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Abstract. It is well known that designing mode-dependent event-triggered control (MDETC)
brings challenging difficulties to theoretical analysis, especially for two-dimensional (2-D) switched
systems. Therefore, for 2-D switched Fornasini–Marchesini local state-space (FMLSS) systems,
this paper designs a MDETC to investigate global exponential stabilization almost surely (GES
a.s.). A MDETC based on dynamic output quantization control scheme is designed, which not
only has a wide range of practicability, but also greatly saves network bandwidth resources. By
constructing mode-dependent Lyapunov functions that include two time directions, some novel
sufficient conditions are provided such that the switched FMLSS system achieves GES a.s. Unlike
most previous results, our results do not require each mode to be stable, not even after adding
control. Finally, numerical experiments are provided to verify the validity of our main theoretical
results.
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1 Introduction

2-D switched systems have received extensive attentions now because they have been
applied in many fields, including flight control systems, multichannel power transmission
systems, and thermal reaction process [4, 8]. 2-D switched systems can be represented
by different models, including Roesser model, Attasi model, and Fornasini–Marchesini
(FM) model. Especially, FMLSS model includes Roesser model and Attasi model as
a special case [1, 5, 24]. Compared with switched Roesser model, switched Attasi model,
and switched FM model, switched FMLSS model has wider applications. Therefore,
a lot of research works on these systems have reported, e.g., Benzaouia et al. studied
the stability for a class 2-D discrete-time switched systems by using a state feedback
controller in [1]. The authors in [24] proposed an average dwell time (ADT) method
to investigate the exponential stability control for a class 2-D switched systems, and
output feedback stabilization controls for switched FMLSS system were studied in [5].
To guarantee stability for a switched system, it is generally required that all the switching
modes to be stable and ADT to be bounded below. In the case that some modes are
unstable, the upper bound of the dwell time (DT) of the unstable mode should not exceed
a threshold [18]. This restrictive condition definitely leads to conservative results. Now,
the stability control schemes for the 2-D switched systems, in which the part modes of
systems are not stable, are rarely studied.

Event-triggered control (ETC) scheme is an efficient technology to save communica-
tion resources [20,21,31]. Although ETC has been extensively studied in one-dimensional
(1-D) nonswitched systems [2, 3, 16, 21, 22] and 1-D switched systems [10–13, 27], few
studies are found concerning ETC with respect to 2-D switched systems. In addition, most
of the above results on ETC for switched systems are derived by directly adopting the
control technology applicable to nonswitched systems, which often leads to unrealistic
results such as the control schemes are often restricted by subsystem stability, system
switching signal interval events and minimum sampling interval time, and so on. In
order to overcome the problems mentioned above, recently the authors in [25] designed
a mode-dependent event-triggered (ET) static output control scheme for 1-D discrete-
time switched linear systems, which extended the control schemes for 1-D systems in
[19, 32]. However, the design of the control scheme in [25] is very complex, and thus,
its practicality is poor. Recently, the authors in [26] have extended the ETC to discuss
the stability control with respect to switched FMLSS systems. Unfortunately, the given
conditions are very strict such as requiring that each mode without control is stable, and
the ADT must be greater than a given threshold. Therefore, by developing a new mode-
dependent ETC, we will study GES a.s. for 2-D switched systems.

Apart from ETC, output feedback control is another effective method in saving net-
work bandwidth sources. In addition, output feedback control is also an effective method
to solve the measurability of the internal state of the system [9,14]. In fact, the states with
respect to most systems usually cannot be measured, and therefore, designing a controller
based on the dynamic output is very valuable. Recently, designing controller based on
output of system has been widely applied to 1-D switched systems [6, 33]. For instance,
in previous representative studies, the authors in [33] and [6] designed dynamic output
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H∞ control for 1-D continuous-time switched systems and 1-D discrete-time switched
systems, respectively. However, few authors focus on the output feedback control for
2-D systems, let alone 2-D switched systems. In recent years, based on the quantization
technique, which is another effective method to save network bandwidth sources [15, 29,
34], the authors in [17] proposed an output quantized control for 2-D discrete switched
complex networks.

Based on the above discussions, this paper studies output quantized ETC for a class
of 2-D discrete-time switched system to ensure that the system achieves complete GES
a.s. Our main contributions are as follows.

(i) An ETC based on dynamic output control scheme is designed for a 2-D switched
system. It not only has a wide range of practicability, but also greatly saves
network bandwidth resources, thereby ensuring the performance of the system.

(ii) The designed ETC scheme is mode-dependent (MDETC scheme) and general,
and thus, new sufficiently mode-dependent conditions are obtained to make sure
that the 2-D switched system finally achieve GES a.s. Our obtained sufficient
conditions do not require each mode with or without control to be stable.

(iii) By using mode-dependent Lyapunov function analysis techniques, the relation-
ship between the triggering interval and the ADT is well handled. Compared
the studies involving ETC for 2-D switched systems in [26], our results do not
require that the ADT of each mode must be greater than the predetermined
threshold.

The rest structure is as follows. An ETC is designed in Section 2. The theoretical
analyses are given in Section 3. An example of switched FMLSS system is presented in
Section 4. The conclusions are given in Section 5.

Notations. Rn×m denotes n ×m real matrix. AT is the transpose of the matrix A. The
matrix A > 0 (A < 0) represents that A is positive (negative). sym{A} = AT + A.
In and 0n×m are the n-dimensional identity matrix and n×m-dimensional zero matrix,
respectively. ‖·‖ is the binary norm in Euclidean space. Z+ = {0, 1, 2, . . . }.

2 Problem formulation and preliminaries

Based on FMLSS model in [7], the authors in [5] proposed the following switched FMLSS
model:

x(i+ 1, j + 1) = A1d(i,j+1)x(i, j + 1) +A2d(i+1,j)x(i+ 1, j),

y(i, j) = Cd(i,j)x(i, j),
(1)

where x(i, j) = (x1(i, j), x2(i, j), . . . , xnx(i, j))T ∈ Rnx and y(i, j) = (xy(i, j),
xy(i, j), . . . , yny (i, j))T ∈ Rny represent the state vector and output vector, respectively.
d(i, j) : Z+ × Z+ → R = {1, 2, . . . , R} denotes the switched signal for modes.
A1d(i,j) = (a1d(i,j))nx×nx , A2d(i,j) = (a2d(i,j))nx×nx , Cd(i,j) = (cd(i,j))ny×nx are
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known constant matrices. The initial conditions of system (1) are

x(0, j) = χ1(0, j), x(i, 0) = χ2(i, 0), i, j ∈ Z+,

and
χ1(0, 0) = χ2(0, 0).

For the needs of further research, it is always assumed that the boundary conditions with
respect to system (1) are bounded, denoted by

lim sup
N1→∞

E

{
N1∑
j=0

∥∥χ1(0, j)
∥∥}+ lim sup

N2→∞
E

{
N2∑
i=0

∥∥χ2(i, 0)
∥∥} <∞.

Assumption 1. Assume that the switching time of system (1) occurs at i or j. Then d(i, j)
depends on i+ j. Thus, there are

d(i, j) = d(t) for all i+ j = t, t ∈ Z+.

System (1) is switched randomly. Under Assumption 1, the following random switch-
ing rules are satisfied.

Definition 1. (See [30].) For g, h ∈ R, d(t) switches from the gth mode to the hth mode
with the transition probability (TP)

P
{
d(t+ 1) = h

∣∣ d(t) = g
}

= pgh,

where 0 6 pgh < 1 for g 6= h, and pgh = 0 for g = h,
∑R
h=1 pgh = 1, g, h = 1, 2, . . . , R.

P = (pgh)R×R is an irreducible TP matrix and has a unique stationary distribution κ =
(κ1, κ2, . . . , κR).

Let dt := d(t) be a piecewise function of time t, where t = i+j. Then a time sequence
of mode switching {tν = iν + jν , ν ∈ Z+} satisfies 0 = t0 < t1 < t2 < · · · < tν < · · ·
and lims→+∞ tν = +∞ when d(t) = r ∈ R for t ∈ [tν−1, tν). Let dt = d(t) = r
and denote dr(ν) = tν − tν−1 < +∞. Referring to [17], the following conditions are
provided.

Assumption 2. E[dr(ν)] = αr, r ∈ R, with αr > 0.

System (1) with control are represented as follows:

x(i+ 1, j + 1) = A1d(i, j+1)x(i, j + 1) +A2d(i+1, j)x(i+ 1, j)

+B1d(i,j+1)u(i, j + 1) +B2d(i+1, j)u(i+ 1, j),

y(i, j) = Cd(i,j)x(i, j),

(2)

where u(i, j) ∈ Rnu represents the input of controller. B1d(i,j) = (b1d(i,j))nx×nu and
B2d(i,j) = (b2d(i,j))nx×nu are known constant matrices.
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Definition 2. (See [17].) System (2) is said to achieve GES a.s. if

lim sup
t→∞

ln
∑
i+j=t ‖x(i, j)‖

t
< 0

for any initial conditions x(0, j) = χ1(0, j), x(i, 0) = χ2(i, 0), i, j ∈ Z+, with the
boundary condition

lim sup
N1→∞

E

{
N1∑
j=0

∥∥χ1(0, j)
∥∥}+ lim sup

N2→∞
E

{
N2∑
i=0

‖χ2(i, 0)‖

}
<∞.

Next, we will give the mode-dependent ET condition. When d(t) = r, t ∈ [tν , tν+1),
denote tφν = iφν + jφν , φ = 0, 1, 2, . . . , the φth sampling instant in the time interval
[tν , tν+1), and the sampling instant tφν satisfies

tν = t0ν < t1ν < t2ν < · · · < tν+1,

where tν = iν + jν and tφν = iφν + jφν . Note that t0ν = tν is the first sampling time and the
start time of the rth mode on [tν , tν+1), i.e., the sampling instant tφν is strictly dependent
on the system mode d(t). The mode-dependent ET condition is designed as follows:

tφ+1
ν = min

{
t > tφν

∣∣∣ δ(i, j)TΘrδ(i, j) > εry(iφν , j
φ
ν )TΘry(iφν , j

φ
ν ) +

1

2
αβλt

}
(3)

with t = i+ j, tφν = iφν + jφν , δ(i, j) = y(iφν , jφν )− y(i, j), φ ∈ N+. 0 < Θr ∈ Rny×ny ,
r ∈ R are the matrices that needs to be designed. The scalars 0 < εr < 1, 0 < α,
0 < β < 1, and λ > 0.

Remark 1. Note that tν is the switching instant of the rth mode and t0ν = tν , which
implies that ET condition (3) is mode-dependent. In addition, compared with mode-
independent ET condition for the 2-D switched system in [26], in this paper the DT of
the mode is not restricted by its sampling intervals because the first sampling time of any
mode is equal to its switching instant, i.e., t0ν = tν . The sampling interval of ET condition
(3) is not constrained by the sampling intervals. Therefore, our ET mechanism has a wider
range of applications than that in [26]. Moreover, it should be noted that, although the
ET conditions for 1-D switched linear system in [25] are also mode-dependent, they
are cumbersome and thus not very practical. Furthermore, the corresponding delays are
brought by using the segmentation method for achieving the ET scheme in [25].

Remark 2. Obviously, the ET condition (3) is affected by the parameters εd, α, λ. In
the application, choosing a suitable combination of the three parameters εd, α, λ to adjust
the sampling interval according to the network with different bandwidth networks is more
flexible than only one parameter of these ET conditions being adjusted in [3, 12, 26].
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Next, the quantized dynamic output ETC is designed:

x̂(i+ 1, j + 1) = Â1d(i, j+1)x̂(i, j + 1) + Â2d(i+1, j)x̂(i+ 1, j)

+ B̂1d(i, j+1)y
(
iφν , j

φ
ν + 1

)
+ B̂2d(i+1, j)y

(
iφν + 1, jφν

)
,

w(i, j) = Ĉd(i,j)x̂(i, j),

u(i, j) = q
(
w(i, j)

)
,

(4)

where x̂(i, j) ∈ Rnd and nd 6 nx, Â1d(i,j) ∈ Rnd×nd , Â2d(i,j) ∈ Rnd×nd , B̂1d(i,j) ∈
Rnd×ny , B̂2d(i,j) ∈ Rnd×ny , Ĉd(i,j) ∈ Rnu×nd are the control gains, which need to
be designed later, tφν = iφν + jφν is the ET time, w(i, j) represents the output vector.
o(i, j) = (o1(i, j), o2(i, j), . . . , onu(i, j)) is the output. q(o(i, j)) = (q1(o(i, j)), . . . ,
qnu(onu(i, j)))T is a quantizer with τ = 1, 2, . . . , nu satisfying qτ (·) : R → Uτ with
Ud(i,j) = {±oιd(i,j): w

ι
d(i,j) = ςιd(i,j), 0 < ςd(i,j) < 1, ι = 0,±1,±2, . . . } ∪ {0}},

ō0 > 0. For all v ∈ R, denote the quantizer qd(i,j)(v) as

qd(i,j)(v) =


oιd(i,j) if 1

1+%τ
ōi < v 6 1

1−%τ ōi,

0 if v = 0,

−qd(i,j)(−v) if v < 0,

where %τ = (1 − ςτ )/(1 + ςτ ). Observing system (2) and controller (4), the following
relationship can be found.

(i) The information of system (2) is transmitted to controller (4) through the output
variable y(i, j);

(ii) Controller (4) obtains the control state vector u(i, j) according to the output
variable y(i, j) of system (2) and then applies u(i, j) to system (2). That is,
controller (4) performs feedback control according to the dynamic output of sys-
tem (2).

Remark 3. Note that the controller (4) combines the ET scheme and quantization tech-
nique based on dynamic output, which greatly saves network bandwidth resources. Mean-
while, the control technique in [17] is further improved here.

Let the boundary conditions controller system (4) be ultimately bounded, which
are similar to that of system (1). There exists a Filippov solution ∆d(i,j)(i, j) ∈ [−δd(i,j),
δd(i,j)) of the quantizer qd(i,j)(v) such that qd(i,j)(v) = (1 + ∆d(i,j)(i, j))v. Hence,
system (2) can be rewritten as

x̂(i+ 1, j + 1) = Â1d(i, j+1)x̂(i, j + 1) + Â2d(i+1, j)x(i+ 1, j)

+ B̂1d(i, j+1)y
(
iφν , j

φ
ν + 1

)
+ B̂2d(i+1, j)y

(
iφν + 1, jφν

)
,

u(i, j) = [Inu + Λd(i,j)]Ĉd(i,j)x̂(i, j),

(5)
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where Λd(i,j) = diag(∆1d(i,j), ∆2d(i,j), . . . ,∆nud(i,j)). Combining (1) and (5) derives
the following augmented system:

x(i+ 1, j + 1) = A1d(i, j+1)x(i, j + 1) +A2d(i+1, j)x(i+ 1, j)

+B1d(i, j+1)

[
Inu + Λd(i, j+1)

]
Ĉd(i, j+1)x̂(i, j + 1)

+B2d(i+1, j)

[
Inu + Λd(i+1, j)

]
Ĉd(i+1, j)x̂(i+ 1, j),

x̂(i+ 1, j + 1) = Â1d(i, j+1)x̂(i, j + 1) + Â2d(i+1, j)x̂(i+ 1, j)

+ B̂1d(i,j+1)

[
Cd(i, j+1)x(i, j + 1) + d(i, j + 1)

]
+B2d(i+1, j)

[
Cd(i+1, j)x(i+ 1, j) + d(i+ 1, j)

]
.

(6)

Letting η(i, j) = (x(i, j)T, x̂(i, j)T)T, system (6) becomes

η(i+ 1, j + 1) = (Ad(i, j+1) +Dd(i, j+1))η(i, j + 1)

+ (Bd(i, j+1) + Ed(i, j+1))η(i+ 1, j)

+ Fd(i, j+1)δ(i, j + 1) + Gd(i+1, j)δ(i+ 1, j),

where

Ad(i,j+1) =

(
A1d(i,j+1) B1d(i,j+1)Ĉd(i,j+1)

B̂1d(i,j+1)Cd(i,j+1) Â1d(i,j+1)

)
,

Bd(i+1,j) =

(
A2d(i+1,j) B2d(i+1,j)Ĉd(i+1,j)

B̂2d(i+1,j)Cd(i+1,j) Â2d(i+1,j)

)
,

Dd(i,j+1) =

(
0nx×nx B1d(i,j+1)Λd(i,j+1)Ĉd(i,j+1)

0nd×nx 0nd×nd

)
,

Ed(i+1,j) =

(
0nx×nx B2d(i+1,j)Λd(i+1,j)Ĉd(i+1,j)

0nd×nx 0nd×nd

)
,

Fd(i,j+1) =

(
0nx×ny
B̂1d(i,j+1)

)
, Gd(i+1,j) =

(
0nx×ny
B̂2d(i+1,j)

)
.

Letting

Ea1 =

(
Inx

0nd×nx

)
, Ea2 =

(
0nd×nx , Ind

)
,

one also has

Dd(i,j+1) = Ea1B1d(i,j+1)Λd(i,j+1)Ĉd(i,j+1)Ea2,

Ed(i+1,j) = Ea1B2d(i+1,j)Λd(i+1,j)Ĉd(i+1,j)Ea2.

Denoting

ξ(i, j) =
(
η(i+ 1, j + 1)T, η(i, j + 1)T, η(i+ 1, j), δ(i, j + 1)T, δ(i+ 1, j)T

)T
,

https://www.journals.vu.lt/nonlinear-analysis

https://www.journals.vu.lt/nonlinear-analysis


Control for 2-D switched systems 41

we have

η(i+ 1, j + 1)T = (Ib, 0b×2c)ξ(i, j) , E1ξ(i, j),

η(i, j + 1)T = (0b×b, Ib, 0b×d)ξ(i, j) , E2ξ(i, j),

η(i+ 1, j)T = (0b×2b, Ib, 0b×2ny )ξ(i, j) , E3ξ(i, j),

δ(i, j + 1)T = (0ny×3b, Iny , 0ny×ny )ξ(i, j) , E4ξ(i, j),

δ(i+ 1, j)T = (0ny×(2b+c), Iny )ξ(i, j) , E5ξ(i, j),

y(i, j + 1) = Cr(0nx×b, Inx , 0nx×e)ξ(i, j) , CrE6ξ(i, j),

y(i+ 1, j) = Cr(0nx×2b, Inx , 0nx×f )ξ(i, j) , CrE7ξ(i, j),

where b = nx + nd, c = b + ny , d = c + ny , e = d + nd, f = nd + 2ny . In addition,
system (6) can be expressed as

η(i+ 1, j + 1) = Hdξ(i, j) (7)
or

η(i+ 1, j + 1) =
[
Ad(i,j+1)E2 + Bd(i,j+1)E3 + Fd(i,j+1)E4 + Gd(i+1,j)E5

]
ξ(i, j)

+
[
Ea1B1d(i,j+1)Λd(i,j+1)Ĉd(i,j+1)Ea2E2

+ Ea1B2d(i+1,j)Λd(i+1,j)Ĉd(i+1,j)Ea2E3

]
ξ(i, j) (8)

with Hd = (0b̃×b̃, (Ad(i,j+1) + Dd(i,j+1))E2, (Bd(i,j+1) + Ed(i,j+1))E3,Fd(i,j+1)E4,

Gd(i+1,j)E5), where b̃ = nx + ny .
Our aim is to realize 2-D switched FMLSS system GES a.s. by using ET condi-

tion (3) and controller (4), i.e., for system (1), lim supt→∞ ln ‖x(i, j)‖/t < 0 for any
initial conditions with bounded boundary conditions. Therefore, it only need to prove
that lim supt→∞ ln ‖η(i, j)‖/t < 0 as any initial conditions of system (1) and controller
system (4) with bounded boundary conditions.

Lemma 1. (See [23].) For given matrices X , Y , Z with ZTZ 6 I and scalar l, there
holds

XZY + YTZTXT 6 lXXT + l−1YYT.

Lemma 2. (See [28].) If d(t), t = i + j, and κ are the mode-dependent ADT switching
signal and the stationary distribution of P , respectively, then it derives that, for all r ∈ R,

lim
t→∞

Tr(t)

t
= κ̄r a.s.

with κ̄r = κrαr/(
∑R
l=1 κlαl), Tr(t) is the total time of d(t) = r on the time interval

[0, t].
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3 Main results

The GES a.s. for system (2) under controller (4) will be discussed. In the later analysis,
by using new techniques, the Lyapunov function in Theorem 1 is designed to be mode-
dependent. In addition, using the ergodic theory, the properties of the stationary distri-
bution κ are extremely important to our theoretical analysis. Finally, the control gains of
controller (4) are given by solving a set of LMIs in Theorem 2.

Theorem 1. Assume that the control gains Â1r, Â2r, B̂1r, B̂2r, Ĉr are all known and
Assumptions 1–2 hold. For pregiven constants µr > 1, βr > 0, if there exist matrices
0 < Q1

r ∈ R(nx+nd)×(nx+nd), 0 < Q2
r ∈ R(nx+nd)×(nx+nd), 0 < Θr ∈ Rny×ny and

invertible matrices Ur ∈ R(nx+nd)×(nx+nd), Vr ∈ Rny×ny such that, for r ∈ R, the
following matrix inequalities are satisfied:

Υr < 0,(
Q1
r +Q2

r

)
6 µr

(
Q1
ř +Q2

r̆

)
, r̆ ∈ R and r̆ 6= r, (9)

R∑
r=1

κ̄r

[
lnµr
αr

+ lnβr

]
< 0, (10)

then, under controller (4), system (2) completes GES a.s., where

Υr =

(
Υ11r Υ12r

ΥT
12r Πr

)
with

Υ11r = diag
(
H1r,H2r,H2r,−l−1

r Iny ,−l−1
r Iny ,−lrIny ,−lrIny

)
,

Υ12r =
(
(UrE1)T,

(
Vr(E4 + CrE6)

)T
,
(
Vr(E5 + CrE7)

)T
,

(ĈrEa2E2)T, (ĈrEa2E3)T,
(
BT

1rE
T
a1E1

)T
,
(
BT

2rE
T
a1E1

)T)T
,

Πr = sym
{
ET

1 ArE2 + ET
1 BrE3 + ET

1 FrE4 + ET
1 GrE5 − ET1 E1

}
− βrET

2 Q
1
rE2 − βrET

3 Q
2
rE3 − εrET

4 ΘrE4 − εrET
5 ΘrE5,

H1r = Q1
r +Q2

r − Ur − UT
r , H2r = εrΘr − Vr − V T

r .

Proof. When d(t) = r ∈ R, t = i+ j + 1 ∈ [tν−1, tν), s ∈ N+, consider the following
Lyapunov function:

Vr
(
η(i, j), t

)
= V 1

r

(
η(i, j), t

)
+ V 2

r

(
η(i, j), t

)
,

where

V 1
r

(
η(i, j), t

)
= ηT(i, j)Q1

rη(i, j),

V 2
r

(
η(i, j), t

)
= ηT(i, j)Q2

rη(i, j).
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It is derived from (7) that

∆V 1
r

(
η(i, j + 1), t)− (βr − 1)V 1

r

(
η(i, j + 1), t

)
= V 1

d(t+1)

(
η(i+ 1, j + 1), t+ 1

)
− βrV 1

r

(
η(i, j + 1), t

)
= ηT(i+ 1, j + 1)Q1

rη(i+ 1, j + 1)− βrηT(i, j + 1)Q1
rη(i, j + 1)

= ξT(i, j)
[
ET

1 Q
1
rE1 − βrET

2 Q
1
rE2

]
ξ(i, j). (11)

Similarly, for V 2
r (η(i, j), t, r), one has

∆V 2
r

(
η(i, j + 1), t

)
− (βr − 1)V 2

r

(
η(i, j + 1), t

)
= V 2

d(t+1)

(
η(i+ 1, j + 1), t+ 1

)
− βrV 2

r

(
η(i, j + 1), t

)
= ξT(i, j)

[
ET

1 Q
2
rE1 − βrET

3 Q
2
rE3

]
ξ(i, j).

By (8) one has that

2ξT(i, j)ET
1

[
ArE2 + BrE3 + FrE4 + GrE5 − E1

+ Ea1B1rΛrĈrEa2E2 + Ea1B2rΛrĈrEa2E3

]
ξ(i, j) = 0. (12)

By Lemma 1 it can be derived that, for scalar lr > 0,

sym
{
ET

1 Ea1B1rΛrĈrEa2E2

}
6 l−1

r ET
1 Ea1B1rB

T
1rE

T
a1E1 + lrE

T
2 E

T
a2Ĉ

T
r ĈrEa2E2, (13)

sym
{
ET

1 Ea1B2rΛrĈrEa2E3

}
6 l−1

r ET
1 Ea1B2rB

T
2rE

T
a1E1 + lrE

T
3 E

T
a2Ĉ

T
r ĈrEa2E3. (14)

Substituting inequalities (13) and (14) into (12) yields that

ξT(i, j)
{

sym
{
ET

1 ArE2 + ET
1 BrE3 + ET

1 FrE4 + ET
1 GrE5 − ET1 E1

}
+
[
l−1
r ET

1 Ea1B1rB
T
1rE

T
a1E1 + lrE

T
2 E

T
a2Ĉ

T
r ĈrEa2E2

+ l−1
r ET

1 Ea1B2rB
T
2rE

T
a1E1 + lrE

T
3 E

T
a2Ĉ

T
r ĈrEa2E3

]}
ξ(i, j) > 0. (15)

Noting that

y(i, j + 1) = Cr(0nx×b, Inx , 0nx×e)ξ(i, j) , CrE6ξ(i, j),

y(i+ 1, j) = Cr(0nx×2b, Inx , 0nx×f )ξ(i, j) , CrE7ξ(i, j),

it derives from ET condition (3) that

εrξ
T(i, j)

{
[E4 + CrE6]TΘr[E4 + CrE6]− ET

4 ΘrE4

}
ξ(i, j) +

1

2
αβλt > 0 (16)
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and

εrξ
T(i, j)

{
[E5 + CrE7]TΘr[E5 + CrE7]− ET

5 ΘrE5

}
ξ(i, j) +

1

2
αβλt > 0. (17)

It follows from (11), (15), (16), and (17) that

Vr
(
η(i+ 1, j + 1), t+ 1)− βr

[
∆V 1

r (η(i, j + 1), t) + V 2
r

(
η(i, j + 1), t

)]
6 ξT(i, j)Σrξ(i, j) + αβλt (18)

with

Σr = ET
1

(
Q1
r +Q2

r

)
E1

+ εr[E4 + CrE6]TΘr[E4 + CrE6] + εr[E5 + CrE7]TΘr[E5 + CrE7]

+ lrE
T
2 E

T
a2Ĉ

T
r ĈrEa2E2 + lrE

T
3 E

T
a2Ĉ

T
r ĈrEa2E3

+ l−1
r ET

1 Ea1B1rB
T
1rE

T
a1E1 + l−1

r ET
1 Ea1B2rB

T
2rE

T
a1E1

+ sym
{
ET

1 ArE2 + ET
1 BrE3 + ET

1 FrE4 + ET
1 GrE5 − ET1 E1

}
− βrET

2 Q
1
rE2 − βrET

3 Q
2
rE3 − εrET

4 ΘrE4 − εrET
5 ΘrE5.

Now, we will prove that Σr < 0. It follows from Schur equivalence that Σr < 0 is
equivalent to

Υ̂r =

(
Υ̂11r Υ̂12r

Υ̂T
12r Πr

)
< 0, (19)

where

Υ̂11r = diag
(
Ĥ1r, Ĥ2r, Ĥ2r,−l−1

r Iny ,−l−1
r Iny ,−lrIny ,−lrIny

)
,

Υ̂12r =
(
ET

1 , (E4 + CrE6)T, (E5 + CrE7)T, (ĈrEa2E2)T,

(ĈrEa2E3)T,
(
BT

1rE
T
a1E1

)T
,
(
BT

2rE
T
a1E1

)T )T
,

Ĥ1r = −
(
Q1
r +Q2

r

)−1
, Ĥ2r = −ε−1

r Θ−1
r .

Premultiplying diag(Ur, Vr, Vr, Iny , Iny , Iny , Iny ) and postmultiplying diag(UT
r , V

T
r ,

V T
r , Iny , Iny , Iny , Iny ) to inequality (19), one has that

Υ̌r =

(
Υ̌11r Υ̌12r

Υ̌T
12r Πr

)
< 0, (20)

where

Υ̌11r = diag(Ȟ1r, Ȟ2r, Ȟ2r,−l−1
r Iny ,−l−1

r Iny ,−lrIny ,−lrIny ),

Υ̌12r =
((
UrE

T
1

)
,
(
Vr(E4 + CrE6)

)T
,
(
Vr(E5 + CrE7)

)T
, (ĈrEa2E2)T,

(ĈrEa2E3)T,
(
BT

1rE
T
a1E1

)T
,
(
BT

2rE
T
a1E1

)T )T
,

Ȟ1r = −Ur(Q1
r +Q2

r)
−1UT

r , Ȟ2r = −Vrε−1
r Θ−1

r V T
r .
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By using the inequalities

−Ur(Q1
r +Q2

r)
−1UT

r 6 Q1
r +Q2

r − Ur − UT
r ,

−Vrε−1
r Θ−1

r V T
r 6 εrΘr − Vr − V T

r

and Υr < 0, one has that inequality (20) holds, i.e., it derives that dr < 0. Therefore,
by (18), one has, for i+ j + 1 = t ∈ [tν−1, tν),

Vr
(
η(i, j), t+ 1

)
6 βrVr

(
η(i, j), t

)
+ αβλt.

There exist small enough positive constants β̌r, m ∈M, such that

M∑
m=1

π̄r

[
lnµr
αr

+ ln β̂r

]
< 0 (21)

and

Vr
(
η(i, j), t+ 1

)
6 β̂rVr

(
η(i, j), t

)
− β̌rVr

(
η(i, j), t

)
+ αβλt (22)

with β̂r = βr + β̌r. Denote

ψ(t) = max

{
ψr(t) =

√
αβλt

β̌r[λmax(Q1
r) + λmax(Q2

r)]
, r ∈M

}
.

When ‖η(i, j)‖ > ψ(t) with i+ j = t, it follows from (22) that

Vr
(
η(i, j), t+ 1

)
6 β̂rVr

(
η(i, j), t

)
. (23)

Hence, it derives from (23) that, for i+ j + 1 = t ∈ [tν−1, tν),

Vr
(
η(1, t), t+ 1

)
6 β̂r

[
V 1
r

(
η(0, t), t

)
+ V 2

r

(
η(1, t− 1), t

)]
,

Vr
(
η(2, t− 1), t+ 1

)
6 β̂r

[
V 1
r

(
η(1, t− 1), t

)
+ V 2

r

(
η(2, t− 2), t

)]
,

. . .

Vr
(
η(t, 1), t+ 1

)
6 β̂r

[
V 1
r

(
η(t− 1, 1), t

)
+ V 2

r

(
η(t, 0), t

)]
.

(24)

By (23) and (24) it is obtained that

∑
i+j+1=t+1

Vr
(
η(i, j), t+ 1

)
6 β̂r

∑
i+j=t

Vr
(
η(i, j), t

)
. (25)
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Then it follows from (9) and (25) that, for t ∈ [tν−1, tν),∑
i+j=t

Vd(t)(η(i, j), t)

< β̂d(t−1)

∑
i+j=t−1

Vd(t−1)

(
η(i, j), t− 1

)
< β̂

t−tν−1

d(tν−1)

∑
i+j=tν−1

Vd(tν−1)

(
η(i, j), tν−1

)
< µd(tν−1)β̂

t−tν−1

d(tν−1)

∑
i+j=tν−1

Vd(tν−1)

(
η(i, j), tν−1

)
< µd(tν−1)β̂

t−tν−1

d(tν−1)β̂
tν−1−ts−2

d(ts−2)

∑
i+j=ts−2

Vd(ts−2)

(
η(i, j), ts−2

)
< · · ·

<

R∏
r=1

µNr(t)
r β̂Tr(t)

r

∑
i+j=0

Vd(0)

(
η(i, j), 0

)
,

and thus,

λ
∑
i+j=t

∥∥η(i, j)
∥∥ < R∏

r=1

µNr(t)
r β̂Tr(t)

r

∑
i+j=0

Vd(0)

(
η(i, j), 0

)
with λ = min{λmax(Q1

r) + λmax(Q2
r), r = 1, 2, . . . , R}.

Therefore, one has that

lnψ(t)

t
− lnλ

t
6

ln
∑
i+j=t ‖η(i, j)‖

t

<
ln
∑
i+j=0 Vd(0)(η(i, j), 0)

t
− lnλ

t

+

R∑
r=1

[
Nr(t)

t
lnµr +

Tr(t)

t
ln β̂r

]
. (26)

According to (21) and the fact

lim
t→∞

Nr(t)

t
=

limt→∞(Tr(t)/t)

Tr(t)/Nr(t)
=
κ̄r
αr

(27)

and combining (26) and (27), one has

lim sup
t→∞

{(
ln
∑
i+j=0 Vd(0)(η(i, j), 0)

t
− lnλ

t

)
+

R∑
r=1

[
Nr(t)

t
lnµr +

Tr(t)

t
ln β̂r

]}

= lim sup
t→∞

{
R∑
r=1

[
Nr(t)

t
lnµr +

Tr(t)

t
ln β̂r

]}
=

R∑
r=1

κ̄r

[
lnµr
αr

+ ln β̂r

]
< 0. (28)
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Moreover,

lim sup
t→∞

(
lnψ(t)

t
− lnλ

t

)
< 0. (29)

Therefore, (26), (27), (28), and (29) yield that

lim sup
t→∞

ln
∑
i+j=t ‖η(i, j)‖

t
< 0,

i.e., system (2) achieves GES a.s.

It should be noted that one of the hardships in implementing the ET mechanism is the
existence of Zeno-behavior. Controller (4) can effectively avoid the Zeno phenomenon.
The system considered in this paper is discrete-time and the sampling time is dependent
on the DT of mode, so there will be no such phenomenon that the control is triggered
infinitely in a finite time-interval.

Remark 4. Under our controller design scheme, Theorem 1 does not require that all the
subsystems (modes) of the switched system be stable. However, among the only existing
research results on ETC for 2-D switched systems in [26], their control scheme requires
that each subsystem or mode must be stable (see the condition related to modal stability
µ > 1 in Theorem 2 in [26]). In addition, Theorem 1 shows that in order to realize
achieves GES a.s., even after the control is added, it is not necessary for all modes to
be stable, but only for some modes to be stable. Thus, it can be seen that the sufficient
conditions given in Theorem 1 for the 2-D switched system to complete GES a.s. are very
general.

Remark 5. Theorem 1 is also valid in the case of arbitrarily ADT and minimum DT
with respect to the modes of the switched system. However, the research results in [26]
illustrate that the ADT must be greater than a given threshold, seeing the condition τa >
τ∗a in Theorem 2 in [26], where τa is the ADT, and τ∗a is a predetermined threshold. It
can also be shown from this aspect that our method is less conservative and therefore has
better application value.

Based on Theorem 1, the control gains of the quantized dynamic output ETC are now
designed for system (2). Letting

A1r =

(
A1r 0
0 0nd×nd

)
, A2r =

(
0 B1r

Ind 0

)
, A3r =

(
0 Ind
Cr 0

)
,

B1r =

(
A2r 0
0 0nd×nd

)
, B2r =

(
0 B2r

Ind 0

)
, B3r =

(
0 Ind
Cr 0

)
and

F1r =

(
0 0nx×nu
Ind 0

)
, F2r =

(
0
Iny

)
,

G1r =

(
0 0nx×nu
Ind 0

)
, G2r =

(
0
Iny

)
,
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C1r =
(
0 Inu

)
, C2r =

(
Ind
0

)
,

K1
r =

(
Â1r B̂1r

Ĉr 0

)
, K2

r =

(
Â2r B̂2r

Ĉr 0

)
,

it follows that

Ar = A1r +A2rK1
rA3r, Br = B1r + B2rK2

rB3r,

Fr = F1rK1
rF2r, Gr = G1rK2

rG2r, Ĉr = C1rK1
rC2r.

Then Υr > 0 is equivalent to Ωr > 0, denoting

Ωr =

(
Ω11r Ω12r

ΩT
12r Ω22r

)
,

where
Ω11r = diag

(
Q1
r +Q2

r − Ur − UT
r , εrΘr − Vr − V T

r , εrΘr − Vr − V T
r ,

− l−1
r Iny , −l−1

r Iny , −lrIny , −lrIny
)
,

Ω12r =
(
ET

1 U
T
r , (E4 + CrE6)TV T

r , (E5 + CrE7)TV T
r ,
(
C1rK1

rC2rEa2E2

)T
,(

C1rK1
rC2rEa2E3

)T
, ET

1 Ea1B1r, E
T
1 B2rEa1

)T
,

Ω22r = sym
{
ET

1 A1rE2 + ET
1 B1rE3

}
− βrET

2 Q
1
rE2 − βrET

3 Q
2
rE3

− εrET
4 ΘrE4 − εrET

5 ΘrE5 + sym
{
ET

1 A2rK1
rA3rE2 + ET

1 B2rK2
rB3rE3

+ ET
1 F1rK1

rE4 + ET
1 G1rK2

rG2rE5

}
.

The ET dynamic output quantization controller of system (2) is designed based on the
following theorem.

Theorem 2. Assume that Assumptions 1–2 are satisfied. For pregiven constants µr > 1,
βr> 0, if there exist matrices 0<Q1

r ∈R(nx+nd)×(nx+nd), 0<Q2
r ∈R(nx+nd)×(nx+nd),

0 < Θr ∈ Rny×ny and invertible matrices Ur ∈ R(nx+nd)×(nx+nd), Vr ∈ Rny×ny such
that, for r ∈ R, (9) and (10) are satisfied, and the following LMIs are satisfied:

Ωr < 0. (30)

Then, under controller (4), system (2) completes GES a.s. In addition, the control gains
K1
r , K2

r in system (4) and the triggering parameters Θr in (3) can be obtained directly by
solving LMIs (30).

Proof. Since Υr > 0 in Theorem 1 is equivalent to Ωr > 0, the proof processe is the
same as that of Theorem 1.

4 Numerical examples

A numerical example with respect to discrete-time switched FMLSS system will be pro-
vided to analyze the feasibility and validity of our main theories later. Consider system (1)
with three modes and take the following system parameter values:
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Subsystem (11):

A11 =

(
0.43 0.2
0.2 0.2

)
, A21 =

(
0.2 0.3
0.1 0.3

)
, C1 =

(
0.1 0.1

)
;

Subsystem (12):

A12 =

(
0.1 0.5
0.1 0.3

)
, A22 =

(
0.25 0.1
0.01 0.1

)
, C2 =

(
0.1 0.1

)
;

Subsystem (13):

A13 =

(
1.6 0.1
0.1 1.2

)
, A23 =

(
2.3 0.1
0.1 1.5

)
, C3 =

(
0.3 0.1

)
.

Under Assumption 1, the switching signal d(t) = d(i, j), i, j ∈ Z+, are mutually
independent random variables, and choose the TP matrix as

P =

 0 0.6 0.4
0.5 0 0.5
0.7 0.3 0

 .

Taking α1 = 3.25, α2 = 3.5, α3 = 2, the unique stationary distribution of P can be
calculated as κ = (0.37, 0.32, 0.31).

Taking initial conditions

x1(0, j) =

{
0.1 if j 6 20,

0 if j > 20,
x2(0, j) =

{
0.2 + 0.2 sin(j) if j 6 20,

0 if j > 20,

x1(i, 0) =

{
0.1 if i 6 20,

0 if i > 20,
x2(i, 0) =

{
0.2 + 0.2 sin(j) if i 6 20,

0 if i > 20,

we get the trajectory of system (1) shown in Fig. 1, from which one can see that system (1)
without control is unstable. Corresponding switching signal is presented in Fig. 2. Fig-
ure 2 shows three modes 1, 2, and 3 of system (1), which correspond to subsystems (11),
(12), and (13), respectively. Hence, according to Remark 4, the ETC for 2-D switched
systems in [26] cannot be used for our numerical example.

Next, the control gains in dynamic output quantized ETC (4) are designed. To realize
this goal, assume that, for system (2),

B11 =

(
0.4
0.2

)
, B21 =

(
0.5
0.1

)
, B12 =

(
2
0

)
,

B22 =

(
2
4

)
, B13 =

(
0.3
0.1

)
, B23 =

(
0.2
0.2

)
,
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(a) (b)

Figure 1. Trajectories for system (1) with the switched signal d(t) that is indicated in Fig. 2, where 0 6 i 6 30,
0 6 j 6 30: (a) x1(i, j); (b) x2(i, j).

Figure 2. Switching signal d(t) for system (1), where t = i+ j.

and take ε1 = ε2 = ε3 = 0.8, α = 1.5, β = 0.5, λ = 5. By solving the feasible solution
for LMIs (30) in Theorem 2, it follows that the control gains in system (4) are

K1
1 =

(
Â11 B̂11

Ĉ1 0

)
= 10−5

 −4.5 −0.047 0.41
−5.65 −47.59 −3.62
−2.32 −4.97 0

 ,

K2
1 =

(
Â21 B̂21

Ĉ1 0

)
= 10−5

−0.66 1.59 −0.46
4.97 2.80 −3.60
−2.32 −4.97 0

 ,

K1
2 =

(
Â12 B̂12

Ĉ2 0

)
= 10−4

−5.30 −2.99 2.10
15 −1.75 2.11

3.55 −2.77 0

 ,

K2
2 =

(
Â22 B̂22

Ĉ2 0

)
= 10−4

 6.14 −0.08 0.31
−8.25 4.18 0.34
3.55 −2.77 0

 ,
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(a) (b)

Figure 3. Trajectories for system (2) with dynamic output quantized ETC (4) and the switching signal d(t)
shown in Fig. 2: (a) x1(i, j); (b) x2(i, j).

Figure 4. Evolution of the mode-dependent ET mechanism with respect to condition (3).

K1
3 =

(
Â13 B̂13

Ĉ3 0

)
= 10−4

−26.2 41.1 −0.83
−10.6 −13.7 0.93
−0.08 3.91 0

 ,

K2
3 =

(
Â23 B̂23

Ĉ3 0

)
= 10−5

 8.12 −4.36 9.06
1.52 2.79 −1.59
−0.83 39.14 0

 ,

and the triggering parameters in (3) are

Θ1 = 0.452, Θ2 = 0.619, Θ3 = 0.511.

In order to show the effectiveness of our ET dynamic output quantization controller, take
the same switched signals as that in Fig. 2 and let the initial conditions with respect to
the controller system (4) be x̂(0, j) = x(0, j), x̂(i, 0) = x(i, 0). Then Fig. 3 indicates
that system (2) is stabilized under our designed controller. Moreover, Fig. 4 indicates the
corresponding evolution of the ET mechanism.
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5 Conclusions

The GES a.s. of 2-D switched systems are investigated by designing mode-dependent ET
dynamic output quantized controller. Note that 2-D systems are special dynamic systems
that depend on two independent variables, which makes their dynamic behavior analysis
much more difficult than 1-D systems. Especially, for 2-D control systems that further
involves switching, the related stability and stabilization research results are extremely
rarely. Now, the studies on ETC schemes are fewer used for the studies of 2-D switched
discrete-time systems. Therefore, the mode-dependent ETC schemes that incorporate
other novel technologies, including quantization control, output control, and so on, are
extremely difficult because they lacks sufficient early study results that can be used for
reference. Nevertheless, this paper has given general sufficient conditions to ensure the
GES a.s. of 2-D switched systems under the action of the designed controller. The suffi-
cient conditions of LMIs are obtained, and the restriction that all modes must be stable is
abandoned. Finally, the theoretical results are verified numerically. In terms of numerical
value, it should be noted that the constraints associated with mode switching and mode
stability in Theorem 2 are µr > 1 and βr > 0, r ∈ R, respectively. However, in most
previous researches, their main conclusions require µ > 1, µ = max{µr, r ∈ R} and
0 < β < 1, β = max{βr, r ∈ R}. Obviously, our condition is more general, which
makes the feasible solution domain for numerical LMI solution larger, and thus the LMI
in Theorem 2 is easier to solve. In addition, (30) in Theorem 2 can be directly obtained
with LMI in MATLAB software, and then all control gains can be obtained. Although
the mode-dependent ETC mechanism is a newly emerging method, it has been applied in
some fields such as T-S fuzzy control system [2] due to its advantages in saving network
bandwidth.
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