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Numerous studies show that it is reasonable and effective to apply

decomposition technology to deal with the complex carbon price series.

However, the existing research ignores the residual term containing

complex information after applying single decomposition technique.

Considering the demand for higher accuracy of the carbon price series

prediction and following the existing research path, this paper proposes a

new hybrid prediction model VMD-CEEMDAN-LSSVM-LSTM, which

combines a new quadratic decomposition technique with the optimized

long short term memory (LSTM). In the decomposition part of the hybrid

model, the original carbon price series is processed by variational mode

decomposition (VMD), and then the residual term obtained by

decomposition is further decomposed by complete ensemble empirical

mode decomposition with adaptive noise (CEEMDAN). In the prediction part

of the hybrid model, least squares support vector machine (LSSVM) is

introduced, and LSSVM-LSTM model is constructed to predict the

components obtained by decomposition. The empirical research of this

paper selects two different case data from the European Union emissions

trading system (EU ETS) as samples. Taking the results of Case Ⅰ in the 1-

step ahead forecasting scenario as an example, the prediction evaluation

indexes eMAPE, eRMSE and R2 of the VMD-CEEMDAN-LSSVM-LSTM hybrid

model constructed in this paper are 0.3087, 0.0921 and 0.9987 respectively,

which are significantly better than other benchmark models. The empirical

results confirm the superiority and robustness of the hybrid model proposed in

this paper for carbon price forecasting.
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1 Introduction

As one of the common threats to human life and security,

climate change is faced by all countries in the world. From a

global perspective, greenhouse gases are the main inducing

factors that lead to abnormal changes in global climate

(Huang and He, 2020). Carbon dioxide is one of the main

greenhouse gases in the world, and excessive carbon emissions

will accelerate the global warming process and threaten the

sustainable development of human society. Therefore,

reducing carbon emissions through reasonable regulation is

the key to mitigating climate change (Chen et al., 2021).

Numerous existing studies have shown that the carbon

emission trading system, which is guided by market demand

and traded through the pricing of carbon emissions, can control

carbon dioxide emissions more efficiently and reasonably (Cui

et al., 2014; Song et al., 2019a; Bauer et al., 2020; Sun and Wang,

2020).

Among the carbon emission trading systems that have

emerged in recent years, the EU ETS involved in this paper is

to price carbon dioxide by selling and trading carbon emission

quotas. Compared with other trading markets around the world,

it has stronger liquidity and influence (Zhang andWei, 2010). As

a signal that transmits important information in the trading

market, the change of carbon price reflects the important

information in the marginal cost of emission reduction

(Aatola et al., 2013). Fluctuations in carbon prices will affect

the cost of carbon emissions, causing changes in the market

supply and demand relationship formed in carbon allowance

trading. However, excessive volatility of carbon prices will bring

risks to the trading market and reduce the effectiveness of the

trading system (Song et al., 2019b; Liu et al., 2020). Reasonable

prediction of carbon price can not only help traders in the carbon

market to manage the price risk, but also help all kinds of market

participants to make more rational investment decisions. In

addition, effective carbon price forecasting can also create a

stable carbon pricing mechanism for the market and improve

the management ability of carbon assets (Zhu et al., 2018; Zhu

et al., 2019). Therefore, it is of great practical significance and

necessity to conduct prediction research on carbon price.

However, the volatility of carbon prices is affected by various

uncertain variables from the internal market mechanism and the

external environment. For example, the periodicity of economic

development, the prices of various other energy sources, and

related energy policies (Koch et al., 2014; Duan et al., 2018; Yang

et al., 2020; Duc et al., 2021). The change of carbon price shows

the characteristics of high volatility, nonlinearity and complexity

(Zhu et al., 2017; Fan, et al., 2019; Tian and Hao, 2020; Huang

et al., 2021). Therefore, how to optimize the prediction method of

carbon price and improve the accuracy and reliability of the

prediction results is the difficulty of research work.

According to the different variables involved, the prediction

research of carbon price can be divided into multivariate

prediction research and univariate prediction research (Zhu

et al., 2017). Multivariable forecasting research involves other

exogenous variables except price factors, and to some extent, it

faces the dilemma of error accumulation. Univariate variable

forecasting research only contains historical price series, thus

getting rid of the dependence on exogenous variables (Li et al.,

2021). The research scope of this paper belongs to the single

variable price forecasting research.

Existing single variable models for forecasting energy prices

can be divided into the following three categories: the traditional

econometric models, the artificial intelligence models and the

hybrid models (Zhu et al., 2017). Among them, the traditional

econometric models include autoregressive conditional

heteroskedasticity (ARCH), autoregressive moving average

(ARMA), autoregressive integrated moving average (ARIMA),

etc. (Byun and Cho, 2013; Jiang et al., 2018). The artificial

intelligence models include artificial neural networks (ANNs),

LSTM, and support vector machines (SVRs), et al. (Feijoo et al.,

2016; Keles et al., 2016; Gundu and Simon, 2021).

The research of traditional econometric models shall be

based on strict statistical theory. The premise of the research

is that the carbon price data is normally distributed and linearly

correlated. The premise of this linear assumption makes it

difficult to capture the complex features hidden in the carbon

price time series (Lin et al., 2011; Taylan, 2017). Aiming at

overcoming this defect, the artificial intelligence model has

established a series of mathematical models of nonlinear

operations, and has made great progress in the innovation of

algorithm development (Sun and Huang, 2020; Seyedan et al.,

2022). However, most of the single artificial intelligence models

have limited predictive validity and are prone to fall into the

dilemma of local optimal solutions, long computation time and

poor convergence speed.

In view of the timeliness and complexity of the fluctuation of

carbon price series, it is difficult to capture the hidden features of

its internal irregular series in the research using a single

prediction model, not to speak of obtaining satisfactory

prediction results (Sun and Xu, 2021). The third kind of

hybrid model effectively integrates various technical

advantages by combining different models, and has greater

advantages in the research of price forecasting (Xu et al.,

2020; Yang et al., 2020). The typical hybrid model is TEI@I

complex system research methodology (Wang et al., 2005) which

combines decomposition technology and prediction model. In

the decomposition part, the main features of the time series are

identified and extracted through decomposition technology, and

a series of modal components of the complex price series are

obtained, which reduces the complexity of the data series (da

Silva et al., 2021; Gao et al., 2022). In the prediction part, the

prediction model is used to predict the different components.

This method combines the advantages of decomposition

technology and prediction model to improve the prediction

performance of complex price series by reducing the
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complexity of the series and optimizing the prediction method,

and shows good performance in the prediction research of

carbon price (Li et al., 2021; Sun and Xu, 2021).

In the existing research on decomposition techniques that

constitute TEI@I complex system research methodology,

empirical mode decomposition (EMD) algorithm is easy to

fall into the dilemma of modal mixing, and does not have

complete physical significance (Tian and Hao, 2020). Aiming

at overcoming this defect, Wu and Huang (2004) proposed the

ensemble optical mode decomposition (EEMD). However, due to

its weak mathematical foundation, EEMD lacks the ability to

separate components with similar frequencies, and to some

extent, it still retains residual noise, which limits the

decomposition effect. In order to overcome the shortcomings

of the above decomposition algorithms, CEEMDAN borrowed

the idea of adding Gaussian noise and canceling noise through

multiple stacking and averaging in EEMD, which had better

completeness of decomposition (Zhang et al., 2018; Cao et al.,

2019). Furthermore, in a series of other developed decomposition

algorithms developed, by adopting an adaptive decomposition

mode for the effective components of each center frequency,

VMD can capture the characteristics of data more effectively by

adopting an adaptive decomposition mode for the effective

components of each center frequency (da Silva et al., 2022).

Its advantages have been confirmed in the existing research on

carbon price prediction (Wang et al., 2019; Zhu et al., 2019; Sun

and Huang, 2020).

Among the existing prediction models that constitute the

TEI@I complex system research methodology, compared with

the traditional econometric model, the artificial intelligence

model can describe the nonlinear characteristics hidden in the

carbon price series more effectively, and have better forecasting

ability. Artificial neural network (ANN) is one of the

representatives of machine learning methods, which describes

the mapping relationship between data by adjusting the direct

relationship between layers and the weights of nodes in each

layer. However, it has problems such as vanishing gradients in

the process of processing complex sequences (Zheng et al., 2022).

Recurrent neural network (RNN) can maintain the memory of

recently added information by establishing connection hidden

units (Lin et al., 1998). Furthermore, as an improved model of

RNN, LSTM can identify and extract more important historical

data information in the process of data prediction by selectively

filtering the input information (Li, 2020). Therefore, it has better

ability in dealing with non-stationary and nonlinear sequences

(Krishan et al., 2019; Liu and Shen, 2019).

However, there are still deficiencies in the existing research

on carbon price prediction using the TEI@I complex system

research methodology: First, although the superiority of VMD

technology has been proved, the existing research on carbon

price prediction using VMD technology does not have a further

in-depth discussion on the residual term obtained after

decomposition (Zhu et al., 2019; Chai et al., 2021; Huang

et al., 2021), so the complex information contained in the

residual term is ignored, which reduces the decomposition

effect of the overall data. Second, although EEMD technology

overcomes the defect that EMD technology is prone to modal

aliasing to some extent, it does not completely eliminate the

added white noise signal, resulting in some residual noise in the

decomposition process. Thirdly, although a single LSTM model

can fit the long-term historical path of the input sequence data to

a certain extent, it is difficult to deeply characterize the effective

information and relationships between discontinuous data

(Stefenon et al., 2022).

The research objective of this paper is to make up for the

deficiency of the existing research, and propose a new hybrid

model VMD-CEEMDAN-LSTM model to improve the

prediction accuracy of carbon price. The new proposed model

incorporated a new quadratic decomposition technique

combining VMD and CEEMDAN algorithm for the first time.

Specifically, CEEMDAN is used to further decompose the

residual term obtained after the application of VMD

technology, which solves the technical gap in the application

of VMD algorithm in the existing research on carbon price

prediction. At the same time, the LSSVM-LSTM model

combined with LSSVM (Suykens and Vandewalle, 1999) is

used to predict each component obtained after decomposition.

The error correction technique, can effectively extract valuable

information from error values (Cai et al., 2016; Hao and Tian,

2019). Therefore, compared with the single artificial intelligence

prediction model, the neural network hybrid model based on

error correction technique fully considers the importance of

error data and can improve the accuracy of the model more

reasonably (Yu et al., 2015; Zhang et al., 2017). Among them,

LSSVM is a kernel function learning machine that follows the

principle of Structural Risk Minimization (SRM), which reduces

the computational complexity and has excellent fitting ability for

nonlinear data (Fang and Xie, 2011). Therefore, LSSVM is used

to correct the error data predicted by LSTM to further improve

the accuracy of carbon price prediction.

In addition, in order to verify the superiority of the proposed

model over existing studies, this paper constructs other nine

different benchmark models for comparison, namely LSTM,

LSSVM-LSTM, EEMD-LSTM, EEMD-LSSVM-LSTM,

CEEMDAN-LSTM, CEEMDAN-LSSVM-LSTM, VMD-LSTM,

VMD-LSSVM-LSTM, VMD-EEMD-LSTM, VMD-EEMD-

LSSVM-LSTM and VMD-CEEMDAN-LSTM.

The main innovation and contribution of this paper lies in

constructing a new quadratic decomposition technique

technology to process the carbon price data, and using a more

advanced prediction model for research, and verifying the

rationality and superiority of the proposed model based on

real world transaction data. The details are as follows:

Firstly, a new quadratic decomposition technique combining

VMD and CEEMDAN is proposed to decompose the carbon

price, which makes up for the deficiency in the existing research
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of applying VMD technology to predict the carbon price. The

empirical results show that, compared with the hybrid model

which only adopts single decomposition algorithm (EEMD,

CEEMDAN or VMD), the quadratic decomposition technique

constructed in this paper fully combines the advantages of VMD

and CEEMDAN, which can effectively reduce the complexity of

data and better depict the essential characteristics implied in the

carbon price sequence.

Secondly, the CEEMDAN is introduced into the carbon price

forecasting research, which proves the superiority of the

CEEMDAN compared to the EEMD. The results of the

empirical study show that the CEEMDAN used in this paper

can effectively reduce the reconstruction signal error caused by

residual white noise and mine more hidden information.

Thirdly, the LSSVM-LSTM model is used to predict the

carbon price for the first time. LSSVM model has been

successfully applied in fault detection and MAGE classification

(Calisir and Dogantekin, 2011; Long et al., 2014). This paper

further adopts LSSVM-LSTM model as the prediction model in

the hybrid model. The empirical results show that, compared

with LSTMmodel, LSSVM-LSTMmodel has better performance

in carbon price prediction, and can effectively improve the

overall prediction ability of the hybrid model.

Furthermore, in order to verify the robustness of the VMD-

CEEMDAN-LSSVM-LSTM model proposed in the study of

carbon price prediction, this paper adopts eMAPE, eRMSE and

R2 to evaluate the prediction ability of each model, and applies all

models to the prediction research of one-step, two-step, and four-

step ahead forecasting. The empirical results based on the data of

the EU ETS show that the VMD-CEEMDAN-LSSVM-LSTM

model constructed in this paper exhibits the best prediction

accuracy and robustness in all multi-step advance prediction

scenarios involved, which confirms the rationality and

superiority of the technical framework proposed in this paper.

The rest of this paper is organized as follows. Section 2

reviews the literature on carbon price prediction. Section 3

introduces a series of sub-models involved in this study and

the construction steps of the VMD-CEEMDAN-LSSVM-LSTM

hybrid model. Section 4 introduces the relevant evaluation

criteria and the concrete results of empirical research. Finally,

the paper concludes in Section 5.

2 Literature review

As mentioned in the introduction, the prediction of carbon

price can be divided into three different categories, namely, the

first category of traditional econometric models, the second

category of artificial intelligence models and the third category

of hybrid models. Acoordingly, the literature review in this part

will be divided into the above three parts.

In the research of applying traditional econometric model to

predict carbon price, Benz and Trück (2009) applied Markov

switching and AR-GARCH models to predict the spot price of

carbon dioxide (CO2) emission allowances. Byun and Cho

(2013) compared and analyzed the performance of GARCH-

type models, an implied volatility from prices, and k-nearest

neighbor models in predicting carbon option prices. Bulai et al.

(2022) predicted the carbon price in the EU ETS through the

proposed ARMA-GARCH model.

In the research of applying artificial intelligence model to

predict carbon price, Atsalakis (2016) constructed an adaptive

neuro-fuzzy inference system based on ANN in the study of

carbon price prediction. Xu et al. (2020) took the carbon price

data of the EU ETS as the research object, combined the

technology of data reconstruction with extreme learning

machine algorithm, and constructed CPN-ELM model to

predict the carbon price. Yun et al. (2020) introduced an

LSTM model with multi-layer and multi-variable

characteristics into the prediction research of carbon price.

In the application of TEI@I complex systems research

methodology to predict carbon price research. Yang et al. (2020)

took the trading prices of carbon exchanges in different regions of

China as the research object, and constructed a mixed model

combining the modified ensemble empirical mode decomposition

(MEEMD) and the LSTM optimized by the improved whale

optimization algorithm (IWOA). Sun and Li (2020) combined

CEEMD and LSTM network to forecast price series from China

carbon exchanges. Furthermore, Wang et al. (2021) introduced a

series of models (including fully integrated EMD, sample entropy,

LSTM and random forest) to build a new hybrid model in the

prediction of price series from different carbon exchanges in China.

Furthermore, in the research of applying quadratic decomposition

technology, Sun and Huang (2020) constructed a quadratic

decomposition technique consisting of EMD and VMD, and also

introduced partial autocorrelation analysis (PACF) and back

propagation (BP) neural network model optimized by genetic

algorithm (GA) to construct a new hybrid prediction model. Li

et al. (2021) constructed a quadratic decomposition technique based

onCEEMDandVMD, and used BPNNoptimized by improved sine

cosine algorithm (ISCA) as a prediction model to predict the carbon

price.

Reviewing the above studies, it can be concluded that

traditional econometric models and artificial intelligence

models cannot fully capture the nonlinear characteristics

hidden in the carbon price in the prediction of carbon price.

Compared with other existing types of forecasting models, the

hybrid model combining decomposition techniques and

forecasting models has more advantages. However, there are

still some problems neglected in the existing research, the

residual term generated by the application of VMD

technology still contains a lot of irregular and complex

information, and the prediction ability of the LSTM model

without optimization also has certain deficiencies. Therefore,

in order to improve the ability and accuracy of carbon price

prediction methods and fill in the gaps of existing research, our
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study integrated VMD technology, CEEMDAN technology,

LSSVM model and LSTM model to predict the carbon price

of the EU ETS by building the VMD-CEEMDAN-LSSVM-LSTM

hybrid model.

3 Methodology

This part expounds the relevant sub-models that constitute

the hybrid model. Specifically, it includes decomposition

algorithms, prediction models and the construction of VMD-

CEEMDAN-LSSVM-LSTM model.

3.1 Decomposition algorithms

3.1.1 VMD
According to the preset number of modes, VMD decomposes

the signal into finite bandwidths with different center frequencies

(Dragomiretskiy and Zosso, 2014). The essence of VMD is to

create and solve variational problems. The specific solution

process is as follows:

Step 1: The bandwidths of each mode are calculated, and the

analytical signals of each mode function are calculated by Hilbert

transform, and then the spectrum of one side is obtained.

(δ(t) + j

πt
)uk(t) (1)

where δ(t) is the pulse function, and uk(t) is the modal

component obtained after decomposition.

Step 2: The exponential term of the center frequency corresponding

to each mode function is aliased, and the spectrum of each mode is

modulated to the fundamental frequency band.

[(δ(t) + j

πt
)uk(t)]e−jωkt (2)

where e−jωkt is an exponential term that adjusts the estimate for

each ωk and integrates the spectrum of uk into the fundamental

frequency band.

Step 3: According to Gaussian smoothness and gradient square

criterion, the square L2 norm of gradient can be calculated, and

get the bandwidth of each mode. The specific form of the

variational objective function is as follows:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
min

{uk},{wk}
⎧⎨⎩∑

k

���������zt[(δ(t) + j

πt
)puk(t)]e−jwkt

��������� 22⎫⎬⎭
s.t.∑

k

uk � f

(3)

where {uk}: � {u1, . . . uk} and {ωk}: � {ω1, . . .ωk} are the modal

components and corresponding center frequencies after VMD. zt
represents the partial derivative of t, * is the convolution symbol,

and f is the original input signal.

Step 4: The quadratic penalty term α and Lagrange multiplier λ
are introduced to solve the objective function, and the augmented

Lagrange function is obtained.

L({uk}, {wk},λ) � α∑
k

�������zt[(δ(t) + j

πt
)uk(t)]e−jwkt�������22

+ ����f(t) − [uk(t)]
����22 + 〈λ(t),f(t) −∑k

uk(t)〉

(4)
where 〈 · 〉 represents the inner product operation.

Further, un+1k (w) , wn+1
k , λn+1k are updated alternately using

the alternate direction multiplier method, where the modal

components of the solution are as follows:

u
∧
k(w) � f

∧
(w) −∑i≠k u

∧
i(w) + λ(w)

2

1 + 2α(w − wk)2 (5)

The expression for center frequency update is:

wn+1
k � ∫∞

0
w|u∧ k(w)|2dw∫∞

0
|u∧ k(w)|2dw

(6)

3.1.2 CEEMDAN
As an improved algorithm of EEMD and EMD, CEEMDAN

can have smaller modal aliasing and lower component

reconstruction error at the same time. The specific

decomposition process is as follows:

Step 1: The white Gaussian noise with the mean value of 0 is

added to the original signal x(t), and the preprocessing sequence
xi(t)(i � 1, 2 . . . , K) with a total of K experiments is

constructed.

xi(t) � x(t) + εδi(t) (7)
where ε is the weight coefficient of the added Gaussian white

noise; δi(t) is the Gaussian white noise in the i -th processing.

Step 2: The above preprocessing sequence xi(t) is decomposed by

EMD, the first component I11(t) is obtained after decomposition,

and its mean value is obtained as the first IMF component I1(t)
obtained by CEEMDAN.

I1(t) � 1
K
∑K

i�1I
i
1(t) (8)

r1(t) � x(t) − I1(t) (9)
Where I1(t) is the first IMF component generated after

CEEMDAN decomposition; Ii1(t) is the i -th IMF

component obtained after EMD decomposition of

xi(t); r1(t) is the residual component after the first

decomposition.

Step 3: Add Gaussian white noise to the residual signal of the j

-th stage obtained after decomposition, and then continue EMD

decomposition.
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Ij(t) � 1
K
∑K

i�1E1(rj−1(t) + εj−1Ej−1(δi(t))) (10)
rj(t) � rj−1(t) − Ij(t) (11)

where Ij(t) is the j -th IMF component obtained by CEEMDAN

decomposition; Ej−1 is the j-1th IMF component obtained after

EMD decomposition of the sequence; εj−1 is the noise figure

added by CEEMDAN decomposition to the residual component

in the j − 1 stage; rj(t) is the residual component of the j th stage.

Step 4: Repeat the above steps until the number of residual

component extreme points is reduced to a certain number

(usually set to be less than or equal to 2), and when the

decomposition cannot be continued, the CEEMDAN

decomposition is terminated. At this time, the original signal

is decomposed into several IMF components and the residual

component.

3.2 Prediction models

3.2.1 LSSVM
In the SVMmodel, for a sample (xi, yi) in the training set, its

function interval is:

ri � yi(W · xi + b) (12)

Where xi is the input value of the i th sample; yi is the output

value corresponding to the i th input value, and b is the offset.

The function interval of the training set is equal to the

minimum value of the function interval of all sample points:

r � mini�1,2/,mri (13)

Where r is the functional interval of the training set. However,

the function interval can only represent the correctness of the

classification prediction, not the exact distance of the sample to

the separating hyperplane. For a sample (xi, yi) in the training

set, its geometric interval is:

Ri � yi · 1

‖W‖ (W · xi + b) (14)

Where Ri is the geometric interval. The geometric interval of the

training set is equal to the minimum value of the geometric

interval of all sample points:

Ri � mini�1,2/,mRi (15)

The geometric interval can not only represent the correctness

of the classification prediction, but also accurately represent the

distance from the sample to the separating hyperplane. The

optimization problem of SVM is transformed into maximizing

the geometric distance of training samples:

maxW,b
r

‖W‖ (16)
s.t.yi(W · xi + b)≥ r, i � 1, 2/, m (17)

The value of the function interval will not affect the solution

of the optimal problem. If the function interval of the training

sample is set to 1, the above problem will be transformed into:

minW,b
1
2
‖W‖2 (18)

s.t.yi(W · xi + b)≥ 1, i � 1, 2/, m (19)

It can be seen that the optimization problem of SVM is a QP

(Quandratic Programming) problem with partition constraints.

The specific form is as follows:

minW,b
1
2
‖W‖2 (20)

s.t.yi(W · xi + b) � 1, i � 1, 2/, m (21)

Where ei is the error variable. In order to solve the problem of

partial outliers, the ei is introduced into each sample, and the

L2 regular term of the error variable is added to the original

function, so that the optimization problem of LSSVM is

transformed into:

minW,b
1
2
‖W‖2 + C

2
∑m

i�1e
2
i (22)

s.t.yi(W · xi + b) � 1 − ei, i � 1, 2/, m (23)

Where C is a regularization parameter, and φ(xi) represents

mapping xi into a higher dimensional space. The Lagrange

function of the above optimization problem is listed as follows:

L(W, b, e, α) � 1
2
‖W‖2 + C

2
∑m

i�1e
2
i −∑m

i�1αi{W · φ(xi + b + ei

− yi)}
(24)

Where αi represents the lagrange multiplier corresponding to xi.

The lagrange function solves each variable and makes the

derivative zero:

zL

zW
� 0 → W � ∑N

i�1αiφ(xi) (25)
zL

zb
� 0 → ∑N

i�1αi (26)
zL

zei
� 0 → αi � Cei (27)

zL

zαi
� 0 → Wφ(xi) + b + ei − yi � 0 (28)

Further, solve α � [αi, α2,/, αm]T and b by the following

equations:

⎡⎢⎢⎢⎢⎢⎢⎣ 0 �1
T

�1 K + 1
C
I

⎤⎥⎥⎥⎥⎥⎥⎦[ b
α
] � [ 0

y
] (29)

Where �1 � [1, 1,/, 1]T, I is the identity matrix, K is the radial

basis kernel function. Kij � k(x, xi) � exp{−‖x−xi‖2
2σ2 }, Where σ is

the standardized parameter, ‖x − xi‖ is the norm of the vector
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x − xi. For the new sample x, the output form of LSSVM

model is:

f(x) � W · φ(x) + b � ∑m

i�1αik(x, xi) + b (30)

3.2.2 LSTM
LSTM is a neural network model with memory, and its core

unit include the input gate, forgetting gate and output gate. The

basic network structure of LSTM is shown in Figure 1.

The function of the gate is to control which information is

put into the state value of the cell. The specific mathematical

model is as follows:

it � σ(Wi · [ht−1, xt] + bi) (31)
~Ct � tanh(Wc · [ht−1, xt] + bc) (32)

WhereWi and bi are the weight matrix and bias term of the input

gate, it represents the state of the input gate, and ~Ct represents the

current input unit state. Before output, the updated information

and discarded information will be determined, namely:

Ct � ftpCt−1 + itp~Ct (33)

Where ft represents the forgetting gate. The forgetting gate

decides what information to discard from the state, and uses the

sigmoid function to refer to the previous result and the current

content. The specific mathematical model is:

ft � σ(Wf · [ht−1, xt] + bf) (34)

Where h represents the result of the last output, x represents the

current input information, ft is the probability of outputting 0 to

1, Wf and bf are the weight matrix and bias term of the

forgetting gate, and σ represents sigmoid function. The output

gate determines which part of the cell state will be output, and its

mathematical model is as follows:

σt � σ(W0 · [ht−1, xt] + b0) (35)
ht � otptanh (Ct) (36)

where ot is the output of the output gate, and tanh is the

activation function.

Construction of the hybrid model VMD-CEEMDAN-

LSSVM-LSTM

In this section, by combining VMD, CEEMDAN and

LSSVM-LSTM, the hybrid VMD-CEEMDAN-LSSVM-LSTM

model is developed to predict the carbon price series. The

main structure of the model is shown in Figure 2. Firstly,

VMD is used to decompose the original carbon price series,

in which the residual term obtained by decomposition is further

decomposed by CEEMDAN, and then LSSVM-LSTM model is

applied to predict each component obtained after decomposing.

The detailed steps are as follows:

Step 1: Apply VMD to decompose the carbon price sequence into

two groups of components: a series of VMFs components and the

residual term. Thus the complexity and irregularity of the

original price sequence are reduced.

FIGURE 1
The basic network structure of LSTM.
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Step 2: Apply CEEMDAN to decompose the obtained residual

term, and fully exploit the complex information contained in the

residual term.

Step 3: Predict each component. The decomposed components

are divided into training set and testing set, and the LSSVM-

LSTM model is used to predict. LSSVM-LSTM model uses the

residual error of model fitting to correct the predicted value.

Specifically, the initial predicted value is obtained based on

LSTM, and the error is predicted by LSSVM to obtain the

corrected value, and the final predicted value is obtained by

adding them together.

Step 4: Get the final forecast result. On the basis of the above

steps, the prediction results of each component and residual item

are superimposed to obtain the final predicted value of carbon

price.

4 Empirical study

4.1 Source of data

The empirical research of this paper is based on the

trading data of EU ETS, and the specific daily futures price

data comes from Wind database. As the largest emission

trading system market in the world, the necessity and

urgency of forecasting the price fluctuation of ETS has

been confirmed by the literature (Zhu et al., 2017; Huang

et al., 2021. The samples selected in this paper cover two

different cases. The effectiveness and robustness of different

models for carbon price prediction can be better tested

through price data in different time intervals. Specifically,

the time range of the two case samples is 2018.04.02-

2020.03.01 and 2020.04.02-2022.03.01 respectively.

FIGURE 2
The main structure of the proposed model.

TABLE 1 The size and date range of the sample.

Sample size Date range

Case I Sample set 517 2018.04.02-2020.03.01

Training set 417 2018.04.02-2019.11.08

Test set 100 2019.11.11-2020.03.01

Case II Sample set 517 2020.04.02-2022.03.01

Training set 417 2020.04.02-2020.11.11

Test set 100 2020.11.12-2022.03.01
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4.2 Data description and data processing

Due to the learning mechanism of the neural network, the

data of each sample need to be divided into the training set and

the testing set before prediction. The model is trained by the

training set to capture the characteristics of data, and the

performance of the model is verified by the testing set. Thus,

all samples are divided into the training set and the testing set in

this study. Table 1 shows the specific information of data set

division of two case samples.

Table 2 shows the results of statistical analysis of sample data

from different cases, showing the specific characteristics of the

data. It can be inferred from the numerical results of the

corresponding indicators that the data of the two case samples

do not conform to the normal distribution and have obvious peak

values.

In addition, in order to ensure the training effect of the

hybrid prediction model, it is necessary to normalize the

subsequence data of each modal component obtained by

applying the decomposition technique. In the research of this

paper, the Min-Max deviation standardization method is

adopted to process the data linearly, and the specific

expression is:

x′ � x − x min

xmin max
(37)

Where x′ is the normalized sequence data. x is the original value,

and xmax and xmin represent the maximum and minimum

values respectively.

4.3 Evaluation indicators

In order to evaluate the performance of different models

involved in the research on carbon price prediction, this paper

selects three common different evaluation indicators. Specifically,

it includes, eMAPE (MeanAbsolute Percentage Erro), eRMSE (Root
Mean Square Error) and R2(Coef f icient of Determination). The
specific derived formulas for different evaluation indicators are as

follows:

eMAPE � 1
n
∑n

i�1

∣∣∣∣yi − ŷi

∣∣∣∣
yi

, eRMSE �
              
1
n
∑n

i�1(yi − ŷi)2√
, R2 � 1 − ∑n

i�1(yi − ŷi)2∑n
i�1(yi − �y)2

(38)

Where yi and ŷi are the true value and the predicted value of the

price series respectively, �y is the average value of all yi, n is the

scale of the test sample, and i is the serial number of the test

sample. Specifically, the smaller the value of the evaluation

indicators eMAPE and eRMSE, the bigger the value of the

evaluation indicator R2, the better the prediction performance

of the model.

4.4 Benchmark model

In order to verify the superiority of the VMD-CEEMDAN-

LSSVM-LSTM hybrid model proposed in this paper over the

existing research, a series of benchmark models are constructed

in this paper, including two prediction models without

decomposition technique (LSTM and LSSVM-LSTM), six

hybrid models with single decomposition technique (EEMD-

LSTM, EEMD-LSSVM-LSTM, CEEMDAN-LSTM, CEEMDAN-

LSSVM-LSTM, VMD-LSTM and VMD-LSSVM-LSTM) and

three other hybrid models with quadratic decomposition

technique (VMD-EEMD-LSTM, VMD-EEMD-LSSVM-LSTM

and VMD-CEEMDAN-LSTM).

Table 3 shows the characteristics of different models.

Specifically, LSTM is the basic prediction model, and LSSVM-

LSTM is the prediction model combined with LSSVM. Among

the benchmark models that apply the single decomposition

technique, EEMD-LSTM, CEEMDAN-LSTM and VMD-

LSTM respectively applies the EEMD, CEEMDAN and VMD

technologies to the carbon price series, discard the residual items,

and then use LSTM model to predict a series of decomposed

components. Correspondingly, EEMD-LSSVM-LSTM,

CEEMDAN-LSSVM-LSTM and VMD-LSSVM-LSTM replace

the prediction model from the LSTM model with the LSSVM-

LSTM model.

In the benchmark model applying the quadratic

decomposition technique, VMD-EEMD-LSTM retains the

residual term obtained after applying the VMD technique to

the carbon price sequence, decomposes the residual termwith the

EEMD technique, and uses the LSTM model to predict the

decomposed components and the residual term.

Correspondingly, the VMD-EEMD-LSSVM-LSTM uses the

LSSVM-LSTM model to predict each component. The VMD-

CEEMDAN-LSTM further uses CEEMDAN technology to

decompose the residual term obtained by applying VMD

technology. The VMD-CEEMDAN-LSSVM-LSTM is a hybrid

model that combines the VMD-CEEMDAN quadratic

decomposition technique and the LSSVM-LSTM model

proposed in this paper.

TABLE 2 The statistical analysis of the sample.

Min Max Mean Standard deviation Skewness Kurtosis

Case I 12.6100 29.7700 21.9712 4.2246 −0.5595 2.2370

Case II 17.8600 96.5500 46.6617 21.2005 0.5359 2.1602
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4.4 Analysis of empirical results

This section shows the empirical results of the above two

cases. The empirical research of all models is completed by the

software matlab 2019a.In order to evaluate the effectiveness and

robustness of the forecasting models more comprehensively, a

rolling forecasting strategy was applied, and all the models have

been studied with 1-step, 2-step and 4-step ahead forecasting.

Compared with the static forecasting method, the rolling

forecasting method continuously updates the data of the

training samples by inputting the time series into the

forecasting model in the form of a rolling window, and

dynamically controls the data that is far away from the

current moment through the weight, thus avoiding the

cumulative iteration of prediction errors and improve the

predictive ability of the model.

Figure 3 is the comparison charts of the results of 1-step, 2-

step and 4-step ahead forecasting of Case Ⅰ by different models.

Correspondingly, Figure 4 is the prediction results of Case Ⅱ.
Table 4 shows the results of Dunnett test on different benchmark

models. It can be seen from the numerical results that among

the series of benchmark models constructed in this paper, the

hybrid model incorporating the decomposition technique is

significantly different from the single prediction model.

Tables 5–10 show the concrete numerical results of multi-

step ahead forecasting completed by different models for Case

Ⅰ and Case Ⅱ. Specifically, among the empirical results of Case

Ⅰ, Table 5 and Table 8 show the prediction results of the model

without decomposition technique, Table 6 and Table 9 show

the prediction results of the model with single decomposition

technique, and Table 7 and Table 10 show the prediction

results of the model with quadratic decomposition technique.

In the prediction of carbon price series, the results based on

different evaluation indexes (eMAPE, eRMSE and R2) show that

the VMD-CEEMDAN-LSSVM-LSTM hybrid model

constructed in this paper has the minimum prediction

error in two different cases, which indicates the

effectiveness and superiority of this hybrid model in the

multi-step ahead forecasting for carbon price.

The remaining analysis content in this section will focus on

the prediction results, The concrete analysis includes the

prediction model and decomposition techniques which

constitute the hybrid model.

4.4.1 Analysis of prediction model
In the series of models involved in this paper, two prediction

models, LSTM and LSSVM-LSTM, are used respectively. The

results of empirical studies based on different cases show that the

LSSVM-LSTM model is more suitable for the prediction of

carbon price series than the LSTM model. The specific

analysis are as follows:

(1) By comparing the prediction results of LSTM and LSSVM-

LSTM, it can be seen that the latter outperforms the former

in both cases. Taking the results of case in the 1-step ahead

forecasting scenario as an example, the results of the

evaluation indicators eMAPE, eRMSE and R2 of the LSTM

and LSSVM-LSTM are (2.2273, 0.6975, 0.9290) and (2.1896,

0.6946, 0.9296), and the improvement degree of the

corresponding indicators was 1.69%. 0.41 and 0.064%

respectively. It can be concluded that in the study of the

single prediction model without decomposition technique,

compared with LSTM, LSSVM-LSTM combined with

LSSVM can better reduce the calculation difficulty of

carbon price prediction and improve the prediction

accuracy of the model.

(2) In the hybrid model applying the single decomposition

technique, by comparing the prediction results of the

TABLE 3 Characteristics of different models.

Model number Model name Optimized prediction model Single
decomposition technique

Quadratic
decomposition technique

Model 1 LSTM

Model 2 LSSVM-LSTM √

Model 3 EEMD-LSTM √

Model 4 EEMD-LSSVM-LSTM √ √

Model 5 CEEMDAN-LSTM √

Model 6 CEEMDAN-LSSVM-LSTM √ √

Model 7 VMD-LSTM √

Model 8 VMD-LSSVM-LSTM √ √

Model 9 VMD-EEMD-LSTM √

Model 10 VMD-EEMD-LSSVM-LSTM √ √

Model 11 VMD-CEEMDAN-LSTM √

Model 12 VMD-CEEMDAN-LSSVM-
LSTM

√ √
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hybrid model with LSSVM-LSTM model and the hybrid

model with LSTM model, it can be seen that the prediction

results of the hybrid model with LSSVM-LSTM in two

different cases are better than those of the hybrid model

with LSTM model. Taking the numerical results of case I

combined with the VMD technology in the 1-step 1-step

FIGURE 3
A comparison chart of the results of multi-step ahead forecasting of the Case I.
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ahead forecasting scenario as an example, the results of the

evaluation indicators eMAPE, eRMSE and R2 predicted by the

VMD-LSTM and VMD-LSSVM-LSTM are (0.8494, 0.2576,

0.9903) and (0.7087, 0.2113, 0.9934), and the improvement

degree of the corresponding indicators was 16.56, 17.97 and

3.13% respectively. This result indicates that the superiority

FIGURE 4
A comparison chart of the results of multi-step ahead forecasting of the Case II.
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of LSSVM-LSTM in performance is also suitable for the

prediction research with single decomposition technique.

(3) In the hybrid model using quadratic decomposition

technique, VMD-EEMD-LSSVM-LSTM and VMD-

CEEMDAN-LSSVM-LSTM combined with LSSVM-LSTM

have better prediction results than VMD-EEMD-LSTM and

VMD-CEEMDAN-LSTM combined with LSTM. This result

shows that LSSVM-LSTM is more superior than LSTM for

carbon price prediction, and it is not only applicable to the

hybrid model combined with the single decomposition

TABLE 4 Dunnett test results for the benchmark model.

Model number One-step ahead Two-step ahead Four-step ahead

Case I Case II Case I Case II Case I Case II

Model 1 0* 0* 0* 0* 0* 0*

Model 2 0* 0* 0* 0* 0* 0*

Model 3 0* 0* 0.0002* 0* 0.0053* 0*

Model 4 0.0002* 0.0001* 0.0055* 0.0079* 0.0061* 0*

Model 5 0* 0.0001* 0.0034* 0.0079* 0.0030* 0.5592

Model 6 0.0133* 0.1817 0.0057* 0.9791 0.0637* 0.9526

Model 7 0.0122* 0.2385 0.1095 0.9986 0.4360 0.9918

Model 8 0.0846* 0.9234 0.5214 1 0.8055 0.9956

Model 9 0.9402 0.9391 0.9999 1 0.9999 0.9989

Model 10 1 0.9998 1 0.9999 1 0.9999

Model 11 0.9901 0.9882 0.9999 0.9999 0.9999 0.9999

Note: * means the value is less than 0.1.

TABLE 5 Prediction results of models without decomposition technique (Case I).

Model
number

One-step ahead Two-step ahead Four-step ahead

eMAPE eRMSE R2 eMAPE eRMSE R2 eMAPE eRMSE R2

Model 1 2.2273 0.6975 0.9290 3.0495 0.9905 0.8569 3.6425 1.2441 0.7742

Model 2 2.1896 0.6946 0.9296 2.6978 0.8473 0.8953 3.6122 1.1977 0.7908

Note: The bold values indicate that the corresponding model achieves the best prediction performance.

TABLE 6 Prediction results of the model combined with single decomposition technique (Case I).

Model
number

One-step ahead Two-step ahead Four-step ahead

eMAPE eRMSE R2 eMAPE eRMSE R2 eMAPE eRMSE R2

Model 3 1.0667 0.3072 0.9862 1.2964 0.3685 0.9801 1.7093 0.5094 0.7742

Model 4 0.9816 0.2758 0.9889 1.1520 0.3388 0.9832 1.6317 0.4645 0.7908

Model 5 1.0448 0.2994 0.9869 1.1968 0.3604 0.9810 1.6686 0.4743 0.9621

Model 6 0.7856 0.2338 0.9920 1.1275 0.3227 0.9848 1.4338 0.0452 0.9685

Model 7 0.8494 0.2576 0.9903 0.9593 0.2791 0.9886 1.1832 0.3294 0.9672

Model 8 0.7087 0.2113 0.9934 0.7615 0.2288 0.9923 1.0182 0.2899 0.9760

Note: The bold values indicate that the corresponding model achieves the best prediction performance.
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TABLE 7 Prediction results of the model combined with quadratic decomposition technique (Case I).

Model
number

One-step ahead Two-step ahead Four-step ahead

eMAPE eRMSE R2 eMAPE eRMSE R2 eMAPE eRMSE R2

Model 9 0.4713 0.1366 0.9972 0.5122 0.1534 0.9965 0.7247 0.2172 0.9931

Model 10 0.3257 0.0942 0.9985 0.4340 0.1354 0.9970 0.6587 0.2056 0.9938

Model 11 0.4425 0.1356 0.9973 0.4862 0.1473 0.9968 0.7269 0.2114 0.9934

Model 12 0.3087 0.0921 0.9987 0.4259 0.1338 0.9973 0.6376 0.1988 0.9942

Note: The bold values indicate that the corresponding model achieves the best prediction performance.

TABLE 8 Prediction results of models without decomposition technique (Case II).

Model
number

One-step ahead Two-step ahead Four-step ahead

eMAPE eRMSE R2 eMAPE eRMSE R2 eMAPE eRMSE R2

Model 1 5.7926 5.5159 0.5178 8.2416 7.7924 0.0376 9.3081 8.7133 −0.2032

Model 2 5.1456 5.0543 0.5951 5.9125 5.7943 0.4678 8.7567 8.3907 −0.1158

Note: The bold values indicate that the corresponding model achieves the best prediction performance.

TABLE 9 Prediction results of the model combined with single decomposition technique (Case II).

Model
number

One-step ahead Two-step ahead Four-step ahead

eMAPE eRMSE R2 eMAPE eRMSE R2 eMAPE eRMSE R2

Model 3 3.4733 3.613 0.7931 4.9372 5.1817 0.5744 5.9114 5.9398 0.4408

Model 4 2.8696 2.9211 0.8647 3.3489 3.642 0.7897 5.2673 5.8078 0.4654

Model 5 2.405 2.6091 0.8424 2.9179 3.1534 0.6897 2.8887 3.2899 0.8284

Model 6 2.1864 2.2585 0.9191 2.3639 2.6631 0.8876 2.5943 3.0476 0.8528

Model 7 2.1762 2.300 0.9161 2.2509 2.4099 0.9079 2.4769 2.6676 0.8872

Model 8 1.8337 1.9922 0.9370 2.0427 2.3078 0.9155 2.4629 2.6259 0.8907

Note: The bold values indicate that the corresponding model achieves the best prediction performance.

TABLE 10 Prediction results of the model combined with quadratic decomposition technique (Case II).

Model
number

One-step ahead Two-step ahead Four-step ahead

eMAPE eRMSE R2 eMAPE eRMSE R2 eMAPE eRMSE R2

Model 9 1.8094 1.9332 0.9407 1.9853 2.1487 0.9260 2.3923 2.5950 0.8932

Model 10 1.6602 1.8543 0.9455 1.9535 2.1551 0.9263 2.2020 2.4718 0.9031

Model 11 1.7640 1.8574 0.9453 1.9311 2.1514 0.9133 2.3431 2.5303 0.8985

Model 12 1.5080 1.6857 0.9549 1.8026 2.0265 0.9268 2.1420 2.3645 0.9113

Note: The bold values indicate that the corresponding model achieves the best prediction performance.
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technology, but also applicable to the hybrid model

combined with the quadratic decomposition technique.

The above conclusions are consistent in the research of

different case samples. As a special commodity, the price of

carbon allowances is bound to be affected by historical prices. It is

difficult for a single LSTM model to fully describe the

characteristics of carbon price data. Compared with LSTM,

LSSVM-LSTM can better capture the long-term correlation

between price data, mine valuable information in historical

time series, and adapt to the complex change form of carbon

price series, so it has better prediction performance.

4.4.2 Analysis of decomposition techniques
The hybrid models combined with decomposition

techniques in this paper can be divided into two different

types: the hybrid model using single decomposition technique

and the hybrid model using quadratic decomposition technique.

Based on the empirical research results of carbon price

forecasting, it shows that VMD technology can effectively

improve the prediction performance of the hybrid model with

single decomposition technique. The quadratic decomposition

technique VMD-CEEMDAN proposed in this paper has better

performance than all single decomposition techniques and other

different types of quadratic decomposition techniques, which

confirms the effectiveness of the decomposition strategy

constructed in this paper. The specific analysis is as follows:

(1) Decomposition technology can effectively improve the

prediction accuracy. Comparing the prediction results of

the single model without the decomposition technique and

the hybrid model with the decomposition technique, it can

be seen that the hybrid model with the decomposition

technique outperforms the single model in all multi-step

ahead forecasting scenarios. This result demonstrates the

validity of the TEI@I complex system research methodology

for carbon price forecasting. By applying the decomposition

technology to carbon prices, the complexity of the price

series can be effectively reduced, and the prediction ability of

the overall model can be improved.

(2) The decomposition effect of VMD technology is better than

EEMD technology and CEEMDAN technology. In the

hybrid model applying single decomposition technique, by

comparing the prediction results of the hybrid model

combining EEMD technology (EEMD-LSTM and EEMD-

LSSVM-LSTM), CEEMDAN technology (CEEMDAN-

LSTM and CEEMDAN-LSSVM-LSTM) and VMD

technology (VMD-LSTM and VMD-LSSVM-LSTM), it

can be seen that CEEMDAN technology has achieved

better prediction performance than EEMD technology,

while VMD technology has achieved better performance

than EEMD technology and CEEMDAN technology in

any prediction situation of different cases. This result

shows that CEEMDAN technology selected in this paper

is more effective than EEMD technology in the prediction of

carbon price, while VMD technology can transform complex

information contained in carbon price into more stable and

regular modal information compared with other

decomposition technologies.

(3) The effect of quadratic decomposition technique is

significantly better than that of single decomposition

technology. By comparing the results of the hybrid model

using the single decomposition technique (EEMD-LSTM,

EEMD-LSSVM-LSTM, CEEMDAN-LSTM, CEEMDAN-

LSSVM-LSTM, VMD-LSTM and VMD-LSSVM-LSTM)

and the hybrid model using the quadratic decomposition

technique (VMD-EEMD-LSTM 、VMD-EEMD-LSSVM-

LSTM 、VMD-CEEMDAN-LSTM and VMD-

CEEMDAN-LSSVM-LSTM), it can be seen that the

hybrid model combined with the quadratic decomposition

technique has better decomposition effect than the single

decomposition technique, which effectively reduces the value

of evaluation indicators, and shows the effectiveness of the

quadratic decomposition technique in the research of carbon

price prediction.

(4) VMD-CEEMDAN technology has the best ability to

decompose data. In the hybrid model applying the

quadratic decomposition technique, by comparing the

prediction results of the models applying the VMD-

EEMD technology (VMD-EEMD-LSTM and VMD-

EEMD-LSSVM-LSTM) and the VMD-CEEMDAN

technology (VMD-CEEMDAN-LSTM and VMD-

CEEMDAN-LSSVM-LSTM), it can be seen that VMD-

CEEMDAN technology can deal with the residual term

after VMD technology is applied more effectively than

VMD-EEMD technology.

(5) The VMD-CEEMDAN-LSSVM-LSTM hybrid model has

the best prediction performance. In the 1-step, 2-step and

4-step ahead forecasting scenarios, with the increase of the

prediction step size, the values of the error indicators of each

model show an upward trend due to the existence of error

accumulation. The VMD-CEEMDAN-LSSVM-LSTM

model proposed in this paper can maintain the smallest

error value in all forward multi-step forecasting studies,

indicating the robustness of this hybrid model in the

research of carbon price forecasting.

To sum up, the data of carbon price is highly nonlinear

and complex, which leads to the unsatisfactory prediction

effect of traditional single prediction model on carbon price.

The empirical results of different sample cases show that the

single decomposition technology can reduce noise and

improve the prediction accuracy of carbon price to a

certain extent. Further, compared with the single

decomposition technology, the quadratic decomposition

technique can more accurately process data with high
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nonlinearity and irregularity, effectively break through the

limitations of the model, and achieve higher-precision

predictions.

5 Conclusion

The effective prediction of carbon price is of great significance

to all parties involved in carbon market transactions and relevant

policy makers. Aiming at overcoming deficiencies of the existing

research on carbon price prediction using decomposition

technology, this paper combines VMD, CEEMDAN and

LSSVM-LSTM technology to construct a new hybrid model

VMD-CEEMDAN-LSSVM-LSTM.

In this hybrid model, a new quadratic decomposition

technique, VMD-CEEMDAN, is introduced for the first time.

The complex information contained in the residual term of the

original carbon price series obtained by VMD technology is

considered, and the prediction research is carried out based on

LSSVM-LSTM model. The empirical research results based on

the carbon price of the EU ETS show that, compared with a series

of other benchmark models, the hybrid model VMD-

CEEMDAN-LSSVM-LSTM proposed in this paper can

maintain the best performance in all multi-step ahead

forecasting scenarios. The excellent performance shows that

the hybrid model constructed in this paper can effectively

describe the complex fluctuation information in the carbon

price series, which significantly improves the overall

prediction performance of the model.

It is worth mentioning that the carbon price prediction

model proposed in this paper only takes the price data as the

input of the model. Although this method of prediction based on

historical price data can have excellent prediction results to a

certain extent, the carbon trading market is jointly influenced by

internal market mechanism and external

environmental heterogeneity, such as supply and demand,

climate change, government intervention and many other

different factors. The impact mechanism of different factors

on carbon price volatility is complex. Therefore, in the future

research, the model proposed in this paper can be combined with

other influencing factors, and a multi-factor model can be

constructed to explore the influence of different factors on

carbon price fluctuation, so as to further improve the

rationality and effectiveness of carbon price prediction.

Data availability statement

The original contributions presented in the study are

included in the article/supplementary material further

inquiries can be directed to the corresponding author.

Author contributions

TZ: Conceptualization, Validation, Writing—review and

editing, Supervision, Methodology, Software, Formal analysis,

Writing—original draft, Visualization. ZT: Data curation, Project

administration, Investigation, Resource acquisition, Form

suggestion, Funding acquisition.

Acknowledgments

The authors gratefully acknowledge the financial support

from the National Natural Science Foundation of China under

Grant Nos. 71973028.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Aatola, P., Ollikainen, M., and Toppinen, A. (2013). Price determination in the
EU ETS market: Theory and econometric analysis with market fundamentals.
Energy Econ. 36, 380–395. doi:10.1016/j.eneco.2012.09.009

Atsalakis, G. S. (2016). Using computational intelligence to forecast
carbon prices. Appl. Soft Comput. 43, 107–116. doi:10.1016/j.asoc.2016.
02.029

Bauer, N., Bertram, C., Schultes, A., Klein, D., Luderer, G., Kriegler, E., et al.
(2020). Quantification of an efficiency–sovereignty trade-off in climate policy.
Nature 588, 261–266. doi:10.1038/s41586-020-2982-5

Benz, E., and Trück, S. (2009). Modeling the price dynamics of CO2 emission
allowances. Energy Econ. 31, 4–15. doi:10.1016/j.eneco.2008.07.003

Bulai, V. C., Horobet, A., Popovici, O. C., Belascu, L., and Dumitrescu, S. A.
(2022). A VaR-based methodology for assessing carbon price risk across
European Union economic sectors. Energies 14 (24), 8424. doi:10.3390/
en14248424

Byun, S. J., and Cho, H. (2013). Forecasting carbon futures volatility using
GARCH models with energy volatilities. Energy Econ. 40, 207–221. doi:10.1016/j.
eneco.2013.06.017

Frontiers in Energy Research frontiersin.org16

Zhang and Tang 10.3389/fenrg.2022.991570

https://doi.org/10.1016/j.eneco.2012.09.009
https://doi.org/10.1016/j.asoc.2016.02.029
https://doi.org/10.1016/j.asoc.2016.02.029
https://doi.org/10.1038/s41586-020-2982-5
https://doi.org/10.1016/j.eneco.2008.07.003
https://doi.org/10.3390/en14248424
https://doi.org/10.3390/en14248424
https://doi.org/10.1016/j.eneco.2013.06.017
https://doi.org/10.1016/j.eneco.2013.06.017
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.991570


Cai, G., Wang, W., and Lu, J. (2016). A novel hybrid short term load forecasting
model considering the error of numerical weather prediction. Energies 9 (12), 994.
doi:10.3390/en9120994

Calisir, D., and Dogantekin, E. (2011). A new intelligent hepatitis diagnosis
system: PCA-LSSVM. Expert Syst. Appl. 38 (8), 10705–10708. doi:10.1016/j.eswa.
2011.01.014

Cao, J., Li, Z., and Li, J. (2019). Financial time series forecasting model based on
CEEMDAN and LSTM. Phys. A Stat. Mech. its Appl. 519, 127–139. doi:10.1016/j.
physa.2018.11.061

Chai, S. L., Zhang, Z. X., and Zhang, Z. (2021). Carbon price prediction for
China’s ETS pilots using variational mode decomposition and optimized extreme
learning machine. Ann. Oper. Res., 18. 1–22. doi:10.1007/s10479-021-04392-7

Chen, Z. F., Zhang, X., and Chen, F. L. (2021). Do carbon emission trading
schemes stimulate green innovation in enterprises? Evidence from China. Technol.
Forecast. Soc. Change 168, 120744. doi:10.1016/j.techfore.2021.120744

Cui, L., Fan, Y., Zhu, L., and Bi, Q. (2014). How will the emissions trading scheme
save cost for achieving China’s 2020 carbon intensity reduction target? Appl. Energy
136, 1043–1052. doi:10.1016/j.apenergy.2014.05.021

da Silva, R. G., Moreno, S. R., Ribeiro, M. H. D., Larcher, J. H. K., Mariani, V.
C., and Coelho, L. D. (2022). Multi-step short-term wind speed forecasting based
on multi-stage decomposition coupled with stacking-ensemble learning
approach. Int. J. Electr. Power & Energy Syst. 143, 108504. doi:10.1016/j.
ijepes.2022.108504

da Silva, R. G., Ribeiro, M. H. D., Moreno, S. R., Mariani, V. C., and Coelho, L. D.
(2021). A novel decomposition-ensemble learning framework for multi-step ahead
wind energy forecasting. Energy 216, 119174. doi:10.1016/j.energy.2020.119174

Duan, H. B., Mo, J. L., Fan, Y., and Wang, S. Y. (2018). Achieving China’s energy
and climate policy targets in 2030 under multiple uncertainties. Energy Econ. 70,
45–60. doi:10.1016/j.eneco.2017.12.022

Duc, Khuong, N., Toan, L. D. H., and Nasir, M. A. (2021). Carbon emissions
determinants and forecasting: Evidence from G6 countries. J. Environ. Manag. 285,
111988. doi:10.1016/j.jenvman.2021.111988

Fan, X., Lv, X., Yin, J., Tian, L., and Liang, J. (2019). Multifractality and market
efficiency of carbon emission trading market: Analysis using the multifractal
detrended fluctuation technique. Appl. Energy 251, 113333. doi:10.1016/j.
apenergy.2019.113333

Fang, K. A., and Xie, B. (2011). Research on dealing with missing data based on
clustering and association rule. Stat. Res. 2, 89–94.

Feijoo, F., Silva, W., and Das, T. K. (2016). A computationally efficient electricity
price forecasting model for real time energy markets. Energy Convers. Manag. 113,
27–35. doi:10.1016/j.enconman.2016.01.043

Gao, R. B., Du, L., Suganthan, P. N., Zhou, Q., and Yuen, K. F. (2022). Random
vector functional link neural network based ensemble deep learning for short-term
load forecasting. Expert Syst. Appl. 206, 117784. doi:10.1016/j.eswa.2022.117784

Gundu, V., and Simon, S. P. (2021). PSO-LSTM for short term forecast of
heterogeneous time series electricity price signals. J. Ambient. Intell. Humaniz.
Comput. 12 (2), 2375–2385. doi:10.1007/s12652-020-02353-9

Hao, Y., and Tian, C. (2019). A novel two-stage forecasting model based on error
factor and ensemble method for multi-step wind power forecasting. Appl. Energy
238, 368–383. doi:10.1016/j.apenergy.2019.01.063

Huang, Y. C., and He, Z. (2020). Carbon price forecasting with optimization
prediction method based on unstructured combination. Sci. Total Environ. 725,
138350. doi:10.1016/j.scitotenv.2020.138350

Huang, Y. M., Dai, X. Y., Wang, Q. W., and Zhou, D. Q. (2021). A hybrid model
for carbon price forecasting using GARCH and long short-term memory network.
Appl. Energy 285, 116485. doi:10.1016/j.apenergy.2021.116485

Jiang, S. M., Yang, C., Guo, J. T., and Ding, Z. W. (2018). ARIMA forecasting of
China’s coal consumption, price and investment by 2030. Energy Sources Part B
Econ. Plan. Policy 13 (3), 190–195. doi:10.1080/15567249.2017.1423413

Ju, F. Y., and Hong, W. C. (2013). Application of seasonal SVR with chaotic
gravitational search algorithm in electricity forecasting. Appl. Math. Model. 37,
9643–9651. doi:10.1016/j.apm.2013.05.016

Keles, D., Scelle, J., Paraschiv, F., and Fichtner, W. (2016). Extended forecast
methods for day-ahead electricity spot prices applying artificial neural networks.
Appl. Energy 162, 218–230. doi:10.1016/j.apenergy.2015.09.087

Koch, N., Fuss, S., Grosjean, G., and Edenhofer, O. (2014). Causes of the EU ETS
price drop: Recession, CDM, renewable policies or a bit of everything?-New
evidence. Energy Policy 73, 676–685. doi:10.1016/j.enpol.2014.06.024

Krishan, M., Jha, S., Das, J., Singh, A., Goyal, M. K., and Sekar, C. (2019). Air
quality modelling using long short-term memory (LSTM) over NCT-Delhi,

India. Air Qual. Atmos. Health 12 (8), 899–908. doi:10.1007/s11869-019-
00696-7

Li, H. T., Jin, F., Sun, S. L., and Li, Y. W. (2021). A new secondary decomposition
ensemble learning approach for carbon price forecasting. Knowledge-based Syst.
214, 106686. doi:10.1016/j.knosys.2020.106686

Li, Y. (2020). Forecasting Chinese carbon emissions based on a novel time
series prediction method. Energy Sci. Eng. 8 (7), 2274–2285. doi:10.1002/
ese3.662

Lin, K. P., Pai, P. F., and Yang, S. L. (2011). Forecasting concentrations of
air pollutants by logarithm support vector regression with immune
algorithms. Appl. Math. Comput. 217 (12), 5318–5327. doi:10.1016/j.amc.
2010.11.055

Lin, T., Horne, B. G., and Giles, C. L. (1998). How embedded memory in recurrent
neural network architectures helps learning long-term temporal dependencies.
Neural Netw. 11 (5), 861–868. doi:10.1016/s0893-6080(98)00018-5

Liu, H., and Shen, L. (2019). Forecasting carbon price using empirical wavelet
transform and gated recurrent unit neural network. Carbon Manag. 11 (1), 25–37.
doi:10.1080/17583004.2019.1686930

Liu, J., Huang, Y., and Chang, C. (2020). Leverage analysis of carbon market price
fluctuation in China. J. Clean. Prod. 245, 118557. doi:10.1016/j.jclepro.2019.118557

Long, B., Xian, W., Li, M., and Wang, H. (2014). Improved diagnostics for the
incipient faults in analog circuits using LSSVM based on PSO algorithm with
Mahalanobis distance. Neurocomputing 133 (10), 237–248. doi:10.1016/j.neucom.
2013.11.012

Seyedan, M., Mafakheri, F., and Wang, C. (2022). Cluster-based demand
forecasting using Bayesian model averaging: An ensemble learning approach.
Decis. Anal. J. 3, 100033. doi:10.1016/j.dajour.2022.100033

Song, Y. Z., Liu, T. S., Liang, D. P., Li, Y., and Song, X. Q. (2019a). A fuzzy
stochastic model for carbon price prediction under the effect of demand-related
policy in China’s carbon market. Ecol. Econ. 157, 253–265. doi:10.1016/j.ecolecon.
2018.10.001

Song, Y. Z., Liu, T. S., Ye, B., Zhu, Y., Li, Y., and Song, X. Q. (2019b). Improving
the liquidity of China’s carbon market: Insight from the effect of carbon price
transmission under the policy release. J. Clean. Prod. 239, 118049. doi:10.1016/j.
jclepro.2019.118049

Stefenon, S. F., Ribeiro, M. H. D., Nied, A., Yow, K. C., Mariani, V. C., Coelho, L.
D., et al. (2022). Time series forecasting using ensemble learning methods for
emergency prevention in hydroelectric power plants with dam. Electr. Power Syst.
Res. 202, 107584. doi:10.1016/j.epsr.2021.107584

Sun, W., and Huang, C. (2020). A carbon price prediction model based on
secondary decomposition algorithm and optimized back propagation
neural network. J. Clean. Prod. 243, 118671–671. doi:10.1016/j.jclepro.
2019.118671

Sun, W., and Li, Z. Q. (2020). An ensemble-driven long short-term memory
model based on mode decomposition for carbon price forecasting of all eight
carbon trading pilots in China. Energy Sci. Eng. 8 (11), 4094–4115. doi:10.1002/
ese3.799

Sun, W., and Wang, Y. W. (2020). Factor analysis and carbon price prediction
based on empirical mode decomposition and least squares support vector machine
optimized by improved particle swarm optimization. Carbon Manag. 11 (3),
315–329. doi:10.1080/17583004.2020.1755597

Sun, W., and Xu, C. (2021). Carbon price prediction based on modified wavelet
least square support vector machine. Sci. Total Environ. 754, 142052. doi:10.1016/j.
scitotenv.2020.142052

Suykens, J. A. K., and Vandewalle, J. (1999). Least squares support vector machine
classifiers. Neural Process. Lett. 9 (3), 293–300. doi:10.1023/a:1018628609742

Taylan, O. (2017). Modelling and analysis of ozone concentration by artificial
intelligent techniques for estimating air quality. Atmos. Environ. 150, 356–365.
doi:10.1016/j.atmosenv.2016.11.030

Tian, C., and Hao, Y. (2020). Point and interval forecasting for carbon price based
on an improved analysis forecast system. Appl. Math. Model. 79, 126–144. doi:10.
1016/j.apm.2019.10.022

Wang, J. J., Sun, X., Cheng, Q., and Cui, Q. (2021). An innovative random forest-
based nonlinear ensemble paradigm of improved feature extraction and deep
learning for carbon price forecasting. Sci. Total Environ. 762, 143099. doi:10.
1016/j.scitotenv.2020.143099

Wang, S., E, J. W., and Li, S. G. (2019). A novel hybrid carbon price forecasting
model based on radial basis function neural network. Acta Phys. Pol. A 135 (3),
368–374. doi:10.12693/aphyspola.135.368

Wang, S., Yu, L., and Lai, K. K. (2005). Crude oil price forecasting with TEI@I
methodology. J. Syst. Sci. Complex. 18 (2), 145–166.

Frontiers in Energy Research frontiersin.org17

Zhang and Tang 10.3389/fenrg.2022.991570

https://doi.org/10.3390/en9120994
https://doi.org/10.1016/j.eswa.2011.01.014
https://doi.org/10.1016/j.eswa.2011.01.014
https://doi.org/10.1016/j.physa.2018.11.061
https://doi.org/10.1016/j.physa.2018.11.061
https://doi.org/10.1007/s10479-021-04392-7
https://doi.org/10.1016/j.techfore.2021.120744
https://doi.org/10.1016/j.apenergy.2014.05.021
https://doi.org/10.1016/j.ijepes.2022.108504
https://doi.org/10.1016/j.ijepes.2022.108504
https://doi.org/10.1016/j.energy.2020.119174
https://doi.org/10.1016/j.eneco.2017.12.022
https://doi.org/10.1016/j.jenvman.2021.111988
https://doi.org/10.1016/j.apenergy.2019.113333
https://doi.org/10.1016/j.apenergy.2019.113333
https://doi.org/10.1016/j.enconman.2016.01.043
https://doi.org/10.1016/j.eswa.2022.117784
https://doi.org/10.1007/s12652-020-02353-9
https://doi.org/10.1016/j.apenergy.2019.01.063
https://doi.org/10.1016/j.scitotenv.2020.138350
https://doi.org/10.1016/j.apenergy.2021.116485
https://doi.org/10.1080/15567249.2017.1423413
https://doi.org/10.1016/j.apm.2013.05.016
https://doi.org/10.1016/j.apenergy.2015.09.087
https://doi.org/10.1016/j.enpol.2014.06.024
https://doi.org/10.1007/s11869-019-00696-7
https://doi.org/10.1007/s11869-019-00696-7
https://doi.org/10.1016/j.knosys.2020.106686
https://doi.org/10.1002/ese3.662
https://doi.org/10.1002/ese3.662
https://doi.org/10.1016/j.amc.2010.11.055
https://doi.org/10.1016/j.amc.2010.11.055
https://doi.org/10.1016/s0893-6080(98)00018-5
https://doi.org/10.1080/17583004.2019.1686930
https://doi.org/10.1016/j.jclepro.2019.118557
https://doi.org/10.1016/j.neucom.2013.11.012
https://doi.org/10.1016/j.neucom.2013.11.012
https://doi.org/10.1016/j.dajour.2022.100033
https://doi.org/10.1016/j.ecolecon.2018.10.001
https://doi.org/10.1016/j.ecolecon.2018.10.001
https://doi.org/10.1016/j.jclepro.2019.118049
https://doi.org/10.1016/j.jclepro.2019.118049
https://doi.org/10.1016/j.epsr.2021.107584
https://doi.org/10.1016/j.jclepro.2019.118671
https://doi.org/10.1016/j.jclepro.2019.118671
https://doi.org/10.1002/ese3.799
https://doi.org/10.1002/ese3.799
https://doi.org/10.1080/17583004.2020.1755597
https://doi.org/10.1016/j.scitotenv.2020.142052
https://doi.org/10.1016/j.scitotenv.2020.142052
https://doi.org/10.1023/a:1018628609742
https://doi.org/10.1016/j.atmosenv.2016.11.030
https://doi.org/10.1016/j.apm.2019.10.022
https://doi.org/10.1016/j.apm.2019.10.022
https://doi.org/10.1016/j.scitotenv.2020.143099
https://doi.org/10.1016/j.scitotenv.2020.143099
https://doi.org/10.12693/aphyspola.135.368
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.991570


Wu, Z., and Huang, N. E. (2004). A study of the characteristics of white noise
using the empirical mode decomposition method. Proc. R. Soc. Lond. A 460 (2046),
1597–1611. doi:10.1098/rspa.2003.1221

Xu, H., Wang, M., Jiang, S., and Yang, W. (2020). Carbon price forecasting with
complex network and extreme learning machine. Phys. A Stat. Mech. its Appl. 545,
122830. doi:10.1016/j.physa.2019.122830

Yang, S. M., Chen, D. J., Li, S. L., andWang,W. J. (2020). Carbon price forecasting
based on modified ensemble empirical mode decomposition and long short-term
memory optimized by improved whale optimization algorithm. Sci. Total Environ.
716, 137117. doi:10.1016/j.scitotenv.2020.137117

Yu, Z., Yang, C., Zhang, Z., and Jiao, J. (2015). Error correction method based
on data transformational GM (1, 1) and application on tax forecasting. Appl.
Soft Comput. 37, 554–560. doi:10.1016/j.asoc.2015.09.001

Yun, P., Zhang, C., Wu, Y. Q., Yang, X. Z., and Wagan, Z. A. (2020). A novel
extended higher-order moment multi-factor framework for forecasting the carbon
price: Testing on the multilayer long short-term memory network. Sustainability 12
(5), 1869. doi:10.3390/su12051869

Zhang, J. L., Li, D., Hao, Y., and Tan, Z. F. (2018). A hybrid model using signal
processing technology, econometric models and neural network for carbon spot
price forecasting. J. Clean. Prod. 204, 958–964. doi:10.1016/j.jclepro.2018.09.071

Zhang, Y. J., and Wei, Y. M. (2010). An overview of current research on EU ETS:
Evidence from its operating mechanism and economic effect. Appl. Energy 87 (6),
1804–1814. doi:10.1016/j.apenergy.2009.12.019

Zhang, Y., Wang, P., Ni, T., Cheng, P., and Lei, S. (2017). Wind power prediction
based on LS-SVM model with error correction. Adv. Electr. Comp. Eng. 17 (1), 3–8.
doi:10.4316/aece.2017.01001

Zheng, X., Kok, S., Wen, C., Haslenda, H., and Yee, V. (2022). Forecasting
heterogeneous municipal solid waste generation via Bayesian-optimised neural
network with ensemble learning for improved generalization. Comput. Chem. Eng.
166, 107946. doi:10.1016/j.compchemeng.20

Zhu, B., Han, D., Wang, P., Wu, Z., Zhang, T., and Wei, Y. M. (2017). Forecasting
carbon price using empiricalmode decomposition and evolutionary least squares support
vector regression. Appl. Energy 191, 521–530. doi:10.1016/j.apenergy.2017.01.076

Zhu, B., Wang, P., Chevallier, J., Wei, Y. M., and Xie, R. (2018). Enriching the VaR
framework to EEMDwith an application to the European carbon market. Int. J. Fin.
Econ. 23, 315–328. doi:10.1002/ijfe.1618

Zhu, J. M., Wu, P., Chen, H. Y., Liu, J. P., and Zhou, L. G. (2019). Carbon
price forecasting with variational mode decomposition and optimal combined
model. Phys. A Stat. Mech. its Appl. 519, 140–158. doi:10.1016/j.physa.2018.
12.017

Frontiers in Energy Research frontiersin.org18

Zhang and Tang 10.3389/fenrg.2022.991570

https://doi.org/10.1098/rspa.2003.1221
https://doi.org/10.1016/j.physa.2019.122830
https://doi.org/10.1016/j.scitotenv.2020.137117
https://doi.org/10.1016/j.asoc.2015.09.001
https://doi.org/10.3390/su12051869
https://doi.org/10.1016/j.jclepro.2018.09.071
https://doi.org/10.1016/j.apenergy.2009.12.019
https://doi.org/10.4316/aece.2017.01001
https://doi.org/10.1016/j.compchemeng.20
https://doi.org/10.1016/j.apenergy.2017.01.076
https://doi.org/10.1002/ijfe.1618
https://doi.org/10.1016/j.physa.2018.12.017
https://doi.org/10.1016/j.physa.2018.12.017
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.991570

	Multi-step carbon price forecasting based on a new quadratic decomposition ensemble learning approach
	1 Introduction
	2 Literature review
	3 Methodology
	3.1 Decomposition algorithms
	3.1.1 VMD
	3.1.2 CEEMDAN

	3.2 Prediction models
	3.2.1 LSSVM
	3.2.2 LSTM
	Construction of the hybrid model VMD-CEEMDAN-LSSVM-LSTM


	4 Empirical study
	4.1 Source of data
	4.2 Data description and data processing
	4.3 Evaluation indicators
	4.4 Benchmark model
	4.4 Analysis of empirical results
	4.4.1 Analysis of prediction model
	4.4.2 Analysis of decomposition techniques


	5 Conclusion
	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	References


