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Objective: Pneumonia is a common pulmonary complication of flail chest,
causing high morbidity and mortality rates in affected patients. The existing
methods for identifying pneumonia have low accuracy, and their use may
delay antimicrobial therapy. However, machine learning can be combined
with electronic medical record systems to identify information and assist in
quick clinical decision-making. Our study aimed to develop a novel
machine-learning model to predict pneumonia risk in flail chest patients.
Methods: From January 2011 to December 2021, the electronic medical records
of 169 adult patients with flail chest at a tertiary teaching hospital in an urban level
I Trauma Centre in Chongqing were retrospectively analysed. Then, the patients
were randomly divided into training and test sets at a ratio of 7:3. Using the Fisher
score, the best subset of variables was chosen. The performance of the seven
models was evaluated by computing the area under the receiver operating
characteristic curve (AUC). The output of the XGBoost model was shown using
the Shapley Additive exPlanation (SHAP) method.
Results: Of 802 multiple rib fracture patients, 169 flail chest patients were
eventually included, and 86 (50.80%) were diagnosed with pneumonia. The
XGBoost model performed the best among all seven machine-learning models.
The AUC of the XGBoost model was 0.895 (sensitivity: 84.3%; specificity: 80.0%).

Pneumonia in flail chest patients was associated with several features: systolic
blood pressure, pH value, blood transfusion, and ISS.
Conclusion: Our study demonstrated that the XGBoost model with 32 variables
had high reliability in assessing risk indicators of pneumonia in flail chest
patients. The SHAP method can identify vital pneumonia risk factors, making
the XGBoost model’s output clinically meaningful.
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Introduction

Flail chest is the most severe type of chest trauma, is found in approximately 4% of

patients with rib fractures and is defined as at least 3 or 4 consecutive rib fractures in

at least two places causing paradoxical movement of the chest wall (1, 2). It has been

described in 30% of patients with significant chest trauma requiring intensive care,
01 frontiersin.org

http://crossmark.crossref.org/dialog/?doi=10.3389/fsurg.2022.1060691&domain=pdf&date_stamp=2020-03-12
https://doi.org/10.3389/fsurg.2022.1060691
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fsurg.2022.1060691/full
https://www.frontiersin.org/articles/10.3389/fsurg.2022.1060691/full
https://www.frontiersin.org/articles/10.3389/fsurg.2022.1060691/full
https://www.frontiersin.org/articles/10.3389/fsurg.2022.1060691/full
https://www.frontiersin.org/journals/Surgery
https://doi.org/10.3389/fsurg.2022.1060691
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


Song et al. 10.3389/fsurg.2022.1060691
and flail chest has an adverse impact on their respiratory

function and causes several associated complications, such

as pneumonia and acute respiratory distress syndrome

(ARDS) (3).

Pneumonia is a common, severe, preventable complication

in patients with flail chest, with an estimated incidence rate

ranging from 21% to 33.5% (4–6). Moreover, pneumonia

morbidity is an important indicator of care quality for

patients with rib fractures, including risks of prolonged

mechanical ventilation, increased mortality, and poor long-

term outcomes (5). There are some challenges in managing

pneumonia (7). Overestimating the likelihood of pneumonia

can cause inappropriate use of antibiotics, leading to the

emergence of multidrug-resistant and invasive fungal

infections. Conversely, underestimating the likelihood of

pneumonia leads to undertreatment and increased mortality

from severe nosocomial infections (8, 9). Thus, to avoid

possible adverse disease progression and unfavourable

outcomes, it is essential that physicians accurately identify

patients at high risk of pneumonia at an early stage and tailor

individualised preventive treatment (e.g., enhanced

monitoring, lung hygiene, pain management) (10).

The Clinical Pulmonary Infection Score (CPIS) has been

proposed and used clinically for decades and has shown some

shortcomings in guiding the management of pneumonia (8).

Consequently, many studies have been conducted to design

and construct more accurate and stable risk scores, such as

the Scoring System for Pneumonia Risk in Pulmonary

Contusion Patients (11) and “RibScore”, a novel radiographic

score based on fracture patterns, have been performed (12).

These prediction models have been developed based on a

generalised linear approach; in addition, the “RibScore” only

considers anatomical factors (13). However, many risk factors

may exhibit a nonlinear relationship with the outcome and

may not fully apply to the traditional linear regression

prediction model (14).

Machine learning (ML), a branch of artificial intelligence

methods, can develop models from medical data to make

clinical decisions and assist doctors in their routine work (15).

In previous studies, several classical machine learning

algorithms have been tested to predict the risk of pneumonia,

including the prediction of stroke-associated pneumonia (16),

ventilator-associated pneumonia (17), and postoperative

pneumonia (18). However, studies in which researchers use

machine learning to predict pneumonia risk in flail chest

patients are rare. Even though these algorithms have not yet

become widely accepted and used in clinical decision-making,

they have tremendous potential in medicine (19).

In this study, we aimed to develop an advanced machine

learning model, assess how well it predicts the risk of

pneumonia in flail chest patients, and provide new approaches

for individualized analyses of pneumonia risk factors in

hospitalized patients with flail chest.
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Materials and methods

Study design and participants

We performed a retrospective cohort study at Chongqing

Emergency Medical Center, an urban teaching hospital with

1,200 beds in China, between January 2011 and December

2021. The study included patients with flail chest, defined as

at least 3 or 4 consecutive rib fractures in at least two places

causing paradoxical movement of the chest wall (2). We

excluded patients <18 years of age, patients who died within

48 h of admission or had pneumonia before referral to our

institution, and patients with rib fractures due to

cardiopulmonary resuscitation (Figure 1).
Primary outcome

Pneumonia status was determined by a combination of

medical record documentation and data logger verification.

Pneumonia was defined as the presence of new progressive

infiltrates with at least two of the following symptoms:

purulent respiratory secretion; body temperature ≥38°C or

≤35°C; leukocytosis (white blood cell count of ≥10,000/mm3)

or leucopoenia (white blood cell count of ≤4,500/mm3, or

immature neutrophils exceeding 15%) (5).
Data collection

Data were collected from the electronic medical records:

(1) Demographics: age, sex, injury mechanism; (2) Damage

level: Injury Severity Score (ISS), number of rib fractures,

combined injuries, Glasgow Coma Scale (GCS), admission

Revised Trauma Score (RTS), abbreviated injury scale (AIS); (3)

Initial vitals: admission temperature, pulse rate, breathing rate,

blood pressure; (4) Laboratory values in the first 48 h: blood gas

analysis, WBC, RBC, HB, PLT, PCT, CRP, PT, APTT, INR,

albumin; (5) Treatment within the first 48 h: transfer, intubation,

emergency operation, closed thoracic drainage, tracheostomy,

antibiotics, anticoagulants, emergency room stay time, etc.
Variable selection

Feature selection is an indispensable preprocessing step for

effectively analysing high-dimensional data (20). In our study,

we first removed features that had missing values in more

than 20% of the samples and then interpolated the remaining

missing values using the k-nearest neighbour algorithm (18)

(Impute Missing Values. KNN, in the Gene Pattern software

package, http://www.broad.mit.edu/genepattern/). Second, the

dataset with 169 records and 59 features was normalized
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FIGURE 1

Flowchart for patient selection and dataset partitioning. LR, logistic regression; SVM, support vector machine; GBDT, gradient boosting decision tree;
XGBoost, extreme gradient boosting; ANN, artificial neural network; NB, naive Bayes.
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using the Python Sklearn library. Then, the scores of each

feature were computed and ranked based on the Fisher score

evaluation system (21). Finally, we put features into model

training, recursively deleted unimportant parts, and selected

the optimal subset of each model.

The relevant model parameters were identified and reported

for the best-performing prediction model.
Statistical analysis

Demographic and clinical characteristics were analysed

using descriptive statistics. Continuous variables that

matched a normal distribution were expressed as the means

± SDs (standard deviations), and differences between

pneumonia and nonpneumonia groups were analysed by t
Frontiers in Surgery 03
test or one-way ANOVA. Data that do not conform to a

normal distribution are expressed as median (Interquartile

range, IQR) and can be considered for logarithmic

transformation. The F test was performed on the

transformed data, and if normality was not achieved, the

nonparametric test was applied. Categorical variables are

presented as frequencies (percentages). Moreover, Fisher’s

exact test or chi-square test was used to compare the

differences between the distributions of the two groups. P <

0.05 was considered statistically significant.
Development of machine learning models

The following seven machine learning models with

different algorithms were developed and evaluated for
frontiersin.org
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their performance: logistic regression (LR) (22), random

forest (RF) (22), support vector machine (SVM) (23),

gradient boosting decision tree (GBDT) (24),

backpropagation artificial neural network (ANN) (23),

extreme gradient boosting (XGBoost) (25), and naive

Bayes (NB) (26). These algorithms have previously been

shown to be stable and suitable for clinical datasets (27).

The XGBoost model was built using the xgboost package,

and the scikit-learn package constructed the remaining

six models.

The 169 adult patients were then randomly divided into the

training and validation sets: 70% (n = 118) into the training set

and 30% (n = 51) into the validation set. We performed 3-fold

cross-validation and grid search on the training set to tune

the model hyperparameters and avoid overfitting. The training

set was randomly divided into three subsets; in each iteration,

one subset was selected as the test set, and the rest was

chosen as the training set (24).
Model evaluation

The hyperparameter set of each model was selected with

the best model performance and was evaluated by the area

under the receiver-operating curve (AUC), Matthews

correlation coefficient (MCC), accuracy, sensitivity,

specificity, positive predictive value (PPV), and negative

predictive value (NPV). The best predictive model among

the seven models was further used to analyse the risk

factor gradient for flail chest pneumonia. Then, the

calibration curve was used to evaluate the difference

between the predicted and actual values.
Model interpretation

The Shapley Additive Explanations (SHAP) is a model

interpretability method widely used to interpret various

classification and regression models (24, 28, 29). In this

way, we can rank features according to their contribution

to the model and visualize the association between

features and outcomes (29). The model generated a

predicted value for each sample, and the SHAP value

represents the value assigned to each feature in the sample

(29). Its absolute value reflects the impact of the feature,

and its positive or negative value reflects its positive or

negative effect on the prediction of the risk of developing

pneumonia. When the SHAP value is >0, this indicates

that the feature contributes to the risk of developing

pneumonia; in contrast, when the SHAP value is <0, this

indicates that the feature contributes less to the risk of

developing pneumonia (29). The models were developed,

evaluated, and interpreted using Python 3.6.1.
Frontiers in Surgery 04
Results

Patient characteristics

During the study period, 802 patients with multiple rib

fractures who were registered in our hospital were selected,

and 633 (78.9%) patients were excluded. The search process

and full inclusion/exclusion criteria are shown in Figure 1.

Ultimately, 169 flail chest patients were recruited and used to

develop and evaluate the machine learning models. Of these,

86 (50.8%) patients with pneumonia were roughly equally

represented in the training set (50.8%) and the test set

(51.0%). The median age of the patients was 56 years, 81.7%

were male, and more than three-quarters were injured in

traffic accidents (Table 1).

Table 1 shows a summary of the demographic

characteristics, laboratory findings, and clinical features of the

patients enrolled with and without pneumonia. The

demographic characteristics and comorbidities did not differ

significantly between the patients with or without pneumonia

(P > 0.05). Of note, respiratory rate, blood pressure, pulse,

haemoglobin, c-reactive protein (CRP), prothrombin time

(PT), activated partial thromboplastin time (APTT), and

albumin were found to have significant differences between

the patients with or without pneumonia (P < 0.05). In

particular, the flail chest patients with pneumonia had higher

ISS scores and more severe traumatic brain injury and were

more likely to be intubated and transferred to the ICU at an

early stage early (P < 0.05).
Feature subset for prediction

We performed feature selection and ranked the levels of

feature importance since only partially relevant or less

significant characteristics are likely to have detrimental

impact on the performance of machine learning models.

The optimal feature subset for different machine learning

algorithms may vary. Supplementary Figure S1 shows the

Fisher score values in descending order, from which we

selected the optimal subset of features for the seven

models. The ideal LR model contains the top 14 features,

the ANN model includes the top 19 features, and the

remaining five models have the top 32 features.
Prediction performance

The AUC, specificity, sensitivity, positive predictive value,

negative predictive value, Matthews correlation coefficient

(MCC), and accuracy of each model on the testing set are

shown in Table 2 and Figure 2A. The AUC varied between
frontiersin.org
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TABLE 1 Baseline characteristics of patients by clinical outcomes

Variables No pneumonia (n = 83) Pneumonia (n = 86) P-value Missing (%)

Demographic characteristics

Age, Median (IQR) 54.5 ± 12.1 57.3 ± 15.0 0.186 0

Male, n (%) 66 (79.5) 72 (83.7) 0.612 0

Injury mechanism, n (%) 0.071

Traffic accident 58 (69.9) 70 (81.4) 0

Fall from height 12 (14.5) 4 (4.7) 0

Fall from same level 4 (4.8) 1 (1.2) 0

Crush injury 9 (10.8) 11 (12.8) 0

Rib location, n (%) 0.004

Left 31 (37.3) 17 (19.8) 0

Right 17 (20.5) 11 (12.8) 0

Bilateral 35 (42.2) 58 (67.4) 0

Rib fracture number, Median (IQR) 8.5 (6.0, 11.0) 10.0 (7.8, 15.0) 0.002 1.78

ISS, Mean ± SD 21.5 ± 7.9 31.2 ± 10.4 <0.001 0

GCS, Mean ± SD 14.5 ± 1.7 12.4 ± 3.5 <0.001 0

RTS, Mean ± SD 7.7 ± 0.6 7.0 ± 1.2 <0.001 0

Head AIS, n (%) <0.001

<3 72 (86.7) 52 (60.5) 0

≥3 11 (13.3) 34 (39.5) 0

Abdomen AIS, n (%) 0.038

<3 76 (91.6) 68 (79.1) 0

≥3 7 (8.4) 18 (20.9) 0

Limbs and Pelvis AIS, n (%) 0.002

<3 77 (92.8) 63 (73.3) 0

≥3 6 (7.2) 23 (26.7) 0

Payment method, n (%) 0.077

Medicare payment 20 (24.1) 13 (15.1) 0

Self-pay 29 (34.9) 30 (34.9) 0

Employment injury insurance 20 (24.1) 15 (17.4) 0

Third party payment 14 (16.9) 28 (32.6) 0

Chest Comorbidities

Pneumothorax, n (%) 57 (68.7) 62 (72.1) 0.75 0

Haemothorax, n (%) 47 (56.6) 60 (69.8) 0.107 0

Lung contusion, n (%) 68 (81.9) 77 (89.5) 0.232 0

Clavi-fracture, n (%) 14 (16.9) 18 (20.9) 0.633 0

Sternal fracture, n (%) 20 (24.1) 27 (31.4) 0.375 0

Thoracic vertebral fracture, n (%) 21 (25.3) 26 (30.2) 0.587 0

Vital signs

T (°C), Mean ± SD 36.6 ± 0.4 36.7 ± 0.6 0.166 0

P (beats/min), Median (IQR) 84.0 (77.0, 97.0) 105.0 (88.0, 123.0) <0.001 0

SBP (mm Hg), Mean ± SD 128.7 ± 22.0 117.1 ± 25.0 0.002 0

DBP (mm Hg), Mean ± SD 80.5 ± 13.1 71.5 ± 16.8 <0.001 0

Laboratory data in first 48 h

Haemoglobin (g/L), Median (IQR) 123.0 (110.0, 137.5) 100.0 (82.5, 121.8) <0.001 0

Platelets (109/L), Median (IQR) 168.0 (138.5, 209.5) 151.5 (103.2, 203.0) 0.123 0

CRP transformation, Mean ± SD 0.9 ± 0.9 1.3 ± 0.9 0.02 7.69

White blood cell (109/L), Median (IQR) 12.3 (9.0, 16.8) 13.2 (9.4, 18.1) 0.171 1.18

(continued)
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TABLE 1 Continued

Variables No pneumonia (n = 83) Pneumonia (n = 86) P-value Missing (%)

PT (second), Median (IQR) 13.6 (13.0, 14.4) 14.9 (13.7, 16.8) <0.001 0

APTT (second), Median (IQR) 34.3 (31.4, 37.5) 36.7 (33.5, 42.0) 0.003 0

Albumin (g/L), Median (IQR) 39.0 (36.4, 42.2) 33.5 (28.1, 37.6) <0.001 0

PH, Median (IQR) 7.4 (7.4, 7.4) 7.4 (7.3, 7.4) 0.145 17.75

PaO2 (mm Hg), Mean ± SD 105.8 ± 52.3 108.7 ± 55.9 0.754 17.75

PaCO2 (mm Hg), Mean ± SD 38.1 ± 6.7 36.6 ± 8.0 0.252 17.75

Oxygen saturation, Median (IQR) 98.1 (95.4, 99.0) 98.0 (94.7, 99.0) 0.533 17.75

Treatment in first 48 h

Hospital transfer, n (%) 47 (56.6) 64 (74.4) 0.023 0

Emergency in ICU, n (%) 11 (13.3) 51 (59.3) <0.001 0

Emergency intubation, n (%) 11 (13.3) 48 (55.8) <0.001 0

Emergency close drain, n (%) 38 (45.8) 52 (60.5) 0.079 0

Emergency operation, n (%) 35 (42.2) 46 (53.5) 0.187 0

Tracheotomy, n (%) 3 (3.6) 35 (40.7) <0.001 0

Blood transfusion (u), Median (IQR) 0.0 (0.0, 2.0) 4.0 (1.6, 9.4) <0.001 0

TABLE 2 Prediction performance of the machine learning models in the test set.

AUC Accuracy Sensitivity Specificity PPV NPV MCC

LR 0.818 0.765 0.731 0.800 0.792 0.741 0.532

SVM 0.831 0.824 0.846 0.800 0.815 0.833 0.647

RF 0.885 0.804 0.808 0.800 0.808 0.800 0.608

GBDT 0.880 0.824 0.846 0.800 0.815 0.833 0.647

XGBoost 0.895 0.843 0.885 0.800 0.821 0.870 0.688

ANN 0.805 0.804 0.769 0.840 0.833 0.778 0.610

NB 0.848 0.824 0.808 0.840 0.840 0.808 0.648

LR, logistic regression; SVM, support vector machine; GBDT, gradient boosting decision tree; XGBoost, extreme gradient boosting; ANN, artificial neural network; NB,

Naive Bayes; AUC, area under curve; PPV, positive predictive value; NPV, negative predictive value; MCC, Matthews correlation coefficient.

FIGURE 2

Discrimination and calibration performance of models. (A) ROC curves for the LR, SVM, RF, GBDT, XGBoost, ANN, and BN models in predicting
pneumonia of flail chest, (B) Calibration curves for the XGBoost model. ROC, receiver operating characteristics; LR, logistic regression; SVM,
support vector machine; GBDT, gradient boosting decision tree; XGBoost, extreme gradient boosting; ANN, artificial neural network; NB, naive Bayes.
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0.805 and 0.895 for different pneumonia prediction models: LR

(0.818); SVM (0.831); RF (0.885), GBDT (0.880), ANN (0.805),

XGBoost (0.895), and NB (0.848). The RF, NB, and XGBoost

models all performed better than 80% in all metrics when

using a probability cut-off value of 0.5, while the sensitivity of

XGBoost (0.885) was much higher than that of RF and BN

(0.808). The MCC of 0.688 and accuracy of 0.843 with

XGBoost were also relatively high. Since the AUC values of

the seven ML models did not differ much, we also considered

the differences in other indicators, especially the sensitivity

and MCC, and selected the XGBoost model as the final

prediction model. The calibration curve for the XGBoost

model in the test set is close to the 45 lines, which suggests

that the model’s predicted probability was close to the

observed probability (Figure 2B). The hyperparameters of the

XGBoost model were as follows: n estimators 250, learning

rate 0.08, column sample by tree 0.8, minimum child weight

1, gamma 0.1, maximum depth 2, and subsample 0.72.
Interpretability of the prediction model

To better explain the predictive meaning of the XGBoost

model to guide clinical practice, we applied the SHAP

algorithm to explain how to obtain the predicted probability

based on the baseline risk and patient characteristics. As

seen in Figure 3A, the importance of features is ranked

according to the sum of the mean absolute value of all

sample SHAP values. The top 10 important variables in the

pneumonia prediction model were systolic blood pressure,

pH value, blood transfusion, ISS, haemoglobin, tracheotomy,

rib fracture number, emergency in ICU, rib location, and

limbs or pelvis AIS.

Additionally, Figures 3B,C show the prediction results for a

particular instance. Risk factors are shown in red and protective

factors in blue; longer bars indicate greater importance of

features. Figure 3B accurately predicts the occurrence of

pneumonia in patients with pneumonia. Poor circulatory

status with acidosis, requiring blood transfusion, and ICU

treatment were risk factors for this patient. Figure 3C shows

that a patient without lung infection was accurately predicted

not to suffer from pneumonia. The XGBoost model can

distinguish well between pneumonia and nonpneumonia

patients and indicate different risk probabilities depending on

the individuality of each hospitalized patient.
Discussion

As a severe chest trauma, flail chest not only affects the

stability of the chest wall but also poses a threat to

circulation and breathing, which can directly affect the

clinical course and outcome of the patient (30).
Frontiers in Surgery 07
Furthermore, multiple rib fractures and pulmonary

contusions are significant trauma factors contributing to

the development of pneumonia (31). Therefore, early

detection of pneumonia is critical for timely interventions

to improve clinical outcomes and reduce costs (32). In our

study, we evaluated the performance of seven models for

the occurrence of pneumonia in flail chest using clinical

data from the first 48 h. The XGBoost model with 32

clinical features showed the best prediction ability, and we

had some plans to avoid overfitting, such as feature

selection by Fisher score and 3-fold cross-validation in the

training set.

Predictive modelling to aid clinical decision-making is not a

new concept. The Scoring System for Pneumonia Risk in

Pulmonary Contusion Patients, the “RibScore”, a novel

radiographic score based on fracture patterns, and the Clinical

Pulmonary Infection Score (CPIS) are all examples of current

operational scoring tools (8, 11, 12). The CPIS tool has shown

moderate reliability and accuracy in diagnosing nosocomial

pneumonia (33, 34). The CPIS, however, is based on

radiographic and laboratory values following symptom onset,

as with other tools (22). Thus, CPIS may assist clinicians in

narrowing down the identification of patients with

pneumonia, but treatment becomes delayed rather than early

prevention.

Artificial intelligence and electronic medical records have

enabled ML algorithms to be more widely used in

individualized medicine to support clinical decisions (35).

XGBoost models have shown advantages in predicting

pneumonia due to their impressive predictive accuracy and

ease of use (14). Chen et al. (36). based on the XGBoost

algorithm, developed a risk prediction model for postoperative

pneumonia in patients after liver transplantation. According

to Li (37), XGBoost was used to build a machine learning

model for predicting stroke-associated pneumonia with a 0.84

model evaluation precision. In our study, the XGBoost model

has a sensitivity of 88.5%. In contrast, the specificity is 80.0%,

meaning that only 11.5% of actual patients are not identified

as high-risk (false-negative rate), yet 20% of the patients who

do not have pneumonia are incorrectly labelled as high-risk

patients (false-positive rate). This level of exposure to

unnecessary interventions may be acceptable for a safe,

inexpensive, and well-tolerated intervention (e.g., enhanced

surveillance or pulmonary hygiene protocols) to prevent

pneumonia in high-risk patients. In contrast, high sensitivity

is essential in clinical practice because of the consequences of

misclassification of actual patients with pneumonia. We can

combine our models’ and doctors’ opinions to further

improve system performance to overcome the effects of false

negatives and positives.

Given these results, it appears that not all low-risk-level

patients are pneumonia free. We report low-risk groups in

several patients with pneumonia (Supplementary Table S1).
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FIGURE 3

(A) the top 10 most important features indicated by XGBoost. (B) An illustrative example of the SHAP algorithm for interpreting the developed model.
The bars in red and blue represent risk factors and protective factors, respectively; longer bars indicate greater feature importance. A patient with
pneumonia accurately predicts the occurrence of pneumonia. (C) a patient without lung infection was accurately predicted to not suffer from
pneumonia. PH, pH value; SBP, systolic blood pressure; ISS, Injury Severity Score; P, pulse.

Song et al. 10.3389/fsurg.2022.1060691
This result reflects the incomplete clinical presentations initially

observed in some patients. In the early admission stage, false-

negative patients with clear consciousness and stable vital

signs did not require emergency surgery or transfusion

therapy, and the model identified them as a low pneumonia

risk group. However, all three patients had injuries other than

chest trauma, such as lower limb fractures and abdominal

organ injuries, and their subsequent treatment and long-term
Frontiers in Surgery 08
immobilization increased the risk of pneumonia. On the other

hand, one false-positive patient who was severely injured was

predicted to have a high risk of pneumonia by the XGBoost

model. The patient died during the early stages of

hospitalization, and the development of pneumonia may not

be effectively observed during the disease. Importantly, for

patients with incorrect predictions in this model, we can

incorporate dynamic clinical features (e.g., 24 and 48 h of
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admission) into the model for multiple predictions. Three or

more clinicians will also combine their clinical experience to

determine the likelihood of pneumonia in patients with flail

chest (38). Clinicians could identify them effectively by

incorporating clinical knowledge.

In addition, a predictive model for a disease needs to be

interpretable, and this interpretability can promote

understanding and acceptance of the model’s predictions by

physicians (28). Therefore, we used SHAP values to estimate

how important predictor variables were to the model to gain

insight into model interpretability. By taking the average of

the absolute value of each feature’s SHAP value and observing

the importance to the overall model, we found that the more

crucial baseline variables in the pneumonia prediction model

were systolic blood pressure, pH value, blood transfusion, and

Injury Severity Score (ISS). The first three indicators reflect

the internal environment (39). The Injury Severity Score (ISS)

is a common anatomical-based trauma score that can

effectively assess the injury’s severity and predict clinical

outcomes such as the likelihood of survival and ICU length of

stay (40, 41). However, it depends exclusively on anatomical

factors of injuries, not synthesizing the mechanism of injury

and physiological factors (42).

ML models have demonstrated outstanding performance

in predicting diseases and clinical conditions, and can be

used to guide treatment decisions and interventions (35). For

example, a machine learning model can generate a

probability for each patient based on their characteristics.

We observed that more severe trauma problems, such as

higher ISS, rib fracture number, or intubation, increased the

risk of pneumonia, consistent with clinical experience and

previous data (5, 31). Consistent with previous studies, a

more unstable physiological environment, e.g., lower pH

value, systolic blood pressure, and haemoglobin, also

increased the risk of pneumonia (39, 40, 43). As a result, the

interpretable machine learning model built demonstrates

good prediction results.

The study may have several limitations. First, it was a

single-centre study with a limited sample size. Given that

only four percent of patients with rib fractures develop flail

chest, the sample size of flail chest patients in one medical

centre was small (1). To mitigate the small sample size, we

performed cross-validation (k = 3) of every model. However,

selection bias was inevitable, and the model’s efficacy for

predicting pneumonia should be verified in future studies

with larger sample sizes. Second, our study was conducted

retrospectively. We can only suggest associated and

correlated factors, not identify the main factors contributing

to pneumonia. Furthermore, there is a possibility that our

findings could be biased due to the long duration of patient

enrolment. Third, whereas the missing numerical variables

were imputed with weighted k-nearest neighbours, essential

variables such as CRP and PH value had some missing
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values. Additionally, the accuracy may be improved by

adding more variables currently not collected, such as

comorbidity (40) (e.g., COPD, type 2 diabetes mellitus) and

other predictors, such as smoking, alcohol usage, aspiration,

and prehospital measures (44, 45). Fourth, we used

variables within 48 h as independent variables instead of

time-varying variables to predict the occurrence of

pneumonia that cannot reflect the dynamic changes in of

hemodynamic and metabolic variables in trauma patients.

Finally, further external validation is needed. Fortunately,

our team will continue to collect data on a prospective

multicentre cohort study to refine the model.
Conclusion

We successfully established seven ML models to predict

the risk of pneumonia during hospitalization in flail chest

patients. The XGBoost model has shown better

performance than the LR, RF, SVM, ANN, GBDT, and NB

models. We anticipate that it is a convenient risk

stratification tool that clinicians can use to identify

individualized treatment options for patients with multiple

rib fractures. To our knowledge, this is the first machine

learning based study to provide a novel approach for

predicting pneumonia in flail chest patients. However,

further external validation is required to test the

generalization of our model.
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