a circular underground cavern is developed in this study. The

convergent deformation of the cavern is analyzed while considering the spatial

variability distribution of the elastic modulus. Moreover, the effects of NMC and

Ne on random FD calculations are investigated. The results show the following.

An NMC greater than 500 is desirable for the FD analysis of a conventional

structure. For a specific structure, Ne does not have a significant impact on the

mean of the simulated values but appreciably affects the standard deviation (SD)

of the simulated values, where reducing Ne increases the SD of the simulated

values.
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1 Introduction

Geotechnical structures are formed from complex and prolonged physical and

chemical processes that are responsible for their inherent uncertainties. Phoon and

Kulhawy (1999) identified inherent variability, measurement error, and transformation

uncertainty as three principal sources of uncertainty in geotechnical parameters. The

consideration of the uncertainty of geotechnical parameters has been a major issue in the

numerical simulation of geotechnical structures in recent decades. Currently, random

variable (RV) and random field (RF) models are commonly used to simulate geotechnical
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structures. RV models describe the uncertainty of geotechnical

parameters using RVs that follow a certain probability

distribution and evaluate the safety of engineering structures

based on the reliability index or failure probability. With a well-

defined concept and a simple principle, RV models are

extensively used to analyze the reliability of geotechnical

structures. Chowdhury and Xu (1993) investigated the

reliability of homogeneous and layered inhomogeneous slopes

using the RV method. However, RV models also have

shortcomings: they simply treat geotechnical structures as

homogeneous materials and use the reliability index or failure

probability to evaluate the safety of engineering structures. Due

to factors such as mineral composition and geological activity,

the geotechnical parameters at a specific site vary with the

location in space. Because RV models neglect the spatial

variability of parameters, they method cannot produce

accurate analytical results.

Vanmarcke (1977); Vanmarcke (1983) established a

relatively sound RF theory that essentially models the

characteristic parameters of a soil mass using an RF that

follows a homogeneous normal distribution. On this basis, the

RF is discretized into RVs. Subsequently, the reliability of the

system is determined through the calculation of a large number

of RVs and a statistical analysis of the results. This method is

referred to as Monte-Carlo random finite-difference analysis

(MCRFDA). Numerous researchers (Christian et al., 1994; El-

Ramly et al., 2002; Hicks and Samy, 2002; Baecher and Christian,

20062006; Cassidy et al., 2013; Cho, 2014) have employed this

method to analyze the reliability of geotechnical engineering

structures. Dou and Wang (Dou and Wang, 2017) constructed a

one-dimensional non-stationary random field to represent the

saturated permeability coefficient of soil, and studied the stability

of infinite slope. Cheng et al. (2016) studied the surface

deformation of shield tunnel considering the spatial variability

of elastic modulus.

As a reliability calculation method originating from

engineering practice, Monte Carlo method is both simple and

direct but has disadvantages of large amount of calculation. Cho

(2007) used Latin hypercube sampling technology to generate

random characteristics of soil mass to reduce the calculation

amount of Monte Carlo analysis. Ghanem and Spanos (1991)

proposed the spectral expansion method of node random

variables to reduce the computational effort. The use of

MCRFDA first requires the RF to be discretized. The fineness

of discretization depends on the size of the generated elements.

Computational accuracy increases as the density of elements

increases. Refining elements without limit is, however, not

possible in actual calculations, which require a balance to be

struck between the fineness of the generated elements and

computational efficiency. With respect to the number of

simulation iterations, NMC, in MC analysis, a similar balance

also needs to be sought between computational accuracy and

efficiency. Hence, in this study, we hope to find a balance between

these two aims by analyzing a specific model, with the goal of

providing a reference for similar problems.

2 Monte-carlo random finite-
difference analysis and program
realization

The stochastic finite difference method can be divided into

two main categories according to the different treatment

methods. One is based on analysis to find the relationship

between system response and input signal, so as to obtain the

law of internal force and deformation of structure and to carry

out system reliability analysis. The specific methods include

perturbation stochastic finite difference method and Newman

stochastic finite difference method. The other is based on

statistics, which discretizes the random field into random

variables, calculates a large number of random variables and

counts the results to obtain the reliability of the system.

FIGURE 1
Model and boundary diagram.

FIGURE 2
Spatial variability distribution of elastic modulus.
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The main way to achieve this is Monte-Carlo Random Finite

Difference Analysis. Monte Carlo stochastic finite differencemethod

is a theoretical framework for analyzing the influence of spatial

variability of geotechnical parameters on geotechnical structures by

using stochastic fields. It combines stochastic field theory, finite

difference method and Monte-Carlo method. The finite difference

method replaces the partial derivative of the function on the grid

node with the difference quotient, which is simple and intuitive.

In the Uncertainties Analysis of actual geotechnical

engineering, random variables in different spatial locations are

described by random field method. This process is the

discretization of random field. Vanmarcke (1983) clearly

pointed out that random finite element analysis must include

the discrete process of random field. There are two main ways to

discrete the random field: one is to discrete the random field into

random field grid, which is called space discretization; the other is

abstract discretization, which expands the random field in series,

also called spectral decomposition of random field.

Beacher and Ingra (1981) first proposed stochastic analysis

method based on center point method, which Kiureghian and Ke

(1988) improved. The center point method uses the random field

theory to calculate the random variable value X(uio) at the

centroid of each unit. It considers that the parameters in the

unit are constant and equal to the random variable value X(uio)
at the centroid of the unit:

X(ui) � X(uio). (1)

The most criticized point of the center point method is that it

assumes that the internal parameters of the cell are completely

related, so the calculation accuracy is related to the size of the divided

cell. The more closely the cell is divided, the more accurate the

calculation result will be. However, when the structure is complex or

there are many elements, other discrete methods are difficult to

realize. At this time, the advantages of the center point method are

particularly prominent.

Based on the studies performed by Cassidy et al. (2013), the

covariance matrix decomposition technique is used in this study

to generate RFs. The procedure is detailed as follows:

(1) A numerical model of the object of analysis that comprises n

elements is established, followed by the extraction of the

coordinates of the center of each element.

(2) An autocorrelation function is used to calculate the ρ(x, y, z)

of the ith element with respect to all elements (including

FIGURE 3
Schematic diagram of convergence deformation of cavern.

FIGURE 4
The change of horizontal displacement with the number of simulation groups.
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itself), which yields an nth-order column vector.

Subsequently, i is traversed from 1 to n, which produces a

matrix, Cn×n, comprising n column vectors arranged in i

rows. Cn×n is the covariance (autocorrelation) matrix of the

model.

Cn×n �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ11 ρ1r ρ1n

ρr1 ρrr ρrn

ρn1 ρnr ρnn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦. (2)

(3) The Cholesky decomposition technique is used to

decompose Cn×n:

Cn×n � LU � LLT, (3)

where matrix LT is the transpose of matrix L.

(4) Y is used to denote the resulting n-dimensional column

vector. The elements are independent of each other and

generally follow a standard normal distribution. We let

Z � sLY + μ, (4)
where Z is a normally distributed RV with a mean of μ and a

variance of s2.

(5) The FISH language is used to assign Z to the corresponding

element in the numerical model, generating an MC RF in the

Fast Lagrangian Analysis of Continua (FLAC) software. The

previous steps are repeated M times to generate all the

required MC RFs.

3 Effects of NMC on calculation
results

With study Huang et al. (2017) as a reference, a two-

dimensional FD model was developed in this study based on

a shield subway tunnel in Shanghai. Free, normal displacement-

constrained, and fixed boundary conditions were applied to the

top (ground surface), sides, and bottom of the model,

respectively, as shown in Figure 1.

The FLAC in 3 Dimensions (FLAC3D) numerical analysis

software was used to establish a model with 9344 elements, and

the tunnel diameter D was set to 6.2 m. To facilitate calculation,

the model was set as an elastic constitutive and only considers the

condition of complete drying model with a Poisson’s ratio (v) of

0.33 and a density of 1800 kg/m3.

As noted by Fenton and Griffiths (2008), of all soil parameters,

elastic modulus E and v are the primary factors affecting soil

deformation. Due to its low spatial variability, v is not as

important as E in soil deformation analysis. Therefore, only the

spatial variability of E generally needs to be considered in the spatial

variability analysis of soil deformation. E is assumed to follow a

lognormal distribution with a mean of 20 MPa. Variability can be

expressed in terms of the coefficient of variation (COV), a

dimensionless parameter defined as the ratio of the standard

deviation (SD) to the mean. In this study, COV was set to 0.3,

and the fluctuation range was set to δx � δy � 2m.

A total of 800 RFs of E were generated. Figure 2 shows the

spatial distribution of E formed by one typical RF (different

element colors represent different E values).

The equilibrium state was first calculated under the action of

self-weight to generate the original in situ stress field.

FIGURE 5
The change of vertical displacement with the number of simulation groups.
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FIGURE 6
Distribution of calculation results using different numbers of elements. Horizontal deformation (Ne = 1516), Vertical deformation (Ne = 1516),
Horizontal deformation (Ne = 3392), Vertical deformation (Ne = 3392), Horizontal deformation (Ne = 19,024), Vertical deformation (Ne = 19,024),
Horizontal deformation (Ne = 31,232), Vertical deformation (Ne = 31,232).
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Subsequently, the horizontal displacement (Dx) and vertical

displacement (Dy) of the contour of the cavern after

excavation were calculated, as shown in Figure 3.

In MCRFDA, NMC needs to be determined to produce accurate

simulations. Figures 4, 5 show the results for the case examined in

this study obtained from calculations based on 800 RFs. After NMC

exceeded 450, the maximum and minimum values of the mean

horizontal convergent deformation were 54.34 and 54.18 mm,

respectively. This difference of 0.2% suggests that the mean

horizontal convergence did not change significantly as NMC

increased beyond 450. After NMC exceeded 500, the maximum

and minimum values of the mean vertical convergent deformation

were 207.6 and 207.3 mm, respectively. This difference of 0.1%

suggests that the mean vertical convergence did not change

significantly as NMC increased beyond 500. Therefore, for the

case examined in this study, calculations based on at least

500 RFs are required to ensure a reasonable mean for convergence.

4 Effects of the fineness of the
generated elements on calculation
results

The model was divided into different numbers of elements,

Ne, while keeping its overall dimension and soil parameters

unchanged. For each Ne, calculations were performed based

on 500 RFs. Figure 6 shows the distribution of the results.

Figures 7, 8 show the variation in the mean and SD of the

convergent deformation of the underground circular cavern with

Ne, respectively.

As shown in Figure 7, the mean of the simulated values did

not change significantly as Ne increased. Therefore, it can be

concluded that the conventional element size is sufficient to

produce high-accuracy simulations using an accurate numerical

simulation model.

As shown in Figure 8, in contrast to the mean convergent

deformation, the SD of the convergent deformation in each of the

horizontal and vertical directions decreased considerably as Ne

increased. At a fixed Ne, the simulated values tended to

concentrate toward the mean. This finding may suggest that

at a fixed spatial variability, increasing the density of elements

FIGURE 7
Mean value of convergence deformation with different
numbers of elements.

FIGURE 8
Standard deviation of convergence deformation with different numbers of elements. (A) Horizontal direction. (B) Vertical direction.
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can increase the uniformity of the distribution of soil parameters,

thus reducing the probability of extreme cases.

5 Conclusion

An MCRFDA model of a circular underground cavern is

developed. The convergent deformation of the cavern is analyzed

with the consideration of the spatial variability of E. The effects of

NMC and Ne on random FD calculations are investigated. The

results show the following:

(1) An NMC greater than 500 is desirable for the random FD

analysis of a conventional structure.

(2) For a specific structure, Ne does not have a significant impact

on the mean of the simulated values but considerably affects

the SD of the simulated values. Reducing Ne increases the SD

of the simulated values.
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