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The content of industrial components of coalbeds, one of the main parameters

of coalbed methane (CBM) reservoirs, is crucial in the entire coal mine resource

exploration and exploitation process. Currently, using geophysical logging data

to determine the content of industrial components is the most widely

implemented method. In this study, the PZ block in the Qinshui Basin was

employed as a target block to evaluate ash (Aad), fixed carbon (FCad), volatile

matter (Vdaf), andmoisture (Mad) under the air-dry (AD) base condition based on

the autocorrelation between the geophysical logging curves and industrial

component contents combined with the OBGM (1, N) model. The results

indicate that 1) the geophysical logging curves combined with the OBGM (1,

N) model can accurately predict the Aad and FCad contents and an increase in

geophysical logging curve types can effectively improve the model

performance, compared to using a single geophysical logging curve for

prediction. 2) When predicting the Vdaf content, using the geophysical

logging curves combined with Aad and FCad contents had the highest

prediction accuracy. Further, prediction bias does not exist, compared to

using only the geophysical logging curve or the autocorrelation between the

industrial component contents. The entire evaluation process begins with an

assessment of the Aad and FCad contents. Then, the Vdaf content was assessed

using the content of these two industrial components combined with

geophysical logging data. Finally, the Mad content was calculated using the

volumetric model. Accurate application results were obtained for the

verification of new wells, demonstrating the efficacy of the method and

procedure described in this study. 3) The OBGM (1, N) model has the
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highest prediction accuracy compared with the multiple regression and GM (0,

N) models, which have the same computational cost. The geophysical logging

interpretationmodel of the proposed coalbed industrial component contents is

simple to calculate and suitable for small samples, providing a new method for

the evaluation process of industrial component contents.

KEYWORDS

coal quality analysis, industrial components, ash content, geophysical logging data,
Qinshui Basin, OBGM (1, N)

1 Introduction

Currently, China is responsible for a significant proportion of

coal production and consumption (Ward, 2016; Yang et al., 2018;

He et al., 2020), in addition to having the highest coal sales

worldwide (Gao et al., 2019). The Chinese government has made

significant improvements toward the use of green coal resources

(Jiang et al., 2010; Cai et al., 2011; Feng et al., 2020). With the

current decline in conventional oil resources, the exploration and

exploitation of unconventional oil and gas resources have

become a research hotspot (Hamawand et al., 2013). Among

them, coalbed methane (CBM) is a clean energy source (Palmer,

2010), and its exploration and exploitation is safer than

conventional coal mining, in addition to producing less

greenhouse gases (Karacan et al., 2011; Moore, 2012). Among

coal quality parameters, the industrial components of coalbeds

are crucial throughout the entire process of coal exploration and

exploitation, mining, design, and processing (Feng et al., 2020).

The industrial components of coalbeds can effectively evaluate

the CBM content, whether they play a corrective role in the KIM

or Langmuir coal order equations (Ahmed et al., 1991; Hawkins

et al., 1992), or they directly use the industrial components of the

coalbeds to predict the CBM content (Zhou and Guan, 2016;

Zhou et al., 2015). Therefore, an accurate evaluation of the

industrial components of coal quality is an important

parameter that may lead to considerable economic benefits.

In an air-dry (AD) base state, coal industrial components

contain ash (Aad), fixed carbon (FCad), volatile matter (Vdaf), and

moisture (Mad). The simplest method of obtaining the content of

each industrial component is to send coal samples from core

boreholes to a laboratory for geochemical analysis (Shao et al.,

2013; Roslin and Esterle, 2015), which is time-consuming and

expensive, and the fragility of the CBM reservoirs during drilling

limits the number of samples (Fu et al., 2009b; Wang et al., 2018).

To solve this problem, several studies have proposed solutions; an

example is using geophysical logging data, which has been widely

employed worldwide, to evaluate the industrial component

contents of coalbeds (Yegireddi and Bhaskar, 2009).

Geophysical logging techniques have the advantage of being

continuous and cost-effective as a reliable method for

characterizing the variations in the physical properties of

rocks at high resolution (Morin, 2005; Ghosh et al., 2014). By

constructing a relationship between the geophysical logging data

and industrial components, the variation curve of the industrial

components in the CBM reservoirs can be predicted.

Furthermore, this method can be extended to boreholes

without coring samples but with the geophysical logging data,

laying the foundation for subsequent mapping of the 2D contour

distribution of industrial components and 3D refinement model

(Zhou et al., 2015).

The evaluation of the coal industrial components quality has

been promising. Initially, volumetric models and statistical

analysis methods for the determination of coal quality were

proposed by Bond and Mullen, respectively (Bond et al., 1971;

Mullen, 1988); however, they could not be combined with

geophysical logging data. Subsequently, Pan et al. analyzed the

density logging response with a strong correlation to the Aad

content and used this relationship to evaluate the industrial

components of CBM reservoirs (Pan and Huang, 1998). It

was then determined that the geophysical logging data are

subject to multiple factors, the evaluation results of a single

curve are not necessarily accurate, and multiple series of

geophysical logging curves are more reliable in constructing a

predictive model (Daniels et al., 1983; Chatterjee and Paul, 2013;

Ghosh et al., 2014). With the development of mathematical

methods, multiple regression (Zhang, 2013), machine learning

(Zhou et al., 2016), and other methods have been gradually

introduced to construct linear and nonlinear relationships

between industrial components and geophysical logging

curves. For example, (Liu et al., 2021) constructed linear

relationships between the geophysical logging curves and

industrial components and obtained promising results in the

Qaidam Basin, whereas (Zhou and O’Brien, 2016) constructed

relationships between the geophysical logging curves and

multiple parameters, such as industrial components, using the

Gaussian radial basis function (RBF) method, exhibiting the

feasibility of a machine learning approach, and validated it in

several studies. Similarly, methods such as fuzzy mathematics

(Huang et al., 2020) have been applied to predict the contents of

industrial components. However, it should be noted that these

mathematical–statistical methods are based on a large sample

size, and it is difficult to simplify them for small-sample datasets.

The applicability of random forest and support vector machine

methods, which are applicable to small-sample datasets, are also

limited by the determination of hyperparameters and the

uncertainty of the method.
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FIGURE 1
Schematic diagram of the PZ block in Qinshui Basin. (A) The location of the Qinshui Basin in China. (B)Geological schematic diagram of the PZ
block. (C) Lithological column profile of the PZ block. (D) Schematic diagram of the location and geological structure of the study area.
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Hence, this study applies the gray system OBGM (1, N)

model, which is applicable to small-sample data, for predicting

the industrial components of coal quality and evaluating the

content of each industrial component in the PZ block based on

geophysical logging data. The results indicate that using

geophysical logging data combined with the OBGM (1, N)

model can effectively predict the Aad and FCad contents.

Further, using multiple logging curves can effectively improve

the accuracy of industrial component predictions compared to

using a single logging curve. This paper proposes a set of

evaluation processes for industrial components applicable to

the PZ block, considering the autocorrelation between the

industrial component contents, and tests the model of this

study using new wells, exhibiting the effectiveness of the

proposed method.

2 Geological background

2.1 Overview of the study area

The PZ block is in the Qinshui Basin, Shanxi Province, China

(Figure 1A), and started commercial production in 2016. The

tectonics within the PZ block are dominated by near-north-south

folds (Figures 1B,D), which occur in the form of backward-

sloping intervals (small dip angles; mainly 5–15°; averaging <10°)
(Xu et al., 2014). The No.3 and No.15 coal seams are the main

coal seams for CBM exploration and exploitation (Figure 1C) (Lv

et al., 2012). The No.3 coal seam is in the Shanxi Formation and is

a shallow water deltaic sedimentary system with a stable

thickness of 3.45–7.02 m and an average thickness of 5.74 m.

The No.15 coal seam is in the Taiyuan Formation, which is a set

of composite deposition systems of barrier wall lagoons and

carbonate terraces. The swampy deposits developed on the

barrier wall coast of the No.15 coal seam are stable, are

0.85–6.25 m thick, and have an average thickness of 2.62 m.

From the analysis of the coal samples collected in the boreholes,

the average vitrinite, inertinite, and exinite group contents of the

coal samples from the No.3 coal seam were 75.14%, 20.61%, and

4.25%, respectively; the contents of the three microscopic

components of the No.15 coal seam are 77.46%, 13.02%, and

9.53%, respectively, all of which are dominated by the specular

group. The vitrinite reflectivity ranges within 3.18%–4.36% and

3.97%–4.25% for the No.3 and 15 coal seams, respectively, and

are both anthracites in terms of thermal evolution.

2.2 Difficulties in the evaluation

As one of the oldest exploration and mining works in the PZ

block, the number of boreholes with coring information is small.

Seven parameter wells from the same batch were collected, and

59 sets of core coal samples, that met the experimental

specifications and requirements, were collected. The bare-hole

logging data only contained conventional logging curves; in the

lithology logging series, caliper (CAL), natural gamma (GR), and

spontaneous potential (SP) log curves were collected; in the

resistivity logging series, there were deep lateral resistivity

(RD) and shallow lateral resistivity (RS) log curves, and a few

boreholes contained the flushed-zone resistivity (RXO) log curve;

in the three-porosity logging series, compensation density

(DEN), compensated neutron (CNL) and acoustic time

difference (AC) log curves correlated, and there was no array

acoustic or nuclear magnetic resonance (NMR) logging data.

Compared to the later developed study blocks, the PZ block did

not have a porosity logging curve with multiple source distances

in the conventional series and no electric imaging logging series.

Owing to the technological development at that time, the

restricted core coal sampling, coupled with the lack of logging

series, was difficult to upscale using data-driven machine

learning methods. Therefore, this study used a gray system

method applicable to small-sample datasets combined with

geophysical logging data, to construct a coal quality industrial

component prediction model.

3 Method principle

3.1 Gray static model GM (0, N)

The GM (0, N) model is a static model without derivatives,

which is fundamentally different from the multiple linear

regression model. The typical multiple linear regression model

is based on the original data, whereas the GM (0, N) model is

based on the new data series accumulated from the original data.

The modeling form of the GM (0, N) model weakens the

randomness among the original data (Zhang and Jiang, 2005;

Zhu et al., 2012), increases data regularity, and requires a small

amount of statistical data, which is more suitable for use in

practical production.

Specifying x(0)
1 � {x(0)

1 (1), x(0)
1 (2), · · ·, x(0)

1 (n)} as the

sequence of system characteristics, the sequence of correlated

factors of interest is specified as

x(0)
2 � {x(0)

2 (1), x(0)
2 (2), · · ·, x(0)

2 (n)}
x(0)
3 � {x(0)

3 (1), x(0)
3 (2), · · ·, x(0)

3 (n)}
..
.

x(0)
N � {x(0)

N (1), x(0)
N (2), · · ·, x(0)

N (n)}
where x(1)

i denotes a cumulative generating sequence of x(0)
i ; that

is, a 1-AGO sequence. The GM (0, N) model can be written as

x(1)
1 (k) � a + b2x

(1)
2 (k) + b3x

(1)
3 (k) + · · · + bNx

(1)
N (k) (1)

The static GM (0, N) model can construct the corresponding

prediction model by least-squares fitting with the target
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accumulation sequence after completing the accumulation of the

feature sequence. The predicted target sequence is then reduced

(cumulative subtraction) to obtain the predictions.

3.2 OBGM (1, N) prediction model

Compared to the GM (0, N) model, the OBGM (1, N) model

consists of first-order ordinary differential equations (Zeng et al.,

2016; Zeng and Li, 2018). Here, assumptions must be made

regarding the actual geophysical logging information, and it is

clear from Figure 2 that the geophysical logging curve is a

characterization of the physical properties of the formation

rocks. During the geophysical logging data acquisition, the

logging instrument is gradually lifted from the bottom to the

wellhead, a process that can be viewed as a time series; that is, the

actual response of the geophysical logging data reflects the

physical properties of the measured rock, whereas the

measurement time is another influencing factor. The response

of each logging curve can then be affected by the coupling of rock

physical property and time changes, and the response of the

logging data is written as shown in Eq. 2:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dx(1)
DEN1

dt
� a11x

(1)
DEN1 + a12x

(1)
DEN2 +/ + a1Nx

(1)
DENN + b1

dx(1)
GR1

dt
� a21x

(1)
GR1 + a22x

(1)
GR2 +/ + a2Nx

(1)
GRN + b2

..

.

dx(1)
CAL1

dt
� aN1x

(1)
CAL1 + aN2x

(1)
CAL2 +/ + aNNx

(1)
CALN + bN

(2)

The OBGM (1, N) model is a simplified and improved model

of the GM (1, 1) model in the case of N variables (geophysical

logging curves), consisting of a system of N first-order ordinary

differential equations, with each variable considered as a database

of modeled system characteristics, and the system of equations

for each variable forming the OBGM (1, N) model. The matrix

transformation of Eq. 2 can be expressed as Eq. 3.

dX(1)

dt
� AX(1) + B (3)

Adding the corresponding settable parameter column

a
∧ � [A, B]T, the form of Y becomes

Y �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
x(0)
1 (2) x(0)

2 (2) / x(0)
N (2)

x(0)
1 (3) x(0)

2 (3) / x(0)
3 (3)

..

. ..
. ..

. ..
.

x(0)
1 (n) x(0)

2 (n) / x(0)
N (n)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (4)

The least-squares estimated parameter column of the OBGM

(1, N) model can then be written as

a
∧ � (MTM)−1MTY (5)

where M can be expressed as

M �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
z(1)1 (2) / z(1)N (2) 1
z(1)1 (3) / z(1)1 (3) 1

..

. ..
. ..

. ..
.

z(1)1 (n) / z(1)N (n) 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (6)

The approximate time response equation corresponding to

the OBGM (1, N) model is

X̂
(1)(k) � eA(k−1)X(1)(1) + A−1(eA(k−1) − I) · B (7)

FIGURE 2
Geophysical logging data acquisition diagram. (A) Data collection process. (B) Schematic diagram of logging curves.
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In Eq. 7, k � 1, 2, ..., and the cumulative reduction values are

{ X̂
(0)(1) � X(0)(1)

X̂
(0)(k) � X̂

(1)(k) − X̂
(1)(k − 1) (8)

In this theory, there is a background value coefficient, ξ,

which has a significant impact on the prediction performance of

the OBGM (1, N) model. In practice, ξ is typically used as a

constant value of 0.5 (Tan et al., 2015). In addition, the time

response function of the OBGM (1, N) model and its reduced

form were expanded. The sequences, X(0)
i and X(1)

j

(i � 1, 2, ...; j � 1, 2, ...), are defined as

x(0)
1 (k) + aξx(1)

1 (k) + a(1 − ξ)x(1)
1 (k − 1)

� ∑N
i�2
bix

(1)
i (k) + kc + d, k � 2, 3, ..., (9)

The parameters in Eq. 9 are expressed in a matrix as

p̂ � [b2, b3, ..., bN, a, c, d]T (10)

In Eq. 10, bN is the column of parameters obtained by least

squares estimation, and depends on the number of logging curve

bars involved in the model construction.

The OBGM (1, N) model is inexpensive to construct and

does not require a significant number of calculations. Therefore,

this study used geophysical logging curves as the basis for model

construction, explored the effects of different curve numbers on

the model, and recorded model performance for subsequent

analysis.

4 Data preprocessing and quality
checking

In this study, 59 sets of experimental samples were collected

from wells PZ1–PZ7. The thickness of the CBM reservoirs was

stable, and the industrial component determination method

implemented industry standards: Aad, Mad, and Vdaf were

determined by laboratory heating, and FCad was determined

using the differential subtraction method.

During geophysical logging data processing, the depth of

the core sample is normalized to avoid the effects of

misalignment caused by the stretching of the drill pipe (Fu

et al., 2009b), and the geophysical logging response values

were normalized through dense layers on the coal seam to

eliminate effects caused by the borehole environment and

instrumentation. Simultaneously, this study investigated the

dilation of the core drill hole in the PZ block and performed a

dilation correction of the geophysical logging curve for the

dilation section.

To verify the reliability of the experiments and pretreatment,

correlation tests were performed on the samples. A significant

correlation was observed when comparing the laboratory relative

density on an air-dry basis (RDad) of the coal samples with the

Aad contents (Figure 3A). The autocorrelation between the FCad

and Aad contents was significant (Figure 3B), indicating the

reliability of the sample experiment. As shown in Figure 3C,

the PZ block dilation is not clear, and the box plot shows the CAL

curve response values of each cored coal sample in the seven

cored boreholes, by comparing the bit diameters (21.59 cm). The

dilation rate of each borehole was determined to be within 15%;

that is, the dilation correction was completed by fitting the

logging response values of the undilated section to the dilated

section by regression. After preprocessing was completed, the

DEN curve response values also exhibited a significant

correlation with the RDad content (Figure 3D) when

comparing them (Zhou and O’Brien, 2016), indicating the

reliability of the logging data in this study with the validity of

the preprocessing. It should be noted that the actual corrected

density logging response values differ from the laboratory

apparent density, which is related to the actual formation

envelope pressure, fracture conditions, and the effects of

human correction.

5 Results

Pearson index analysis was performed using the geophysical

logging data with the coalbed industrial component contents to

identify geophysical logging curves that are sensitive to the

industrial component contents (Table 1). The feasibility of

using geophysical logging data to predict the industrial

component contents has been confirmed in previous studies

(Shao et al., 2013; Ghosh et al., 2016). Multiple logging curves

are more reliable to predict the contents of the industrial

components than using only the DEN curve (Zhou and

O’Brien, 2016). Correlation analysis revealed significant

correlations between the industrial component contents, the

Aad content correlated significantly with the FCad content, and

both correlated with the Vdaf content. The Aad content, as an

industrial component, correlated significantly with other

industrial component contents, and is typically the first to be

evaluated (Liu et al., 2021).

5.1 Evaluation prediction of Aad

Ash yield is vital, and the effect of the Aad content on the

porosity and CBM content has been proven previously (Li et al.,

2007; Zhou and Guan, 2016). The experimental Aad content in

the study block ranged from 4.05% to 32.78%, with an average

value of 11.8%. The correlation between each logging series and

Aad content was plotted in this study (Figure 4). The correlation

between the Aad content and the response values of the four

curves (DEN, GR, AC, and RD) was outstanding, in which the

Aad content correlated significantly with the response values of

DEN and GR (Figures 4A,B). The coalbeds are not radioactive;
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FIGURE 3
Pre-processing and quality checking of experimental data and geophysical logging processing of coal samples. (A) Correlation analysis plot of
the Aad content and RDad. (B)Correlation analysis plot of the Aad content and the FCad content. (C)Dilation of core drilling. (D) Correlation analysis of
the pre-processed DEN curve response values with the RDad of the laboratory coal samples.

TABLE 1 The Pearson index analysis of the response values of the industrial components and the geophysical logging curves of coalbeds in the PZ
block.

Mad Aad Vdaf FCad AC CNL DEN GR RD CAL

(%) (%) (%) (%) (μs/m) (V/V) (g/cm3) (API) (Ω·m) (cm)

Mad (%) 1.00

Aad (%) −0.03 1.00

Vdaf (%) −0.20 0.51 1.00

FCad (%) −0.08 −0.99 −0.58 1.00

AC (μs/m) 0.49 −0.61 −0.44 0.56 1.00

CNL (V/V) −0.04 0.00 0.20 −0.01 −0.10 1.00

DEN (g/cm3) 0.05 0.89 0.47 −0.89 −0.50 −0.02 1.00

GR (API) 0.00 0.85 0.39 −0.84 −0.51 −0.09 0.69 1.00

RD (Ω·m) −0.12 −0.53 −0.08 0.52 0.25 0.26 −0.36 −0.67 1.00

CAL(cm) 0.21 −0.23 −0.01 0.19 0.32 0.18 −0.23 −0.32 0.39 1.00
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FIGURE 4
Correlation analysis of the Aad content and the geophysical logging data response with the predicted results of the Aad content. (A) Relationship
between the Aad content and DEN. (B) Relationship between the Aad content and GR. (C) Relationship between the Aad content and AC. (D)
Relationship between the Aad content and RD. (E) Relationship between the Aad content and CAL. (F) Relationship between the Aad content and CNL.
(G) Performance of the OBGM (1, 5) prediction model on the training and test sets for the Aad content.
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thus, the response values of the GR curves are low, and their

radioactivity mainly originates from clay minerals during coal

formation (Shao et al., 2013; Liu et al., 2021), indicating that in

addition to the DEN curve, the GR curve can also be an

important curve for predicting Aad content. In addition, the

response values of the AC curve and the logarithmically

processed RD also exhibit slight correlation with the Aad

content (Figures 4C,D); however, the correlation was weaker

than that of GR and DEN, the correlation between the CAL curve

and Aad content was insignificant, and the response of the CNL

curve exhibited almost no correlation with the Aad content

(Figures 4E,F). The Aad content exhibited a negative

correlation with the FCad content. Shi et al. (2020) showed

that in high-rank coals, for different coal structures, the

vitrinite content of tectonic coals is significantly higher than

that of undeformed coals, subjecting the different brittle coal

rocks to different destructive effects. Different coal structures

provide different adsorption areas for CBM, which slightly

increases the gas content of tectonic coals overall; this has

been verified by the analysis of deep coal in the Jiaozuo

Coalfield (Hou et al., 2017). Similarly, Hou H. H et al. (2021),

Hou et al. (2019) showed that coal seams with high vitrinite

content and low ash yield contain higher gas contents. These

combined factors led to an increase in the response values of the

AC curve corresponding to the coalbed sections with respect to

the RD curve (Fu et al., 2009a; Ren et al., 2018). Although the

response of the RD curve is controlled by various factors (Hou H.

H et al., 2021; Zhu et al., 2021, 2022), there is some correlation

with the data. The analysis of this correlation was confirmed in

the SZB block adjacent to the PZ block, indicating that the

content of Aad correlates with the response values of the AC

and RD curves.

Analyzing Figure 4 and Table 1, the geophysical logging

curves sensitive to the Aad content were determined, and the

OBGM (1, N) model was used to predict the Aad content. A total

of 59 groups of coal seam industrial components were collected,

and 15 groups of Aad contents were randomly selected as the test

dataset to verify the effect of the model.

While constructing the predictionmodel for theAad content, the

effect of the number of geophysical logging curves on the model was

analyzed by increasing the number of geophysical logging curves.

Table 2 presents the results and lists the training dataset and

prediction effects of the test dataset involved in the construction

of the model. The first column in Tables 2–4 show the combination

of the cumulative curves, which gradually increased from 1. The

second column shows the average relative error results of the back-

judgments of the datasets involved in the construction of the

prediction model, and the third to fifth columns show the test

results of the randomly selected datasets, which were not involved in

the model construction, showing the average relative, minimum

relative, andmaximum relative errors, respectively; the sixth to ninth

columns show the parameters. That is, the parameter matrix

demonstrated in Eq. 10 (bN, a, c, and d), correspond to the

parameters in Eq. 9. Table 2 shows the prediction and evaluation

results of the Aad content. With an increase in the number of

geophysical logging curves, the relative error of both the training and

test datasets decreased and stabilized when there were five

geophysical logging curves. Because the response value of the

CNL curve has almost no correlation with the content of Aad,

the Aad content can be effectively predicted by using five logging

curves (i.e., DEN, GR, AC, RD, and CAL). Currently, the average

relative error of the test dataset of the Aad content was 12.42%, and

the minimum relative error was 0.76%. The maximum relative error

was 30.11%, which is the lowest value in each combination curve.

Figure 4G shows the rendezvous diagram of the training and test

datasets corresponding to the Aad content. It was determined that

the model in this study effectively predicted Aad content, and the

model had no deviation. The high correlation between the

prediction and experimental results in the training and test data

also proves the effectiveness of the model.

5.2 Evaluation prediction of FCad

The FCad content, similar to the Aad content, is an important

geological parameter that plays a key role in the evaluation of CBM

content (Ghosh et al., 2016; Zhou and Guan, 2016). The

experimental FCad content in the study block ranged from

58.84% to 88.68%, with an average value of 80.82%. Because of

the strong correlation between the FCad and Aad contents, the

correlation between the FCad content and the response values of

the geophysical logging curves was consistent with that of the Aad

content, with an opposite trend (Figures 5A-D). For example, in the

study block, the burial depths of different coal seams differ

significantly, and the seam numbers are not distinguished in the

autocorrelations of the industrial component contents. Based on the

data, the effect of burial depth does not have a significant impact on

the autocorrelation between the industrial component contents, the

Mad content is lower in all cases, and the Mad content of the

No.3 coal seam is slightly higher than that of the No.15 coal

seam. The total sulfur content exhibits a significant difference,

the total sulfur content of the No.15 coal seam is 7–10 times

higher than that of the No.3 coal seam, the total sulfur content

of the No.3 coal seam is approximately 0.5%, and that of the

No.15 coal seam is approximately 2.7%. Considering the semi-

industrial analysis of this study and the small amount of data in this

block and the predominance of the No.3 coal seam, the data are

processed in general. For coal seams with different burial depths, the

discussion should be divided into layers if the amount of data meets

the requirements (Hou H et al., 2021), particularly for coal rock

sections with significant differences in coal structures (Hou et al.,

2017).

FCad and Aad used the same data samples in the study, and

the process and results in the exploration of logging curves are

listed in Table 3. The same results were obtained for the

prediction of the Aad content, and the FCad content was
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TABLE 2 Performance and parameters of the Aad content prediction models under different logging curves.

Average
relative
error/%

Average
relative
error/%

Min.
Error/
%

Max.
Error/
%

Parameter columns

Aad Training
set

Test
set

Test
set

Test
set

bN a c d

DEN 27.67 30.29 0.04 86.25 19.31 0.35 −23.68 11.91

DEN, GR 17.19 25.91 0.56 115.67 7.58, 0.29 0.97 −7.97 1.15

DEN, GR, AC 11.77 12.66 0.48 42.86 22.35, 0.25, −0.03 0.95 −16.45 −3.37

DEN, GR, AC, RD 11.70 13.73 0.55 41.29 25.25, 0.20, −0.03, −2.13 0.99 −8.91 −6.08

DEN, GR, AC, RD, CAL 10.68 12.62 0.76 30.11 28.34, 0.19, −0.04, −3.21, 0.99 0.97 −30.23 −3.49

DEN, GR, AC, RD, CAL, CNL 10.61 12.27 0.35 38.25 28.50, 0.18, −0.04, −3.49, 0.84, 0.04 0.97 −28.02 −4.59

TABLE 3 Performance and parameters of the FCad content prediction models under different logging curves.

Average
relative
error/%

Average
relative
error/%

Min.
Error/
%

Max.
Error/
%

Parameter columns

FCad Training
set

Test
set

Test
set

Test
set

bN a c d

DEN 4.68 4.59 0.29 20.78 −17.63 0.29 48.75 57.17

DEN, GR 3.16 3.02 0.03 11.96 −9.18, −0.21 0.65 72.12 34.82

DEN, GR, AC 2.78 2.49 0.19 6.59 −23.99, −0.16, 0.03 0.58 73.96 44.43

DEN, GR, AC, RD 2.79 2.53 0.19 6.54 −23.30, −0.17, 0.03, −0.50 0.58 75.39 44.14

DEN, GR, AC, RD, CAL 2.02 1.42 0.01 3.63 −30.62, −0.21, 0.04, 2.57, −2.47 0.84 150.19 21.25

DEN, GR, AC, RD, CAL, CNL 2.04 1.43 0.43 3.73 −30.76, −0.21, 0.03, 2.81, −2.33, −0.04 0.84 148.00 22.36

TABLE 4 Performance and parameters of the Vdaf content prediction models under different logging curves.

Average
relative
error/%

Average
relative
error/%

Min.
Error/
%

Max.
Error/
%

Parameter columns

Vdaf Training
set

Test
set

Test
set

Test
set

bN a c d

DEN 8.09 13.91 2.06 41.08 −0.41 0.02 0.70 5.74

DEN, GR 8.01 15.31 0.23 43.25 −0.25, −0.002 0.02 0.52 5.77

DEN, GR, AC 7.90 9.09 2.14 28.82 1.01, −0.006, −0.004 0.10 0.82 4.79

DEN, GR, AC, RD 7.89 9.08 2.06 28.84 1.02, −0.006, −0.004, −0.007 0.10 0.83 4.78

DEN, GR, AC, RD, CAL 7.91 8.54 0.49 30.06 1.07, −0.006, −0.004, −0.01, 0.06 0.13 −0.11 4.73

DEN, GR, AC, RD, CAL, CNL 7.89 8.51 1.52 30.44 1.06, −0.005, −0.005, 0.01, 0.07, −0.002 0.14 −0.25 4.78

DEN, GR, AC, Aad, FCad 8.04 8.23 0.58 31.16 1.16, −0.004, −0.01, −0.22, −0.19 0.42 22.82 2.86
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accurately predicted when five curves were generated. The

analysis determined that the model in this study effectively

predicted the FCad content. The average relative error of the

data in the test set was 1.42%, and the maximum relative error

was 3.63%, with high prediction accuracy. Furthermore,

Figure 5E shows that bias does not occur in the prediction

results, and the fitting coefficient (R2) between the prediction

and experimental results in the test data was 0.93, exhibiting the

effectiveness of the prediction method.

5.3 Evaluation prediction of Vdaf

The Vdaf content is dependent on several factors, such as the

degree of coalification and sedimentary environment (J. Hou

et al., 2014; Liu et al., 2021). It is also an important factor in

determining the degree of coalification of coal rocks. It tends to

increase and then decrease with increasing coalification, reaching

maximum and minimum values in brown and anthracite coals,

respectively. The Vdaf content of the coal samples from the PZ

FIGURE 5
Correlation analysis of the FCad content and the geophysical logging data response with the predicted results of the FCad content. (A)
Relationship between the FCad content and DEN. (B) Relationship between the FCad content and GR. (C) Relationship between the FCad content and
AC. (D) Relationship between the FCad content and RD. (E) Performance of theOBGM (1, 5) predictionmodel on the training and test sets for the FCad

content.
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block measured in the laboratory ranged from 4.34% to 8.08%,

with an average value of 5.47%. The Vdaf content was extremely

low, and the block was a typical anthracite coal. The Pearson

index and rendezvous plots (Figure 6) indicate that the

correlation between the Vdaf content and the response values

of the geophysical logging data was weak, and only the response

values of DEN, GR, and AC are correlated (Figures 6A–C).

Furthermore, the autocorrelation between the contents of

industrial components indicated that the Aad content had a

strong correlation with the numerical sum of the FCad and

Vdaf contents (Figure 6D). Hence, two methods are proposed

in this paper for the prediction of the Vdaf content. The first

method is to compare the error using the same exploration, as in

Sections 5.1, 5.2, by increasing the logging curves to construct a

FIGURE 6
Correlation analysis of the Vdaf content and the geophysical logging data response with the predicted results of the Vdaf content. (A)
Relationship between the Vdaf content and DEN. (B) Relationship between the Vdaf content and GR. (C) Relationship between the Vdaf content and
AC. (D) Autocorrelation between industrial component contents. (E) Performance of the OBGM (1, 6) prediction model on the training and test sets
for the Vdaf content.
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model. As presented in Table 4, the best results were achieved

with six geophysical logging curves, and the average and

maximum relative errors of the test dataset reached

minimums. Thus, the prediction results of the training and

test datasets were plotted (Figure 6E). The overall model was

biased, with high predictions for low values of the core

experiments and low predictions for high values of the

experimental results, forming a significantly biased

phenomenon (Figure 6E), although the error value of the Vdaf

content predicted using the geophysical logging curves was low.

This prediction effect does not have a simplified value despite the

low error levels. Note that there was an abnormally high value in

the test data of the Vdaf content; that is, the test result of the Vdaf

content in the laboratory was 8.08% (shown in black arrows). To

prevent the comparison of the abnormal point (shown in black

arrows) to the subsequent models, this point is ignored when the

correlation between the predicted and experimental data is

discussed in subsequent multiple methods.

Owing to the poor results of using only the logging curves

directly, a second method was used in this study; that is, a

calculation using the autocorrelation between industrial

component contents according to the autocorrelation

regression equation:

Aad � 96.7812 − 0.99(FCad + Vdaf) (11)

Vdaf � 96.7812 − Aad

0.99
− FCad (12)

Calculations were performed according to the regression

equation (Eq. 12), and to test the simplification of this method,

the Aad and Vdaf contents in the test datasets are the results of

the predictions in Sections 5.1, 5.2, rather than the core

experimental results. The Vdaf content predicted from the

autocorrelation of the industrial component content is shown

in Figure 7A. Compared with the OBGM (1, 6) prediction

model using only the geophysical logging curves directly, the

correlation between the predicted and experimental results of

the test dataset using autocorrelation Eq. 12 increased from

0.33 to 0.59. This phenomenon indicates that using the

autocorrelation of industrial component contents is an

effective prediction method.

This paper also proposes a new prediction model for

predicting the Vdaf content, which is created by combining the

geophysical logging curves sensitive to the Vdaf content and the

Aad and FCad contents in the industrial components with the

OBGM (1, N) while maintaining the test dataset. The values of

the Aad and FCad contents in the test datasets also use the

prediction results in Sections 5.1, 5.2, rather than the core

experimental results (Figure 7B). By comparing the content

prediction model of the Vdaf content constructed by three

different combination modes, combined with the actual error

data and correlation, it is considered that the prediction model

using the geophysical logging curves combined with industrial

component contents has the best effect, average relative error,

and R2, and there is no significant prediction deviation. The

construction method of comprehensive geophysical logging data

and component relationships not only allows the original logging

curve to participate but also considers the autocorrelation and

cumulative error between industrial component contents. The

prominent application effect also demonstrated the effectiveness

of the model construction method. Note that there is no local

magmatic intrusion. The change in the degree of coal

metamorphism needs to meet Hilt’s law, which is a

precondition (Hou H. H. et al., 2021). The corresponding

model parameters are listed in the last row of Table 4.

FIGURE 7
(A) Application effect of the Vdaf content prediction model constructed using industrial component content autocorrelation. (B) Application
effect of the Vdaf content predictionmodel constructed using the geophysical logging curves and the industrial component contents combined with
OBGM (1, 5) model.
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5.4 Evaluation prediction of Mad

The current calculation of the Mad content in industrial

components can be divided into two types: volumetric models

(Liu et al., 2021) and geophysical logging curves combined with

mathematical models (Zhou and O’Brien, 2016; Zhou et al.,

2016). The correlation analysis of the Pearson index shows

that the Mad content does not exhibit a significant correlation

with the contents of various industrial components and the

response values of the geophysical logging curves, and the PZ

block does not collect sufficient data to use the data-driven

method for model construction; therefore, the volumetric

model was used for calculations in this study. The volumetric

model treats coal rock as consisting of four industrial

components, and because the CBM in this area is mainly in

the adsorbed state rather than the free state, without considering

the volume of CBM, it is determined by Eq. 13.

Aad + FCad + Vdaf +Mad � 1 (13)

The corresponding Mad can then be expressed as

Mad � 1 − Aad − FCad − Vdaf (14)

In Eqs 13, 14, Mad denotes the moisture on an air-dry basis

(%), FCad the fixed carbon on an air-dry basis (%), Aad the ash on

an air-dry basis (%), and Vdaf the volatile matter on an air-dry

basis (%).

Through seven core boreholes in the PZ block, a complete

procedure for evaluating the industrial component contents of

coalbeds was obtained in this study. That is, the Aad and FCad

contents are predicted using the geophysical logging curves, and

the predicted components are then combined with the

geophysical logging curves to predict the Vdaf content. Finally,

the Mad content is calculated using the volumetric model, that is,

the differential subtraction method.

5.5 Application of new wells

To ensure the validity and generalization of the model in this

study, the model constructed by the industrial component

content evaluation process, combined with the training

dataset, was applied using two new wells in the block,

PZ8 and PZ9. Figures 8A,B show the results and graphs of

the two new wells. The first track in the figure is the log

depth track; the second is the lithology logging track,

containing CAL, GR, and SP curves; the third is the resistivity

logging track, showing the RD curve; the fourth is the porosity

logging series, containing CNL, AC, and DEN curves; the fifth to

eighth tracks are the laboratory analysis values of each industrial

component content and the model prediction curves in this

study, Aad, FDad, Vdaf, and Mad, respectively; and the ninth

track is the lithology channel, which contains the top and

bottom plates of coal and mudstone lithologies. Figure 8C and

Table 5 show a rendezvous diagram and listed data of the new

wells, respectively. The prediction results of the Aad and FCad

contents are uniformly distributed on both sides of the zero-error

line in Figure 8C, and the prediction errors of each industrial

component content are given in Table 5. The prediction effects of

the Aad, FCad, and Vdaf contents in the new wells are consistent

with the performance of the model on the test datasets, indicating

the effectiveness and generalization of the method in this study.

The prediction curves for the contents of FCad and Aad correlate

with the experimental analysis of the changing trend, and the

overall error of the prediction results for the Vdaf content is

slightly higher than for the previous two, according to a thorough

analysis that includes the actual geophysical logging plots and

data table. Because the Mad content is calculated using the

differential subtraction method, the accuracy of the evaluation

of the contents of the first three components limits the prediction

results of theMad content, and the error is the cumulative error of

the prediction of the three industrial component contents.

Because the Mad content typically does not exceed 3% in this

block, the small error accumulating continuously has an

amplifying effect on Mad, giving a corresponding maximum

relative error of 64.1%. Given that the prediction errors of the

other three industrial component contents are consistent with

the performance of the test data, this typically demonstrates the

validity and generalization of the model in this study, which can

provide a reliable method for industrial component content

prediction in the field.

6 Discussion and analysis

6.1 Problem with determining the
background value

In the method principle, the background value, ξ, is typically

used as 0.5, which is verified in this study. Using the Aad content

as an example, the background value was constantly changed, the

model was constructed from a defined training dataset, and an

error test was performed using the same set of test data, using the

average relative error as the standard. Figure 9A shows that the

average relative error of the training dataset increased slightly

with an increase in the background value and then increased

rapidly when ξ exceeded 0.8. The error of the test data shows a

decreasing and then increasing trend, that is, an excessively large

x has a greater impact on the accuracy of the model. It is also

shown that ξ (taken as 0.5), can satisfy the conditions of model

construction and obtain sufficient accuracy; if the background

value needs to be optimized, grid search or other optimization

methods can be introduced, however this will inevitably decrease

the speed of model construction, particularly when cross-

validation is introduced to reduce the chance (Mahmood and
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FIGURE 8
(A) Predicted industrial component contents of the new well PZ8 in the PZ block. (B) Predicted industrial component contents of the new well
PZ9 in the PZ block. (C) Correlation between the predicted results and the experimental results for each industrial component in the new wells.
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TABLE 5 Calculated and experimental values from wells of PZ8 and PZ9.

Ash content/% Fixed carbon content/% Volatile matter content/% Moisture content/%

Core Predicted Relative Core Predicted Relative Core Predicted Relative Core Predicted Relative

Well Depth Value Value Error Value Value Error Value Value Error Value Value Error

PZ8 251.82 17.00 16.99 0.06 75.33 75.34 0.01 6.00 5.99 0.17 1.67 1.68 0.60

252.23 13.01 14.04 7.92 80.02 78.74 1.60 5.68 5.78 1.76 1.29 1.44 11.63

252.51 11.58 11.58 7.95 80.78 81.78 1.24 4.98 5.48 10.04 1.66 1.16 30.12

253.37 9.70 9.00 7.22 83.08 85.08 2.41 5.66 5.36 5.30 1.56 0.56 64.10

254.12 9.88 12.28 24.29 82.63 80.63 2.42 5.96 5.95 0.17 1.53 1.14 25.49

254.31 15.72 13.72 12.16 76.94 78.94 2.60 5.95 5.96 0.17 1.49 1.39 6.71

254.68 14.77 14.87 0.67 77.20 77.40 0.26 5.81 6.01 3.44 2.02 1.71 15.35

255.11 11.99 13.99 16.68 80.57 78.57 2.48 5.87 6.07 3.41 1.57 1.37 12.74

255.45 20.98 19.98 4.77 70.41 71.41 1.42 6.09 6.08 0.16 2.52 2.53 0.40

PZ9 713.92 16.12 16.08 0.25 76.98 77.66 0.88 5.32 4.75 10.71 1.58 1.51 4.43

714.54 15.48 15.13 2.26 78.57 78.25 0.41 4.45 5.15 15.73 1.50 1.47 2.00

714.75 10.06 12.77 26.94 82.74 81.36 1.67 5.22 4.79 8.24 1.98 1.08 45.45

715.37 25.82 24.26 6.04 65.99 67.10 1.68 6.10 5.74 5.90 2.09 2.90 38.76
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Khan, 2009); thus, this study only discusses the determination,

which can be further investigated in future studies.

6.2 Effect of the number of training
datasets on the model

Gray systems are suitable for constructing evaluation

models with small sample sizes. In contrast, data-driven

methods, such as machine-learning methods, tend to have

higher requirements for the amount of data in the sample.

Although there are vector machine type methods for small-

sample datasets, when applying these methods to build

models, the determination of the hyperparameters must be

combined with optimization modes, such as cross-validation

or grid search, a process that is computationally expensive and

difficult to avoid when the sample is small. In the OBGM (1,

N) model, the magnitude of the background value, ξ, was

determined in Section 6.1, on which the number of samples

involved in the model construction was based and tested in

this study. The Aad content prediction was explored with a

basis of 11 sets of data, and the number of training datasets

was continuously increased. The average relative error was

calculated by back-judging the training dataset, and the

average, maximum, and minimum relative errors in 15 sets

of test data were calculated. The error was given as 100% when

it exceeded 100%; that is, it could not be predicted. The results

are shown in Figure 9B. When the training dataset

had <30 groups, the prediction effect is unstable, and the

average relative error of the test dataset exhibits a decreasing

trend, which should currently be underfitted. When the

training dataset exceeded 30 groups, the average relative

errors of the training and test datasets tended to be stable,

only minor fluctuations occur, and the average relative errors

of the training and test datasets were similar. Thus, it can be

determined that the constructed model can be used, and the

overfitting phenomenon does not occur. During this

exploration, the Aad content covered the low and high

value levels, and a certain random factor may appear in the

accumulation process. However, this model has some effect

when the training dataset reaches 28 groups and is highly

applicable for >30 groups, proving that the method is

applicable to small-sample datasets.

6.3 Comparison of the methods

To further illustrate the advantages of the model in this study,

the method used here was compared with the multiple regression

method and static gray model (GM) (0, N). The same multiple

regression and GM (0, N) models were constructed for the same

data, using Aad content as an example. To compare the variability

between the methods, consistent with the data explored

previously for the OBGM model, 44 sets of data were used for

the model construction, and 15 sets of the same data were used

for the test data to show the performance of the model on the test

data.

Aad � −37.53 + 33.66DEN + 0.12GR − 0.02AC − 3.64 Ln(RD)
+ 0.9CAL

(15)
A(1)

ad � −7.31 + 15.92DEN(1) + 0.19GR(1) − 0.03AC(1)

− 3.29 Ln(RD)(1) + 0.27CAL(1) (16)

Eqs 15, 16 are the fitted equations of the multiple regression

and static GM (0, N) models, respectively. Aad denotes the ash on

FIGURE 9
(A) The effect of changes in background value coefficients on the model performance (using the Aad content as an example). (B) The effect of
data sample size on the prediction model performance (using the Aad content as an example).
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an air-dried basis, Aad
(1) the cumulative equation (1-AGO) of

Aad, and DEN(1) the cumulative terms of DEN.

Table 6 shows the application effect of the three models for

the prediction of the Aad content in the test dataset, and the

analysis by the mean relative error indicates that the OBGM (1,

N) model is better than the multiple regression and GM (0, N)

models. The correlation between the prediction and actual coring

results in the test dataset indicated that the model used in this

study had the highest correlation and lowest maximum relative

error. The OBGM (1, N) model had the most stable relative error

and the highest correlation between the prediction and

experimental results among the methods with the same

computational cost.

6.4 Error discussion

The prediction errors for the contents of the four industrial

components were analyzed in this study. The prediction errors

for the Aad and FCad contents can be grouped into the following

categories:

1) The process of geophysical logging data acquisition is

inevitably subject to interference, and the logging curve is

a comprehensive characterization of the physical properties of

the rock and contains noise information as well as

disturbances during experiments, such as coal sample

coring from the delivery to the laboratory. These types of

errors are mainly systematic errors. The study as much as

possible corrects errors caused by the instrumentation,

borehole, and other environmental factors during the

logging process by standardizing the preprocessing.

Although there is a certain degree of human interference,

the results after preprocessing demonstrates the feasibility of

the method; for the experimental problem, this study shows

the correlation between component contents and between the

Aad and RDad contents, indicating that such errors are within

acceptable limits.

2) In the process of matching logging response data, such as core

depth homing and dilation correction, it is difficult to avoid

the interference caused by human factors. However, such

operations can significantly decrease the impact of

instruments and construction, reducing the overall error.

It is not possible to construct a separate model to reject these

two types of errors, and such errors can be ignored during the

construction of the prediction model for industrial component

contents; however, they will be added to the results. The

predictions of the Aad and FCad contents indicated that the

errors of both were within acceptable limits, and the model

used in this study was advantageous.

In contrast, the prediction errors of the Vdaf and Mad

contents are somewhat different from these errors. In addition

to these two types of errors, there are cumulative errors in the

prediction of the Aad and FCad contents. Because the Vdaf

content is autocorrelated with the contents of other industrial

components, two industrial component contents are used in

the model construction, in addition to the geophysical logging

data. The results of this study indicate that the use of both

geophysical logs and industrial component contents to predict

the Vdaf content yields better prediction results. Even after

accounting for the cumulative error, it achieves more

satisfactory practical use than when only geophysical logs

or industrial component contents are used for

autocorrelation.

The correlation between the Mad content and response of the

geophysical logging data and the industrial component content

was not significant, and the prediction model could not be

constructed using machine learning methods when the sample

size was small. Therefore, the prediction errors of the Mad

content are all derived from the laboratory and cumulative

errors of the first three component contents, which is why the

prediction of the Mad content has the largest relative errors in the

actual application of new wells.

This study provides a set of prediction models for the

industrial component contents of coal seams in the PZ block,

which is not processed by stratification owing to the limitation of

sample quantity. In the case of coal seams with different

geological backgrounds, burial depths, and coal seams,

statistics and analyses must be performed in conjunction with

specific data, particularly when there are significant differences in

Mad content and the presence of magma intrusion (Hou et al.,

2017; Hou H et al., 2021). Other factors must be considered

before the evaluation process is determined using the OBGM

model in conjunction with the actual data. Simultaneously, it

should be noted that the gray system model involves the

accumulation and reduction of sequences, and the change in

TABLE 6 Comparison of the application effect between different methods.

Method OBGM (1, N) GM (0, N) Multiple regression

Average relative error/% 12.62 18.85 17.96

Minimum relative error/% 0.76 1.81 0.73

Maximum relative error/% 30.11 46.82 46.53

R2 0.93 0.85 0.9
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data order has a minor impact on the prediction results but does

not affect the conclusion.

6.5 Future trends

With the development of experiments, the progress and

diversification of logging instruments can provide more

accurate experimental data and geophysical logging

information in the future (Zhou and O’Brien, 2016).

Meanwhile, with an increase in the number of core samples,

the sample data limitation is alleviated, and machine learning or

deep learning methods can be used to construct industrial

component prediction models, particularly for the prediction

of Mad content, which can be further improved.

In the short term, the effective prediction of the industrial

component contents, which can provide the variation curve of

industrial component contents in the vertical direction of a single

well, is conducive for the evaluation and prediction of the CBM

content and helps in the identification of CBM resource dessert

zones. For long-term benefits, there is guidance for the

subsequent mining of high-quality coal.

7 Conclusion

In this study, the geophysical logging data were combined

with the OBGM (1, N) model to construct a prediction model for

the contents of coalbed industrial components, which plays a

guiding role in the subsequent exploration of coalbed methane

and coal mine resources. The following conclusions were made:

1) In this study, a set of prediction models was proposed for the

industrial component contents applicable to the PZ block by

combining the geophysical logging data with the OBGM (1,

N) model based on the actual industrial component content

data of the PZ block. For predicting the contents of Aad and

FCad, the DEN, GR, AC, RD, and CAL curves were selected to

obtain the best prediction effect. An increase in the

geophysical logging curve types can effectively enhance the

model performance, unlike when a single logging curve is

used for the evaluation.

2) The modeling approach differs in the prediction of Vdaf and

Mad contents, wherein the combination of geophysical

logging curves with Aad and FCad contents provides the

best prediction accuracy, compared to the autocorrelation

of geophysical logging curves or industrial component

contents. In this study, an evaluation procedure was

achieved for the PZ block; that is, the Aad and FCad

contents were first predicted using the geophysical logging

data, the Vdaf content was then predicted, and finally the Mad

content was calculated. This model was applied to new wells

in the same block, and the validity of this process was

demonstrated through error analysis.

3) Regarding model prediction accuracy, compared with the

multiple regression and GM (0, N) models having the

same computational cost, the OBGM (1, N) model has the

best effect.

Therefore, the proposed geophysical logging interpretation

model can cost effectively satisfy the effective evaluation of the

industrial component contents of coalbeds in the PZ block and

can provide a new method for evaluating the system of industrial

component contents in this block.
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