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The fast development of renewable energy has resulted in great challenges to

the power system, which urgently needs more flexible resources to maintain a

system supply/demand balance. This paper established a multi-stage electricity

market framework in the presence of a load aggregator (LA) including a day-

ahead energy/reserve market and a real-time balanced market. To actively

participate in the day-ahead energy market and reserve market, a load profile

perception model for LA is proposed to evaluate in detail the response

performance of consumers. Meanwhile, a market-bidding model of LA and a

market-clearing model of the system operator for the day-ahead market are

also established. To actively join the real-time balancemarket, amarket-bidding

model of LA for the real-time balance market based on surplus flexible

resources is established. The system operator further clears the real-time

balance market and dispatches the collected flexible resources according to

the system supply-demand state. A modified IEEE 30 bus system is tested and

shows that the proposed market framework can effectively promote

consumers to respond to system regulation requirements and lowers the

system supply-demand imbalance risk.
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Introduction

To build a low-carbon energy system, renewable energy units, such as wind turbines

(WT) and photovoltaics (PV), have quickly developed. It is expected that the total

installed capacity of PV and WT in China will reach more than 1.2 billion kW by 2030

(Yang et al., 2018). As the proportion of renewable energy in the power system exceeds a

certain threshold, the system operation mode will go through great change. Additionally,

the issue of insufficient flexible resources will become a key bottleneck for the future

development of renewable energy.

Current flexible resources provided by traditional thermal units are far from enough

to support the regulation demand of the power system. To protect system reliability and

safety, a good solution is to encourage consumers to change their load patterns in response

to system operation requests (Youbo et al., 2019). Demand response (DR) includes types

of programs, which focus on modifying the load profiles of consumers to maintain system
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generation and a consumption balance (Liang et al., 2021). One

way is to fully exploit DR resources of the demand side, whose

controllable devices can be directly dispatched by the system

operator and can be a complementary solution to maintain a

system supply-demand balance. Another way is to modify the

electricity market framework. Reasonable market competition

and incentive mechanisms can help coordinate distributed

flexible resources on the demand side so that consumers

together with the power system are able to all benefit from

adjusting their power patterns.

The information and control technology (ICT) of the smart

grid provides a foundation to support the integration of flexible

demand resources. However, due to the stochastic response

behaviors of distributed consumers, the system operator can

hardly control large-scale distributed consumers (Du et al.,

2021). At this stage, the interaction framework for the system

operator and small consumers has not been fully formed.

Regarding load scheduling and aggregation as a critical issue,

middleman, such as the load aggregator (LA), retailers, and

virtual power plants (VPP), can provide good way for small-

scale consumers to participate in the electricity market (Youbo

et al., 2018). Also, the liberalization of electricity markets helps

incentive consumers to join the dispatching schedule of system

operators. In terms of the market-bidding strategy,

Vivekananthan et al. (2014) constructed a robust optimization

strategy for LA to participate in bidding in the energy market

based on controllable load resources. Bruninx et al. (2020)

established multi-LA market-bidding and a scheduling model

for frequency control service. Hu et al. (2017) proposed the

regulation framework to LA to schedule the thermal (Fang et al.,

2016) load such as air conditioning and water heaters. Li et al.

(2018) provided a way for VPP to participate in the energy

market and ancillary market by dispatching electric vehicles (EV)

andWT. Pandžić et al. (2013) and Chen et al. (2018) established a

VPP optimal bidding model that considers the uncertainties of

multi-market prices including the long-term and day-ahead

market. In terms of the load control method, Shao et al.

(2013) found that retailers can determine the real-time

electricity prices of customers to manage their demand

portfolios. Liang et al. (2018) proposed a robust optimization

algorithm for LA to find the optimal real-time electricity prices

offered to consumers considering the uncertainties of market

prices. Baharlouei et al. (2013) and the California Independent

System Operator (2016) studied the integration of incentive DR

programs for LA considering power flow constraints. Hu et al.

(2017) and Sumaiti et al. (2020) provided a game theory-based

structure for retailers and consumers to decide on incentive

prices. Despite these studies in the field of DR, several

research gaps still need to be filled. First, bidding strategies

and load control methods of a middleman are highly

dependent on the accurate evaluation and integration of

response capacity of distributed consumers. Most studies

ignore the process of perceiving the real-time response

capacity of consumers. Second, in the studies mentioned, the

middleman focuses on engaging in a single market. This is an

urgent issue to reasonably arrange consumers’ schedules and

efficiently participate in a multi-stage market to meet the profit

demands of LA and consumers.

With this in mind, this paper proposes a multi-stage

electricity market framework for a real-time balanced market,

day-ahead energy and a reserve market. By constructing a load

state perception model, the real-time flexible resources of

consumers can be perceived. In the day-ahead energy and

reserve market, a bidding model for LA based on the

consumers’ flexible resources is proposed. The system

operator is in charge of market clearing according to the

bidding strategy of market players, and thus, the dispatching

scheme of day-ahead units can be decided. In the real-time

balancing market, day-ahead clearing results are considered.

All LAs bid in the real-time balancing market based on the

surplus of flexible resources of their signed consumers. Then,

system operators clear real-time balancing resources and

dispatch the spare flexible resources according to the actual

system balance demand. A modified IEEE 30 bus system was

tested to verify the proposed framework. The results show that

the proposed model can stimulate consumers to effectively

respond to system regulation demand to promote the

consumption of renewable energy.

Market framework

Referring to the market framework of the Nordic electricity

market, the market setting of this paper can be described as

follows:

1) Market framework and market participants: The multi-stage

market here includes the day-ahead energy market, day-

ahead ancillary market and real-time balance market. The

market operation framework is shown in Figure 1. Market

participants include load aggregators, thermal units and the

system operator. LA and thermal units take part in a

centralized bidding transaction. The system operator clears

the market and conducts a day-ahead schedule of units after

the bidding of market participants.

2) Bidding in day-ahead energy and the day-ahead reserve

market: LA will bid in the day-ahead energy market

(24 points a day) and day-ahead reserve market (including

upper and lower reserve capacity) based on predicted load

profiles of signed consumers. These two markets shall be

independently organized and jointly settled according to the

uniform market-clearing price.

3) Bidding in the real-time balance market: Generally, not many

balancing service varieties exist in Northern Europe, and part

of balance regulation resources can be obtained through the

real-time balancing market. The real-time balancing market
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will be carried out 1 h in advance. Market participants will bid

to provide the up or down-regulation service in the real-time

balancing market based on day-ahead market-clearing

results. Bidding information includes aspects such as a

market participation period, up-regulation capacity, and

down-regulation capacity.

4) Market settling method: We adopt the market structure

“main energy market + ancillary market + balanced

market” multi-stage market operation process and different

service varieties settle separately.

5) Load regulation and deviation assessment: LA optimizes the

load profiles of signed distributed consumers according to

multi-stage market-clearing results to avoid a market

deviation check.

LA bid strategy

Load profiles perception model

1) Optimal control strategy for LA to regulate signed consumers

Before bidding in the markets, LAs need to accurately evaluate

the load profiles and flexible resources of signed consumers whose

controllable devices include washingmachines or EVs. By regulating

the controllable devices of its signed consumers, LA aims to

minimize the total energy cost of consumers as long as the

aggregation resources can satisfy LA’s regulation demand. For

scenario ω ∈ {1,/,Ω} time t ∈ {1,/, T}, the objective of LA

n ∈ N can be described as follows:

min
ui,h,t,ω

∑T
t

λSn,t,w⎛⎝PD
n,h,t,ω +∑I

i

Pn,i,h,wun,i,h,t,ω
⎞⎠∀t,ω, n (1)

∑T
t�1
un,i,h,t,ω ≥ tRn,i,h,ω ∀i, h, t,ω, n (2)

∑T
t�1

∣∣∣∣un,i,h,t,ω − un,i,h,t−1,ω
∣∣∣∣ − 1 � Ki ∀i, h, t,ω, n (3)

un,i,h,t,ω ≤ tpn,i,h,t,ω∀i, h, t,ω, n (4)

tpn,i,h,t,ω � { 1, t ∈ [tsn,i,h,ω, ten,i,h,ω]
0, else

∀i, h, t,ω, n (5)

where N,H, and I is the set of LAs, signed consumers, and

controllable devices. Pn,i,j,h,w is the original load of the

controllable device i ∈ I of the signed consumer

h ∈ {1,/, H} of LAn. PD
n,h,t,ω is the fixed load of the signed

consumer h ∈ {1,/, H} of LAn. j ∈ J is the energy

consumption duration of the device and λSn,t,w is the offered

retail price of LAn. un,i,h,t,ω is the 0–1 variable, which denotes the

dispatch schedule for the device i ∈ I. un,i,h,t,ω � 1 means the

device i ∈ I is in a working state. tRn,i,h,ω is the minimum power

usage duration.Ki refers to the total time of starts and stops that

can be controlled during the scheduling period. tsn,i,h,ω, t
e
n,i,h,ω is

the earliest and latest device usage time specified by consumer h

for device I, respectively. tn,i,h,t,ω* � 1 means that the controllable

device can participate in regulation during the energy

consumption period specified by the consumer h. Constraint

2 ensures that the basic needs of each consumer for washing

machines or EV charging can still be satisfied within the specific

period; Constraint 3 ensures that the start and stop times of the

device are in the restricted range. Constraints 4, 5 ensure that

the LA’s schedule plan satisfies the consumers’ basic demands.

2) The initial load profile prediction of LA signed consumers

The initial load profiles of LA signed consumers will be

evaluated and predicted, which can be expressed as follows:

FIGURE 1
The trading framework of muti-stage markets.
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PF
n,t,ω � ∑H

h

⎛⎝PD
n,h,t,ω +∑I

i

Pn,i,h,wu
R
n,i,h,t,ω

⎞⎠∀t,ω, n (6)

uR
n,i,h,t,ω � { 1, t � tRn,i,h,ω

0, else
∀i, h, t,ω, n (7)

where uRn,i,h,t,ω is the 0–1 variable. uRn,i,h,t,ω � 1 represents the

initial state for device i at time plot t in an open state. tRn,i,h,ω
is the initial open time for device i.

3) Flexible DR resource evaluation

In the typical scenario ω, assuming the response ratio of signed

consumers of LAn isdn,w. Thus, the number of responsive consumers is

dn,wH and the number of unresponsive consumers is dn,w(1 −H).
Thus, the aggregation load of LAn can be expressed as:

PT
n,t,ω � PNN

n,t,ω + PFN
n,t,ω

� ∑
h∈HN

n,w

⎛⎝PD
n,h,t,ω +∑I

i

Pn,i,h,wun,i,h,t,ω
⎞⎠ + ∑

h∈HC
n,w

⎛⎝PD
n,h,t,ω +∑I

i

Pn,i,h,wu
R
n,i,h,t,ω

⎞⎠ ∀t,ω, n

(8)

where PT
n,t,ω is the total load of signed consumers of LAn.HN

n,w is the

unresponsive consumers set of signed consumers. PNN
n,t,ω is the

unresponsive load of signed consumers. HC
n,w is the responsive

consumers set of signed consumers. PFN
n,t,ω is the responsive load

of signed consumers.

Bidding model of LA in the day-ahead
energy market and reserve market

After evaluating the load profiles of signed consumers, LAn

aggregate the load resources of signed consumers to join the day-

ahead energy market, the day-head reserve market and the real-

time balance market to gain profits. The bidding strategy of LAn

in the day-ahead market can be expressed as follows:

max
Pbid
n,t,c ,r

up
n,t,w,r

down
n,t,w

∑Ω
ω�1

πω∑T
t

(λSn,t,wPT
n,t,ω − λAn,t,wP

bid
n,t,w + λLACn,t,w(rupn,t,w + rdownn,t,w )

− λPn,t,w(PIm+
n,t,w + PIm−

n,t,w))
(9)

PIm
n,t,w � PT

n,t,ω − Pbid
n,t,w ∀t,ω, n (10)

PIm
n,t,w � PIm+

n,t,w − PIm−
n,t,w ∀t,ω, n (11)

0≤ rupn,t,w ≤ rup,max
n,t,w ∀t,ω, n (12)

0≤ rdownn,t,w ≤ rdown,max
n,t,w ∀t,ω, n (13)

PNN
n,t,ω + ∑

h∈HC
n,w

PD
n,h,t,ω ≤P

bid
n,t,w + rupn,t,w ≤PT

n,t,ω ∀t,ω, n (14)

0≤PNN
n,t,ω + ∑

h∈HC
n,w

PD
n,h,t,ω ≤Pbid

n,t,w − rdownn,t,w ∀t,ω, n (15)

where πω is the probability of scenario ω. λ
A
n,t,w, λ

LAC
n,t,w, λ

P
n,t,w are the

predicted prices of the day-ahead energy market, the day-ahead

reserve market, and the real-time unbalance penalty.

PT
n,t,ω, P

bid
n,t,w, P

Im
n,t,w are the day-ahead forecast load demand, LA

bid quantity in the day-ahead energy market, and LA bid

quantity in the real-time balance market. rupn,t,w, r
down
n,t,w are the

up and down reserve capacity that LA bid in the reserve market.

rup,max
n,t,w , rdown,max

n,t,w is the maximum up and down reserve capacity.

PIm+
n,t,w, P

Im−
n,t,w > 0; negative PIm

n,t,w indicates that LA buys too much

power in the day-ahead energy market, and abundant power can

be used to bid in the real-time balance market for down-

regulation. Positive PIm
n,t,w indicates LAn needs to bid for up-

regulation in the real-time balance market. λPn,t,w(PIm+
n,t,w + PIm−

n,t,w)
is a penalty coefficient to ensure that the bidding quantity of LAn

in the day-ahead market can meet the majority of its load

demand. Constraints 14 and 15 ensure that LA bidding

quantity can satisfy the base load demand and LA bidding

quantity is within the controllable range.

The bidding curve of LA in the day-ahead energy market and

reserve market can be expressed as a piecewise decreasing

function CLA
n,t,w(Pbid

n,t,w) related to the demand interval and the

energy price as shown below:

CLA
n,t,w(Pbid

t,w) � Pbid
n,t,c+1 + (Pbid

n,t,c − Pbid
n,t,c+1) λbidn,t,c+1 − λAn,t,w

λbidn,t,c+1 − λbidn,t,c
∀t,ω, n

(16)
where the bidding curve includes the C segment

(Pbid
n,t,1, λ

bid
n,t,1), (Pbid

n,t,2, λ
bid
n,t,2),/, (Pbid

n,t,C, λ
bid
n,t,C). We have

λbidn,t,1 ≤ λbidn,t,2 ≤/≤ λbidn,t,C, Pbid
n,t,1 ≥Pbid

n,t,2 ≥/≥Pbid
n,t,C. For scenario

ω, the final market clear price λAn,t,w will be settled between

(λbidn,t,c, λbidn,t,c+1) and shown in Figure 2.

After evaluating the load profile of the signed consumers,

LAn aggregates the load resources of signed consumers to join

the day-ahead energy market, the day-head reserve market and

the real-time balance market to gain profits. The bidding strategy

of LAn in the day-ahead market can be expressed as follows:

After the day-head energy market and reserve market are

cleared, LA can participate in the real-time balance market to

FIGURE 2
The bidding curve of the load aggregator for the day-ahead
energy market. The bidding model of LA in the real-time balance
market.
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provide an up or down power regulation service based on its

abundant flexible resources of signed consumers. LA’s objective

function can be expressed as follows:

max
PIm+
t,w ,PIm−

t,w
PT
n,t,ω ,un,i,h,t,ω

∑Ω
ω�1

πω∑T
t

(λSn,t,w(PIm+
n,t,w − PIm−

n,t,w) + λBt,w(PIm+
n,t,w + PIm−

n,t,w)
− λdivn,t,w

∣∣∣∣Pdiv
n,t,w

∣∣∣∣)
(17)

Pdiv
n,t,w � Pbidp

n,t,w + PIm+
n,t,w − PIm−

n,t,w + rup
p

n,t,w − rdown
p

n,t,w − PT
n,t,ω ∀t,ω, n

(18)
PIm+
n,t,w ≤max{(PT

n,t,ω − Pbidp

n,t,w − rup
p

n,t,w), 0}∀t,ω, n (19)
PIm−
n,t,w ≤max{(Pbid*

n,t,w − rdown*n,t,w − PNN
n,t,ω − ∑

h∈HC
n,w

PD
n,h,t,ω), 0}∀t,ω, n

(20)
where λdivn,t,w is the penalty price for energy deviation of LAn.

Pbid*
n,t,w is the energy obtained by bidding in the day-ahead

energy market. λBt,w is the up/down-regulation price in the

real-time balance market. Constraints 19, 20 ensure that

the up/down-regulation power is within the controllable

range.

Electricity market model

Day-ahead energy market and reserve
market model

After each market participant completes the bidding in the

day-ahead market, the system operator will jointly clear the day-

ahead energy market and the day-ahead reserve market, which

aims at minimizing the system operation cost (including the total

cost of generation and the cost of the system ancillary service).

Thus, the day-ahead scheduling plan for thermal units can be

obtained as follows:

min
PG
g,t,w,r

up
g,t,w,r

down
g,t,w ,

Pbid
n,t,w,r

up
n,t,w,r

down
n,t,w

∑Ω
ω�1

πω∑T
t

⎛⎝∑G
g�1

⎛⎝CGS
g,t,w(PG

g,t,w)
+λGCg,t,w(rupg,t,w + rdowng,t,w )⎞⎠

−∑N
n�1

⎛⎝CLA
n,t,w(Pbid

n,t,w)
−λLACn,t,w(rupn,t,w + rdownn,t,w )⎞⎠⎞⎠∀t,ω (21)

where we have G thermal units to join the day-ahead market.

Like the LA bidding curve CLA
n,t,w(Pbid

n,t,w), the bidding curve of

thermal units CGS
g,t,w(PG

g,t,w) is a multi-segment linear

increasing function related to the bidding price and

output. PG
g,t,w is a bidding quantity of thermal unit gin the

day-ahead energy market and the bidding up/down reserve

capacity in day-ahead reserve market. rupg,t,w, r
down
g,t,wλ

GC
g,t,w is the

bidding reserve price. The optimization model (Eq. 21) will

subject to the following constraints.

1) System balance constraint:

PG
b,t,w + Pre

b,t,w − ∑
l|b∈o(l)

fl,t,w+ ∑
l|b∈r(l)

fl,t,w � Pbid
b,t,w + PD0

b,t,w ∀t,ω, b

(22)
where PD0

t,w is the load demand of none-market consumers,

i.e., unsigned consumers by LA. Pbid
b,t,w is the day-ahead

bidding quantity of LA at bus b. PG
b,t,w is the day-ahead

bidding quantity of thermal units at bus b. Pre
b,t,w is the

predicted renewable energy output. fl,t,w is the power flow of

the transmission line l ∈ L. b ∈ o(l) is the line set where bus b is
used to send power. b ∈ r(l) is the line set where bus b is used to

receive power.

2) Thermal unit constraint:

Gg
min + rdowng,t,w ≤PG

g,t,w ≤Gg
max − rupg,t,w ∀t,ω, g (23)

0≤ rupg,t,w ≤RRU
g,w ∀t,ω, g (24)

0≤ rdowng,t,w ≤RRD
g,w ∀t,ω, g (25)

where Gg
max, Gg

min is the maximum/minimum output of

thermal unit g. RRU
g,w, R

RD
g,w is the maximum/minimum reserve

capacity of thermal unit g.

3) Reserve capacity constraint:

∑
g∈G

rupg,t,w + ∑
n∈N

rdownn,t,w ≥ϕG ∑
b∈B

Pre
b,t,w + ϕD ∑

b∈B

PD0
b,t,w ∀t,ω, b (26)

∑
g∈G

rdowng,t,w + ∑
n∈N

rupn,t,w ≥ϕG ∑
b∈B

Pre
b,t,w + ϕD ∑

b∈B

PD0
b,t,w ∀t,ω, b (27)

where Constraints 26, 27 ensure that the system up/down reserve

capacity can satisfy the basic reserve demand. ϕG, ϕD denote the

reserve ratio of renewable energy and load, respectively.

4) System operation constraint:

The system operation constraints include the voltage

constraint (29) and line capacity constraint (30) as follows:

fl,t,w � Bl(θo(l),t,w − θr(l),t,w)∀t,ω, l (28)
θ min ≤ θb,t,w ≤ θ max ∀t,ω, l (29)
Fl

max ≤fl,t,w ≤Fl
max ∀t,ω, l (30)

where Fl
max is the maximum capacity of line l. θj,t,b is the bus

voltage. θ min, θ max is the minimum/maximum bus voltage.

Real-time balance market model

In the real-time balance market and to eliminate the net

deviation caused by renewable energy, the system operator

dispatches the up/down flexible resources provided by the
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day-ahead reserve market and real-time balance market. Thus,

the real-time balance market can be modeled as follows:

min
r
up,rt
g,t,w ,r

down,rt
g,t,w ,r

up,rt
n,t,w

rdown,rtn,t,w ,dloadt,w ,dret,w

PIm+
n,t,w,P

Im−
n,t,w

∑Ω
ω�1

πω
⎛⎝∑G

g�1
⎛⎝ λGCg,t,w(rup,rtg,t,w + rdown,rtg,t,w )

+δt,w(dload
t,w + dre

t,w) ⎞⎠

+∑N
n�1

⎛⎝ λLACn,t,w(rup,rtn,t,w + rdown,rtn,t,w )
+λBt,w(PIm+ ,rt

n,t,w + PIm− ,rt
n,t,w )⎞⎠⎞⎠∀t,ω (31)

∑G

g�1r
down,rt
g,t,w +∑N

n�1r
up,rt
n,t,w +∑N

n�1P
Im+
n,t,w + dre

t,w � LDe+
t,w ∀t,ω (32)

∑G

g�1r
up,rt
g,t,w +∑N

n�1r
down,rt
n,t,w +∑N

n�1P
Im−
n,t,w + dload

t,w � LDe−
t,w ∀t,ω (33)

0≤ r
up, rt
g, t, w

≤ r
up
g, t, w

, 0≤ r
up, rt
n, t, w

≤ r up
n, t, w

∀t,ω, g (34)

0≤ rdown,rtg,t,w ≤ rdowng,t,w , 0≤ rdown,rtn,t,w ≤ rdownn,t,w ∀t,ω, n (35)

0≤P Im−, rt
n, t, w

≤P
Im−

n, t, w
, 0≤P

Im+, rt
n, t, w

≤P
Im+

n, t, w
∀t,ω, n (36)

where LDe+
t,w , LDe−

t,w is the net load deviation. LDe+
t,w indicates that the

renewable energy output is more than the prediction output, so it

is necessary to dispatch up-regulation power, down reserve

capacity provided by thermal units, up reserve capacity

provided by LAs, and renewable energy curtailment to

maintain the system balance. LDe−
t,w indicates that the renewable

energy output is less than the prediction output, so it is necessary

to dispatch the down-regulation power, up reserve capacity

provided by the thermal units, and down reserve capacity

provided by LAs and load curtailment. dloadt,w is the system load

curtailment. dret,w is the system renewable energy curtailment.

rup,rtg,t,w ,r
down,rt
g,t,w ,rup,rtn,t,w , rdown,rtn,t,w is the up/down reserve capacity

provided by thermal unit g and LAn. PIm+ ,rt
n,t,w , PIm− ,rt

n,t,w is the up/

down-regulation power dispatched by the system operator. δt,w is

the price to curtail renewable energy and load. Constraints 34–36

guarantee that the flexible resources provided by each market

participant are within the market-clearing range.

The bidding process of LAs and the clearing process of the

system operator in the multi-stage market is shown in Figure 3.

Case study

Basic data

A modified IEEE 30 bus system is used to verify the

proposed framework as shown in Figure 4. We have three

LAs = {LA1, LA2, LA3} in charge of load at the corresponding

bus, where each LA will aggregate 1,000 consumers with flexible

resources. The system has 3 thermal units G = {G1, G2, G3} and

3 renewable energy generators, i.e., WT. Renewable energy

generators are not considered participators in the market.

The detailed parameters of LAs, thermal units and WT are

shown in Table A1, Table A2 and Table A3 in the Appendix.

Suppose that the real-time balance market will be open 1 h in

advance, then the predicted load profile of day-ahead data and

the predicted electricity prices of day-ahead and real-time data

are shown in Figure 5. Other price parameters are shown in

Table 1. In this paper, we assume that the reserve rates for

renewable energy and the load are ϕG � 0.02 and ϕD � 0.01.

Considering the scenario below:

Scenario one: the real-time renewable energy generation is

much more than the day-ahead prediction as shown in

Figure 6A. Scenario two: the real-time load is much more

than the day-ahead prediction as shown in Figure 6B.

FIGURE 3
The flowchart for market-bidding and clearing.
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Market-bidding results

1) Day-ahead market-clearing result

The bidding results of LAs and thermal units in the day-

ahead energy market and reserve market are shown in Figure 7.

In the day-ahead energy market and due to the differential

bidding strategies, LAs and thermal units have different

bidding quantity.

In the day-ahead reserve market, peak load and peak

electricity prices usually appear during the afternoon and

night, and thus, consumers are more inclined to take part in

the DR program. LA can aggregate a more price-sensitive load to

join the reserve market as shown in Figure 7B.

2) Real-time balance market-clearing result

Once the day-ahead dispatching schedule for thermal units is

decided, more flexible regulation resources may be required from

the real-time market to balance the system supply-demand status

under certain extreme scenarios.

The system has a different regulation demand under

different scenarios. For example, under scenario one where

the real-time renewable energy output is much more than the

day-ahead predicted output, to consume more renewable

energy, the system operator needs to dispatch the up-

regulation resources of LA from the real-time balance

market and day-ahead reserve market, and the down-

regulation resource of thermal units from day-ahead

reserve market is dispatched. Thus, all LAs only win up-

regulation resources from the real-time balance market

without winning down-regulation resources as shown in

Figure 8A.

Moreover, under scenario two where real-time load is

much more than the day-ahead predicted load, to provide

more power, the system operator needs to dispatch the down-

regulation resources of LA from the real-time balance market

and day-ahead reserve market, and to up-regulation resource

of thermal units from day-ahead reserve market are

dispatched. Thus, all LAs only win down-regulation

resources from the real-time balance market

without winning up-regulation resources as shown in

Figure 9B.

Market participants’ revenue

The benefits and costs of three LAs and their signed

consumers are shown in Table 2. According to Table 2, the

economic benefits of each LA with their signed consumers have

been greatly improved after participating in the market. Under

scenario one, the benefits of LAs have increased by 3.0%, 6.5%

and 11.9% and the costs of signed consumers of each LA are

reduced by 10.6%, 2.6% and 4.7%. Under scenario two, the

benefits of LAs have increased by 16.5%, 13.4% and 25.1%

and the costs of signed consumers of each LA are reduced by

12.7%, 4.5% and 7.6%.

FIGURE 5
Day-ahead prediction for the net load and electricity price.

TABLE 1 Parameter setting of prices.

Parameters λPn,t,w λdivn,t,w δt,w λSn,t,w

Price ($/MWh) 100 300 500 1.5λAn,t,w

FIGURE 4
The modified IEEE 30 bus system.
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FIGURE 6
Transaction process of the slot-ahead ancillary market for peak-regulation. (A) Renewable energy and (B) load.

FIGURE 7
The market-clearing results for the day-ahead energy market. (A) Energy market and (B) reserve market.

FIGURE 8
The regulation status for balance and reserve resources under scenario one. (A) Real-time balance market (up-regulation) and (B) reserve
market (up-regulation).
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The system operation result is shown in Table 3. The

operation of the real-time balance market can effectively

aggregate surplus flexible resources of LAs to participate in

market regulation, which is helpful in reducing renewable/

load curtailment and system operating cost. Under scenario

one, the power curtailment of renewable energy is reduced by

15.3% and the system operating cost is reduced by 6.2% with

the operation of real-time balance market. Under scenario

FIGURE 9
The regulation status for balance and reserve resources under scenario two. (A) Real-time balance market (down-regulation) and (B) reserve
market (down-regulation).

TABLE 2 Revenue of market participants.

Scenario Market participants The revenue without
joining the market
($)

The revenue from
joining the day-ahead
market ($)

The revenue from
joining the day-ahead
and real-time market
($)

Scenario one LA1 15,675.9 15,457.9 16,147.3

LA2 17,774.3 17,988.6 18,934.2

LA3 11,568.4 12,152.3 12,948.6

Signed consumers of LA1 −47028.3 −47341.8 −42054.7

Signed consumers of LA2 −53321.1 −53008.8 −51915.34

Signed consumers of LA3 −34703.1 −35492.9 −33080.5

Scenario two LA1 15,675.9 15,457.9 18,261.5

LA2 17,774.3 17,988.6 20,162.3

LA3 11,568.4 12,152.3 14,476.3

Signed consumers of LA1 −47028.3 −47341.8 −41034.6

Signed consumers of LA2 −53321.1 −53008.8 −50914.7

Signed consumers of LA3 −34703.1 −35492.9 −32070.8

TABLE 3 System operation results.

Scenario Renewable energy/load curtailment (MWh) System operation fee ($)

Without the real-time
balance market

With the real-time
balance market

Without the real-time
balance market

With the real-time
balance market

Scenario one 153.58 130.01 169,117.5 158,620.9

Scenario two 528.27 470.40 414,955.9 335,060.2
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two, the load curtailment is reduced by 11.0% and the system

operating cost is reduced by 19.3% with the operation of the

real-time balance market.

According to Tables 2 and 3, the proposed multi-stage

market framework can provide a win-win market platform

for LAs, consumers and the system operator, which helps to

guarantee the economic benefits of each market participant

and reduces the operating cost of the system.

LA dispatch results

Under scenario two, the device dispatch scheme of typical

signed consumers of each LA is shown in Figure 10. Figure 7

shows that the winning bid of LAs in the day-ahead reserve

market is up-regulation capacity without down-regulation

capacity. As shown in Figure 9, the winning bid of LAs in the

real-time balance market is the down-regulation capacity, who

will reduce their power usage in the afternoon and night. Each LA

will dispatch the controllable devices of their signed consumers in

response to system regulation demand. Type one of controllable

device is the washing machine and type two is the EV. All

controllable devices are forbidden from being used during the

peak load period and are to be used during other periods as

shown in Figure 10.

Conclusion

This paper establishes a multi-stage electricity market-

bidding and clearing framework including the day-ahead

energy market, the day-ahead reserve market and the real-

time balance market. A modified IEEE 30 bus system is

utilized to verify the effectiveness of the proposed market

framework, and the simulation results show that a win-win

market trading platform for LAs, consumers and the system

operator is proposed, which can effectively coordinate the

interests of multiple market participants.

1) A load profile perception model for LA is established to

achieve accurate load prediction and optimal device

control. Moreover, the bidding strategies for LAs are

also proposed to assist LA to participate efficiently in

markets.

2) By establishing a real-time balance market, LAs can

effectively aggregate flexible resources based on

signed consumers, and encourage signed consumers

to adjust load profiles of controllable devices to

respond to system regulation demand. As system

renewable energy is abundant, consumers can provide

FIGURE 10
The control scheme for end-users’ devices. (A) Typical signed consumers of LA1, (B) typical signed consumers of LA2, and (C) typical signed
consumers of LA3.
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more up-regulation capacity to consume renewable

energy, whereas when the system is short of power,

consumers can provide more down-regulation

capacity to maintain the system supply-demand

balance.
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Appendix

TABLE A1 Parameter settings of load aggregators.

Market participants LA1 LA2 LA3

dn,w 30% 40% 25%

λbidn,t,c [30, 50, 70, 90] [25, 50, 75, 100] [35, 50, 65, 80]

Bus 7 12 24

TABLE A2 Parameter settings of thermal units.

Market participants G1 G2 G3

Pmax 120 120 75

Bus 1 2 22

TABLE A3 Parameter settings of wind turbine.

Market participants WT1 WT2 WT3

Pmax (MW) 120 80 80

Bus 10 15 28
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