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Abstract. In this paper, we consider the existence of positive solutions for a semipositone third-
order nonlinear ordinary differential equation on time scales. In suitable growth conditions, by
considering the properties on time scales and establishing a special cone, some new results on the
existence of positive solutions are established when the nonlinearity is semipositone.
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1 Introduction

In this paper, we focus on the existence of positive solutions for the following third-order
nonlinear differential equation on time scales:

−
(
x∆∆

)∇
(t) + f

(
t, x
(
σ(t)

))
+ q(t) = 0, t ∈ [0, 1]T,

x(0) = x∆(t1) =

1∫
t2

p(s)x∆∆(s)∇s = 0,
(1)

where 1/2 < t1 < t2 < 1 are two constants, [0, 1]T =: [0, 1] ∩ T denotes the time-scale
interval, f : (0, 1)T × [0,∞) → R is continuous, q ∈ L(0, 1)T, and p : [t2, 1] → [0,∞)
is a continuous function.
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Nonlinear differential equations have extensive applications in theory as well as in
practice such as in engineering, applied mathematics, gas dynamics, and the physical and
biological sciences. Some rich sources of nonlinear differential equations can be found
in [4, 5, 7, 12, 13, 17, 19–21, 25–27, 29, 31, 32, 34–36] and singular semipositone boundary
value problems in [6, 15, 28, 33, 37]. In particular, Graef and Yang [7] considered the
existence and nonexistence of positive solutions for a nonlocal boundary value problem
of third-order differential equation

u′′′(t) = g(t)f
(
u(t)

)
, t ∈ [0, 1],

u(0) = u′(p) =

1∫
q

ω(t)u′′(t) dt = 0,

where 1/2 < p < q < 1 are constants, g : [0, 1] → [0,∞) is a continuous function such
that g(t) 6≡ 0 on [0, 1], f : [0,∞)→ [0,∞) is continuous. By using Guo–Krasnosel’skii
fixed point theorem, some sufficient conditions for the existence and nonexistence of
positive solutions were established. In [6], Graef and Kong established the existence of
positive solutions for the following third-order semipositone boundary value problem:

u′′′(t) = λf(t, u) + e(t), t ∈ [0, 1],

u(0) = u′(p) =

1∫
q

ω(s)u′′(s) ds = 0,

where λ > 0 is a parameter, 1/2 < p < q < 1 are constants, f : (0, 1) × [0,∞) → R,
e : (0, 1) → R and ω : [q, 1] → [0,∞) are continuous functions, and e ∈ L(0, 1). For
more details about multiple point boundary value problems and integral boundary value
problems, we refer the reader to the survey of [22, 36, 38] and [11, 23, 24, 26, 30, 31].

On the other hand, in nature, there exist many time scales such as the Cantor set, the
set of harmonic numbers {

∑n
k=1 1/k, n ∈ Z} and hZ, h > 0, and so on. An example is

a population of a species where all of the adults die out before the babies are born, which
leads to a union of disjoint closed intervals, i.e., a time scale. In [9], Hao et al. dealt with
the following boundary value problem of singular nonlinear dynamic equation on time
scales: (

ϕ(t)x∆
)∇

(t) + λm(t)f
(
t, x
(
σ(t)

))
= 0, t ∈ (a, b),

αx(a)− βx(a) = 0,

γz
(
σ(b)

)
+ δz∆

(
σ(b)

)
= 0,

where f ∈ C([a, σ(b)]×[0,+∞), (0,+∞)). By employing the Krasnosel’skii fixed point
theorem, an existence theorem of positive solutions was established. For other specific
examples and research on related problems, we refer the reader to [2, 3, 10, 16, 18].

However, to the best of our knowledge, few results have been reported for semiposi-
tone nonlinear dynamic equation on time scales, thus motivated by the above works, in
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Existence of positive solutions for third-order semipositone BVP on time scales 135

this paper, we focus on the existence of positive solutions for the third-order nonlinear
differential equation on time scales (1) when the nonlinearity is semipositone. By intro-
ducing suitable growth conditions and constructing a special cone, some new results on
the existence of positive solutions are established under the case where nonlinearity is
semipositone.

This paper is organized as follows. In Section 2, we give some preliminaries and
lemmas, which will be used to prove our main results. In Section 3, we discuss the
existence of positive solutions of the boundary value problems by using the fixed point
theorem.

2 Preliminaries and lemmas

To understand so-called time scale (measure chain), in this section, we firstly start with
some preliminaries of time scales from recent literatures [1, 9, 14].

Definition 1. Define the forward jump and backward jump operators at t for t < supT
and t > inf T, respectively, by

σ(t) := inf{s ∈ T: s > t} ∈ T,
ρ(t) := sup{s ∈ T: s < t} ∈ T.

The point t ∈ T is left dense, left scattered, right dense, and right scattered if ρ(t) = t,
ρ(t) < t, σ(t) = t, and σ(t) > t, respectively. The set Tk is defined to be T if T does not
have a left-scattered maximum; otherwise, it is T without this left-scattered maximum.

Definition 2. Assume that x : T → R and t ∈ Tk. Then we define x∆(t) to be the
number with the property that, given any ε > 0, there is a neighborhood U of t such that∣∣x(σ(t)

)
− x(s)− x∆(t)

[
σ(t)− s

]∣∣ 6 ε∣∣σ(t)− s
∣∣

for all s ∈ U , t ∈ T. The second derivative of x(t) is defined by x∆∆(t) = (x∆)∇(t).

In order to obtain our main results, we give some assumptions that will be used in the
rest paper.

(G1) q ∈ L((0, 1)T, (−∞,+∞)), and p : [t2, 1]T → [0,∞) is a continuous and
nondecreasing function.

(G2) There exist functionsM,N ∈L((0, 1)T, (0,+∞)) and g∈C([0,+∞), (0,+∞))
such that M(t) 6 f(t, x) 6 N(t)g(x), (t, x) ∈ (0, 1)T × [0,∞).

(G3) limx→+∞ f(t, x)/x = +∞ uniformly on any compact subinterval of (0, 1)T.
(G4) limx→+∞ g(x)/x = 0.

Let I ⊆ R be an interval, denote the characteristic function X of I as

XI(t) =

{
1, t ∈ I,
0, t /∈ I.
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Then it follows from [7] that the Green’s function for the equation (x∆∆)∇ = 0 subject
to the boundary condition

x(0) = x∆(t1) =

1∫
t2

p(s)x∆∆(s)∇s = 0

is

G(t, s) = −t(t1 − s)X[0,t1]T(s) +
(t− s)2

2
X[0,t]T(s)

+
t(2t1 − t)

2
P (s)X[t2,1]T(s) +

t(2t1 − t)
2

X[0,t2]T(s),

where

P (s) =

( 1∫
t2

p(v)∇v

)−1 1∫
s

p(v)∇v, s ∈ [t2, 1]T.

Clearly, G(t, s) > 0, t, s ∈ (0, 1)T.

Lemma 1. Assume that (G1) holds, then for any t, s ∈ [0, 1]T, the Green’s function
satisfies

G(t, s) 6 c(t)d(s),

where

c(t) =
2t

t1
− t2

t21
, d(s) =

t21
2

[
2t1

2t1 − 1
+ P (s)

]
.

Proof. Firstly, we consider the case s > t1.

G(t, s) =
t(2t1 − t)

t21

{
t21
2

[
P (s)X[t2,1]T(s) +X[0,t2]T(s) +

(t− s)2

t(2t1 − t)
X[0,t]T(s)

]}
6 c(t)

{
t21
2

[
P (s)X[t2,1]T(s) +X[0,t2]T(s) +

1

2t1 − 1
X[0,t]T(s)

]}
6 c(t)

{
t21
2

[
P (s) + 1 +

1

2t1 − 1

]}
= c(t)

{
t21
2

[
P (s) +

2t1
2t1 − 1

]}
= c(t)d(s).

Next, we consider the case s 6 t1.
If s > t, we have

G(t, s) =
t(2s− t)

2
=
t(2t1 − t)

t21

[
t21(2s− t)
2(2t1 − t)

]
6 c(t)

t21s

2t1 − 1
6 c(t)d(s).

If s 6 t, we still have

G(t, s) =
s2

2
=
t(2t1 − t)

t21

[
t21s

2

2t(2t1 − t)

]
6 c(t)

t21s

2(2t1 − 1)
6 c(t)d(s). �
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Remark 1. Noticing 1/2 < t1 < t2 < 1 and c(t) = 2t/t1− t2/t21, one has 0 6 c(t) 6 1
for any t ∈ [0, 1]T.

Now let
q+(t) := max

{
q(t), 0

}
, q−(t) = max

{
−q(t), 0

}
.

Consider the following linear equation of third-order boundary value problem on time
scales: (

x∆∆
)∇

(t) = q−(t) +M(t), t ∈ [0, 1]T,

x(0) = x∆(t1) =

1∫
t2

p(s)x∆∆(s)∇s = 0.
(2)

Lemma 2. The linear equation of third-order boundary value problem on time scales (2)
has a unique solution ω(t), and there exists a constant ρ > 0 such that ω(t) 6 ρc(t),
where

ρ = ‖d‖
1∫

0

[
q−(s) +M(s)

]
∇s.

Proof. Obviously, ω(t) =
∫ 1

0
G(t, s)[q−(s)+M(s)] ds is a unique solution of the BVP (2).

It follows from Lemma 1 that

ω(t) 6 c(t)

1∫
0

d(s)
[
q−(s) +M(s)

]
∇s 6 c(t)‖d‖

1∫
0

[
q−(s) +M(s)

]
∇s.

Let ρ = ‖d‖
∫ 1

0
[q−(s) +M(s)]∇s, then we have

ω(t) 6 ρc(t), t ∈ [0, 1]T.

In particular, it follows from Lemma 2 that the following boundary value problem(
x∆∆

)∇
(t) = M(t), t ∈ [0, 1]T,

x(0) = x∆(t1) =

1∫
t2

p(s)x∆∆(s)∇s = 0.

has a unique solution γ(t) in the form

γ(t) =

1∫
0

G(t, s)M(s)∇s, t, s ∈ [0, 1]T.

Remark 2. Given γ(t) 6 ω(t) and Remark 1, we have γ(t) 6 ρ.

Nonlinear Anal. Model. Control, 28(1):133–151, 2023
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Now for any t ∈ [0, 1]T, let us define a star function as follows:

[y]∗(t) =

{
y(t), y(t) > 0,

0, y(t) < 0,

and then consider the following boundary value problem:(
x∆∆

)∇
(t) = f

(
t,
(
[x− ω]∗ + γ)

(
σ(t)

))
+ q+(t), t ∈ [0, 1]T,

x(0) = x∆(t1) =

1∫
t2

p(s)x∆∆(s)∇s = 0.
(3)

The proof is complete.

Lemma 3. Let the nonlinear boundary value problem (3) has a solution x(t) such that
x(t) > ω(t). Then y(t) = x(t) − ω(t) + γ(t) is a positive solution of equation (1) with
y(t) > γ(t), t ∈ [0, 1]T.

Proof. It follows from the fact that x(t) is a positive solution of nonlinear boundary value
problem satisfying x(t) > ω(t) that(

x∆∆
)∇

(t) = f
(
t,
(
(x− ω) + γ

)(
σ(t)

))
+ q+(t), t ∈ [0, 1]T,

x(0) = x∆(t1) =

1∫
t2

p(s)x∆∆(s)∇s = 0.

Thus, (
y∆∆

)∇
(t) =

(
x∆∆

)∇
(t)−

(
ω∆∆

)∇
(t) +

(
γ∆∆

)∇
(t)

= f
(
t,
(
(x− ω) + γ

)(
σ(t)

))
+ q+(t)− q−(t)−M(t) +M(t)

= f
(
t, y
(
σ(t)

))
+ q(t),

and boundary condition y(0) = y∆(t1) =
∫ 1

t2
p(s)y∆∆(s)∇s = 0 also holds. Thus, the

proof of Lemma 3 is completed.

From Lemma 2 and the strategy of [7] we have the following lemma.

Lemma 4. If x ∈ C3[0, 1]T satisfies(
x∆∆

)∇
(t) > 0, t ∈ [0, 1]T,

x(0) = x∆(t1) =

1∫
t2

p(s)x∆∆(s)∇s = 0,
(4)

then x(t) > c(t)‖x‖ > min{t, 1− t}‖x‖ > 0, t ∈ [0, 1]T.
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Proof. In order to prove Lemma 4, we firstly show that x attains its maximum at t1, i.e.,
‖x‖ = x(t1). In fact, it follows from (4) that

1∫
t2

p(s)x∆∆(s)∇s = 0,

which implies that there exists t0 ∈ (t2, 1)T such that p(t0)x∆∆(t0) = 0. By (G1), we
have x∆∆(t0) = 0. Since (x∆∆)∇(t) > 0, we have that x∆∆(t) is nondecreasing on
[0, 1]T, it follows from x∆∆(t0) = 0 that

x∆∆(t) 6 0, t ∈ [0, t0]T; x∆∆(t) > 0, t ∈ [t0, 1]T, (5)

which implies that x∆(t) is nonincreasing on [0, t0]T. Notice [t1, t2] ⊂ [0, t0]T and
x∆(t1) = 0, then one has x∆(t2) 6 0 and x∆(0) > 0.

On the other hand, by (5) and monotonicity of p, for t ∈ [t2, 1]T, whether t ∈ [t2, t0, ]T
or t ∈ [t0, 1]T, we always have(

p(t)− p(t0)
)
x∆∆(t) > 0.

Therefore,

0 =

1∫
t2

p(s)x∆∆(s)∇s

=

1∫
t2

p(t0)x∆∆(s)∇s+

1∫
t2

(
p(s)− p(t0)

)
x∆∆(s)∇s

>

1∫
t2

p(t0)x∆∆(s)∇s = p(t0)
(
x∆(1)− x∆(t2)

)
,

which implies that x∆(1)− x∆(t2) 6 0. Thus, since x∆(t) is concave on [0, 1]T,

x∆(t) > 0, t ∈ [0, t1]T; x∆(t) 6 0, t ∈ [t1, 1]T,

that is, x(t) attains its maximum at t1.
Now let ‖x‖ = x(t1) and

y(t) = x(t)− c(t)‖x‖ = x(t)−
(

2t

t1
− t2

t21

)
‖x‖,

then

y∆(t) = x∆(t)−
(

2

t1
− 2t

t21

)
‖x‖, y∆∆(t) = x∆∆(t) +

2

t21‖x‖
,(

y∆∆
)∇

(t) =
(
x∆∆

)∇
(t) > 0.

Nonlinear Anal. Model. Control, 28(1):133–151, 2023
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Clearly, we have
y(0) = 0, y(t1) = 0, y∆(t1) = 0.

By the mean value theorem, there exists l1 ∈ (0, t1)T such that y∆(l1) = 0. Since y∆(t)
is concave, we have

y∆(t) > 0, t ∈ [0, l1]T; y∆(t) 6 0, t ∈ [l1, t1]T;

y∆(t) > 0, t ∈ [t1, 1]T.

It follows from y(0) = y(t1) = 0 that y(t) > 0, t ∈ [0, 1]T, i.e.,

x(t) > c(t)‖x‖ > min{t, 1− t}‖x‖ > 0, t ∈ [0, 1]T. �

In this paper, our working space is the Banach space E = C[0, 1]T, which equips the
usual maximum normal ‖x(t)‖ = maxt∈[0,1]T |x(t)|. Now define a cone K ⊂ E as

K =
{
x ∈ E: x(t1) > 0, c(t)‖x‖ 6 x(t) 6 x(t1), t ∈ [0, 1]T

}
,

where c(t) is given by Lemma 1, and then define an operator T : K → E as follows:

(Tx)(t) =

1∫
0

G(t, s)
[
f
(
s,
(
[x− ω]∗ + γ)(σ(s)

))
+ q+(s)

]
∇s.

According to Lemma 3, the solution of equation (1) is equivalent to the fixed point of the
operator T .

Lemma 5. (See [8].) LetE be a real Banach space,K is a cone ofE. Assume thatΩ1, Ω2

are bounded open subsets of E with θ ∈ Ω1 ⊂ Ω̄1 ⊂ Ω2, and T : K ∩ (Ω̄2 \ Ω1) → K
satisfies one of the following conditions:

(i) ‖Tx‖ 6 ‖x‖, x ∈ K ∩ ∂Ω1; and ‖Tx‖ > ‖x‖, x ∈ K ∩ ∂Ω2, or
(ii) ‖Tx‖ > ‖x‖, x ∈ K ∩ ∂Ω1; and ‖Tx‖ 6 ‖x‖, x ∈ K ∩ ∂Ω2.

Then T has a fixed point in K ∩ (Ω̄2 \Ω1).

3 Main results

Theorem 1. Suppose that (G1)–(G3) are satisfied, and∫ 1

0
[q−(s) +M(s)]∇s∫ 1

0
[q+(s) +N(s)]∇s

> max
x∈[0,2ρ]

g(x) + 1, (6)

where ρ is defined by Lemma 2. Then the boundary value problem (1) has at least one
positive solution y(t) satisfying y(t) > γ(t) on [0, 1]T.

https://www.journals.vu.lt/nonlinear-analysis
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Proof. In view of Lemma 3, it is sufficient to prove that the boundary value problem (3)
has a solution x(t) satisfying x(t) > ω(t), i.e., we only need to prove that T has a fixed
point x(t) > ω(t), t ∈ [0, 1]T. To do this, we firstly show that the operator T is well
defined and T (K) ⊂ K is completely continuous.

In fact, for any x ∈ K, there is a positive constant L such that ‖x‖ 6 L and

[x− ω]∗
(
σ(s)

)
+ γ
(
σ(t)

)
6 ‖x‖+ ‖γ‖ 6 L+ ρ.

Thus, for any t ∈ [0, 1]T, let

N = max
(t,v)∈[0,1]T×[0,L+ρ]

f(t, v),

where ρ is defined by Lemma 2. Then it follows from Lemma 2 and (G1)–(G2) that

(Tx)(t) =

1∫
0

G(t, s)
[
f
(
s,
(
[x− ω]∗ + γ

)(
σ(s)

))
+ q+(s)

]
∇s

6 c(t)

1∫
0

d(s)
[
f
(
s, [x− ω]∗

(
σ(s)

)
+ γ
(
σ(s)

))
+ q+(s)

]
∇s

6 c(t)

1∫
0

d(s)
(
N + q+(s)

)
∇s 6

1∫
0

d(s)
(
N + q+(s)

)
∇s

< +∞,

which implies that T is well defined and uniformly bounded on K.
Next, we show that the operator T :K→K. In fact, for any x ∈K, t ∈ [0, 1]T, we

have(
(Tx)∆∆

)∇
(t) = f

(
s, [x− ω]∗

(
σ(t)

)
+ γ
(
σ(t)

))
+ q+(t) > 0, t ∈ [0, 1]T ,

and by simple computation, we also have the corresponding boundary conditions

(Tx)(0) = (Tx)∆(t1) =

1∫
t2

p(s)(Tx)∆∆(s)∇s = 0.

So the same type of arguments as those used in Lemma 4 shows the operator T : K → K.
Thus, the operator T : K → K is well defined, and T (K) ⊂ (K).

Now we shall prove that T (K) is equicontinuous. For any ε > 0, m1,m2 ∈ [0, 1]T,
a fixed s ∈ [0, 1]T, there exists δ > 0 and |m1 −m2| < δ such that

∣∣G(m1, s)−G(m2, s)
∣∣ < ε

[
(N + 1)‖d‖

1∫
0

(
q+(s) + 1

)
∇s

]−1

Nonlinear Anal. Model. Control, 28(1):133–151, 2023
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and ∣∣(Tx)(m1)− (Tx)(m2)
∣∣

6

1∫
0

∣∣G(m1, s)−G(m2, s)
∣∣[f(s, [x− ω]∗

(
σ(s)

)
+ γ
(
σ(s)

))
+ q+(s)

]
∇s

6
∣∣G(m1, s)−G(m2, s)

∣∣[(N + 1)‖d‖
1∫

0

[
q+(s) + 1

]
∇s

]
< ε,

i.e., T (K) is equicontinuous. According to the Ascoli–Arzela Theorem, T (K) is a rela-
tively compact set, and then T : K → K is a completely continuous operator.

Let Ω1 = {x ∈ E: ‖x‖ < ρ} and ∂Ω1 = {x ∈ E: ‖x‖ = ρ}. We shall show that
‖Tx‖ 6 ‖x‖ for any x ∈ K ∩ ∂Ω1. In fact, for any x ∈ K ∩ ∂Ω1, it follows from
Remarks 1 and 2 that

[x− ω]∗
(
σ(s)

)
+ γ
(
σ(s)

)
6 x

(
σ(s)

)
+ γ
(
σ(s)

)
6 ‖x‖+ ρ = 2ρ,

thus we have

(Tx)(t) =

1∫
0

G(t, s)
[
f
(
s,
(
[x− ω]∗ + γ

)(
σ(s)

))
+ q+(s)

]
∇s

6

1∫
0

d(s)
[
f
(
s, [x− ω]∗

(
σ(s)

)
+ γ
(
σ(s)

))
+ q+(s)

]
∇s

6

1∫
0

d(s)
[
N(s)g

(
[x− ω]∗

(
σ(s)

)
+ γ
(
σ(s)

))
+ q+(s)

]
∇s

6 ‖d‖
(

max
x∈[0,2ρ]

g(x) + 1
) 1∫

0

[
N(s) + q+(s)

]
∇s

6 ‖d‖
1∫

0

[
M(s) + q−(s)

]
∇s = ρ = ‖x‖.

Therefore, we have ‖Tx‖ 6 ‖x‖ for any x ∈ K ∩ ∂Ω1.
On the other hand, take 0 < α < β < t1 and choose

λ =

{
2αt1 − α2

2t21
sup

t∈[0,1]T

β∫
α

G(t, s)∇s

}−1

. (7)

By (G3), there exists R1 > ρ such that for any x > R1 and t ∈ [α, β]T,

f(t, x) > λx. (8)
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Let

R >
2R1t

2
1

2αt1 − α2
+ ρ,

it follows from 0 < α < t1 that

R >
2R1t

2
1

2αt1 − α2
+ ρ >

2R1t
2
1

2αt1 − α2
> 2R1 > 2ρ.

Thus, let Ω2 = {x ∈ E: ‖x‖ < R} and ∂Ω2 = {x ∈ E: ‖x‖ = R}. We shall show that
‖Tx‖ > ‖x‖ for x ∈ K ∩ ∂Ω2.

Firstly, for any x ∈ K ∩ ∂Ω2 and t ∈ [α, β]T, we have

x(t)− ω(t) + γ(t) > x(t)− ω(t) > x(t)− ρc(t)

> x(t)− ρx(t)

‖x‖
=

(
1− ρ

R

)
x(t) >

1

2
x(t)

>
1

2
Rc(t) >

1

2
R · 2αt1 − α2

t21
> R1 > 0. (9)

It follows from (7)–(9) that

‖Tx‖ = max
t∈[0,1]T

∣∣(Tx)(t)
∣∣

= max
t∈[0,1]T

1∫
0

G(t, s)
[
f
(
s,
(
[x− ω]∗ + γ

)(
σ(s)

))
+ q+(s)

]
∇s

> max
t∈[0,1]T

β∫
α

G(t, s)f
(
s,
(
[x− ω]∗ + γ

)(
σ(s)

))
∇s

> max
t∈[0,1]T

β∫
α

G(t, s)λ
(
x
(
σ(s)

)
− ω

(
σ(s)

)
+ γ
(
σ(s)

))
∇s

> max
t∈[0,1]T

β∫
α

G(t, s)
λR

2
· 2αt1 − α2

t21
∇s

>
λR

2
· 2αt1 − α2

t21
max
t∈[0,1]T

β∫
α

G(t, s)∇s > R = ‖x‖,

i.e., ‖Tx‖ > ‖x‖, x ∈ K ∩ ∂Ω2. By Lemma 5, T has a fixed point x ∈ K ∩ (Ω2 \ Ω1)
satisfying ρ 6 ‖x‖ 6 R. In addition, notice that

x(t) > c(t)‖x‖ > ρc(t) > ω(t),

i.e., x(t) > ω(t). Let y(t) = x(t)− ω(t) + γ(t), then from Lemma 3 the BVP (1) has at
least a positive solution y(t) satisfying y(t) > γ(t) on [0, 1]T.
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Theorem 2. Suppose that (G1)–(G2) and (G4) are satisfied and

(G5) There exist constants 0 < α < β < t1 < 1 such that for any (t, x) ∈ [α, β]T ×
[κρ, 3ρ], f(t, x) 6 2ρ/θ, where κ = (2αt1 − α2)/t21, θ =

∫ β
α
G(α, s)∇s.

Then the boundary value problem (1) has at least one positive solution y(t) satisfying
y(t) > γ(t) on [0, 1]T.

Proof. It follows from Theorem 1 that T (K) ⊂ K is completely continuous.
Now let Ω3 = {x ∈ K: ‖x‖ < 2ρ} and ∂Ω3 = {x ∈ K: ‖x‖ = 2ρ}. Then for any

x ∈ ∂Ω3, t ∈ [0, 1]T, we have

x(t)− ω(t) + γ(t) > x(t)− ω(t) > x(t)− ρc(t) > x(t)− ρx(t)

‖x‖
=

1

2
x(t)

> ρc(t) > 0. (10)

So from (10) for any x ∈ ∂Ω3, t ∈ [α, β]T, one gets

κρ =
2αt1 − α2

t21
ρ 6 x(t)− ω(t) + γ(t) 6 3ρ. (11)

Consequently, for any x ∈ K ∩ ∂Ω3, it follows from (11) and (G5) that

‖Tx‖ >
1∫

0

G(α, s)
[
f
(
s,
(
[x− ω]∗ + γ

)(
σ(s)

))
+ q+(s)

]
∇s

>

β∫
α

G(α, s)f
(
s,
(
[x− ω]∗ + γ

)(
σ(s)

))
∇s >

β∫
α

G(α, s)
2ρ

θ
∇s

= 2ρ = ‖x‖,

i.e., ‖Tx‖ > ‖x‖, x ∈ K ∩ ∂Ω3.
Next, choose ε > 0 such that ε‖d‖

∫ 1

0
N(s)∇s < 1. Then for the above ε, by (G4),

there exists Ñ > 2ρ > 0 such that g(x) 6 εx if x > Ñ .
Take

R4 =
‖d‖(maxx∈[0,Ñ ] g(x)+1)

∫ 1

0
[N(s)+q+(s)]∇s+‖d‖(ερ+1)

∫ 1

0
[N(s)+q+(s)]∇s

1−ε‖d‖
∫ 1

0
N(s)∇s

+ Ñ ,

then R4 > Ñ > 2ρ.
Now let Ω4 = {x ∈ K: ‖x‖ < R4} and ∂Ω4 = {x ∈ K: ‖x‖ = R4}. Then for any

x ∈ K ∩ ∂Ω4, we have

‖Tx‖ = max
t∈[0,1]T

∣∣(Tx)(t)
∣∣

= max
t∈[0,1]T

1∫
0

G(t, s)
[
f
(
s,
(
[x− ω]∗ + γ

)(
σ(s)

))
+ q+(s)

]
∇s
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6

1∫
0

d(s)
[
N(s)g

(
[x− ω]∗(σ(s)

)
+ γ
(
σ(s)

))
+ q+(s)

]
∇s

6 ‖d‖
(

max
x∈[0,Ñ ]

g(x) + 1
) 1∫

0

[
N(s) + q+(s)

]
∇s

+ ‖d‖
1∫

0

[
N(s)ε

(
‖x‖+ ρ

)
+ q+(s)

]
∇s

6 ‖d‖
(

max
x∈[0,Ñ ]

g(x) + 1
) 1∫

0

[
N(s) + q+(s)

]
∇s

+ ‖d‖(ερ+ 1)

1∫
0

[
N(s) + q+(s)

]
∇s+ ε‖d‖

1∫
0

N(s)∇sR4

6 R4 = ‖x‖,

which implies that
‖Tx‖ 6 ‖x‖, x ∈ K ∩ ∂Ω4.

By Lemma 5, T has a fixed point x ∈ K ∩ (Ω4 \Ω3) satisfying 2ρ 6 ‖x‖ 6 R4.
It follows from (10) that

x(t)− ω(t) + γ(t) > ρc(t) + γ(t) > γ(t).

Let y(t) = x(t) − ω(t) + γ(t), then from Lemma 3 the BVP (1) has at least a positive
solution y(t) satisfying y(t) > γ(t) on [0, 1]T.

4 Numerical examples

In this section, we present two examples to illustrate our main results.

Example 1. Let T = {1/2n}∞n=0 ∪ {0, 1}. Consider the following third-order boundary
value problem on time scales:

−
(
x∆∆

)∇
(t) +

(
1

2000
x2
(
σ(t)

)
+ 1

)(
ex(σ(t))/100 + 1

)
(t+ 1)

− 2√
t

= 0, t ∈ [0, 1]T,

x(0) = x∆

(
2

3

)
=

1∫
3/4

sx∆∆(s)∇s = 0.

(12)
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We have t1 = 2/3, t2 = 3/4, p(t) = t, q(t) = −2/
√
t and

f(t, x) =

(
1

2000
x2 + 1

)(
ex/100 + 1

)
(t+ 1).

Obviously, (G1) holds.
In addition, according to Lemmas 1 and 2, we have ‖d‖ = 10/9 and

ρ = ‖d‖
1∫

0

[
q−(s) +M(s)

]
∇s =

10

9

1∫
0

[
2√
s

+ 2(s+ 1)

]
∇s

=
10

9

[ 1∫
0

2√
s
∇s+ 2

1∫
0

(s+ 1)∇s

]
=

20

9

1∫
0

1√
s
∇s+

20

9

1∫
0

s∇s+
20

9

1∫
0

∇s

=
20

9

[
1 · 1

2
+

1√
1
2

· 1

4
+

1√
1
4

· 1

8
+ · · ·

]

+
20

9

[
1 · 1

2
+

1

2
·
(

1

2
− 1

4

)
+

1

4
·
(

1

4
− 1

8

)
+ · · ·

]
+

20

9

=
20

9

(
1

2−
√

2
+

2

3
+ 1

)
≈ 200

27
.

Let q+(t) = 0, q−(t) = 2/
√
t, M(t) = 2(t+ 1), N(t) = t+ 1, g(x) = (x2/1500 + 1)×

(ex/100 + 1), then we have

M(t) = 2(t+ 1) 6 f(t, x) 6

(
1

1500
x2 + 1

)(
ex/100 + 1

)
(t+ 1) = N(t)g(x).

Thus, (G2) is satisfied.
Next, for any t ∈ [0, 1]T,

lim
x→+∞

f(t, x)

x
= lim
x→+∞

( 1
2000x

2 + 1)(ex/100 + 1)(t+ 1)

x
= +∞, (13)

i.e., (13) holds uniformly on any compact subinterval of (0, 1)T, and then (G3) is also
satisfied.

In the following, we verify condition (6). Firstly,

1∫
0

[
q+(s) +N(s)

]
∇s =

1∫
0

(s+ 1)∇s =

1∫
0

s∇s+

1∫
0

∇s

=

[
1 · 1

2
+

1

2
·
(

1

2
− 1

4

)
+

1

4
·
(

1

4
− 1

8

)
+ · · ·

]
+ 1

=
2

3
+ 1 =

5

3
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and

1∫
0

[
q−(s) +M(s)

]
∇s =

1∫
0

2√
t

+ 2(s+ 1)∇s = 2

1∫
0

1√
t
∇s+ 2

1∫
0

(s+ 1)∇s

= 2

[
1 · 1

2
+

1√
1
2

· 1

4
+

1√
1
4

· 1

8
+ · · ·

]

+ 2

[
1 · 1

2
+

1

2
·
(

1

2
− 1

4

)
+

1

4
·
(

1

4
− 1

8

)
+ · · ·

]
+ 2

=
2

2−
√

2
+

4

3
+ 2 ≈ 20

3
.

Moreover, for any x ∈ [0, 2ρ] = [0, (20/9)(2/(2−
√

2) + 10/3)], we have

max
x∈[0, (20/9)(2/(2−

√
2)+10/3)]

g(x) + 1

= max
x∈[0, (20/9)(2/(2−

√
2)+10/3)]

(
1

1500
x2 + 1

)
(ex/100 + 1) + 1 ≈ 3.484.

Thus, one has ∫ 1

0
[q−(s) +M(s)]∇s∫ 1

0
[q+(s) +N(s)]∇s

≈ 4 > 3.484,

which implies that condition (6) holds.
It follows from Theorem 1 that the boundary value problem (12) has at least one

positive solution y(t) satisfying y(t) > γ(t) =
∫ 1

0
G(t, s)(s+ 1)∇s, t ∈ [0, 1]T.

Example 2. Let T = {1/2n}∞n=0 ∪ {0, 1}. Consider the following third-order boundary
value problem on time scales:

−
(
x∆∆

)∇
(t) +

5x(σ(t))(t+ 1)

2(x(σ(t)) + 1)
− 2√

t
= 0, t ∈ [0, 1]T,

x(0) = x∆

(
2

3

)
=

1∫
3/4

sx∆∆(s)∇s = 0.

Taking t1 = 2/3, t2 = 3/4, f(t, x) = 5x(t+1)/(2(x+1)), q(t) = −2/
√
t, p(t) = t,

M(t) = 2(t+1),N(t) = t+1, g(x) = 4x/(x+1), and letting q+(t) = 0, q−(t) = 2/
√
t,

it is obvious that (G1) and (G2) hold.
Moreover,

lim
x→+∞

g(x)

x
= lim
x→+∞

4x

x(x+ 1)
= 0,

which implies that (G4) is also satisfied.
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Now take α = 1/4, β = 1/2. We have ‖d‖ = 10/9,

ρ = ‖d‖
1∫

0

[
q−(s) +M(s)

]
∇s =

10

9

1∫
0

2√
t

+ 2(s+ 1)∇s ≈ 200

27
,

θ =

β∫
α

G(α, s)∇s =

1/2∫
1/4

G

(
1

4
, s

)
∇s =

1/2∫
1/4

(
1

4
s− 1

32

)
∇s

=
1

4

1/2∫
0

s∇s− 1

4

1/4∫
0

s∇s− 1

32 · 4

=
1

4

[
1

2
·
(

1

2
− 1

4

)
+

1

4
·
(

1

4
− 1

8

)
+

1

8
·
(

1

8
− 1

16

)
+ · · ·

]
− 1

4

[
1

4
·
(

1

4
− 1

8

)
+

1

8
·
(

1

8
− 1

16

)
+

1

16
·
(

1

16
− 1

32

)
+ · · ·

]
− 1

32 · 4

≈ 1

4
· 1

6
− 1

4
· 1

24
− 1

32 · 4
≈ 3

128
,

and

κ =
2αt1 − α2

t21
=

117

192
.

For any (t, x) ∈ [1/4, 1/2]T × [2925/648, 200/9],

f(t, x) 6 max
(t,x)∈[1/4,1/2]T×[2925/648,200/9]

f(t, x) ≈ 3.589 <
2ρ

θ
≈ 632.1,

which implies that (G5) is satisfied.
Thus, Theorem 2 guarantees that the boundary value problem (13) has at least one

positive solution y(t) such that y(t) > γ(t) =
∫ 1

0
G(t, s)(s+ 1)∇s, t ∈ [0, 1]T.
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