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Background: Cervical cancer (CC), the fourth most common cancer among

women worldwide, has high morbidity and mortality. Necroptosis is a newly

discovered form of cell death that plays an important role in cancer

development, progression, and metastasis. However, the expression of

necroptosis-related genes (NRGs) in CC and their relationship with CC

prognosis remain unclear. Therefore, we screened the signature NRGs in CC

and constructed a risk prognostic model.

Methods: We downloaded gene data and clinical information of patients with

cervical squamous cell carcinoma and endocervical adenocarcinoma (CESC)

from The Cancer Genome Atlas (TCGA) database. We performed functional

enrichment analysis on the differentially expressed NRGs (DENRGs). We

constructed prognostic models and evaluated them by Cox and LASSO

regressions for DENRGs, and validated them using the International Cancer

GenomeConsortium (ICGC) dataset. We used the obtained risk score to classify

patients into high- and low-risk groups. We employed the ESTIMATE and single

sample gene set enrichment analysis (ssGSEA) algorithms to explore the

relationship between the risk score and the clinical phenotype and the

tumor immune microenvironment.

Results: With LASSO regression, we established a prognostic model of CC

including 16 signature DENRGs (TMP3, CHMP4C, EEF1A1, FASN, TNF, S100A10,

IL1A,H1.2, SLC25A5,GLTP, IFNG,H2AC13, TUBB4B, AKNA, TYK2, andH1.5). The
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risk score was associated with poor prognosis in CC. Survival was lower in the

high-risk group than the low-risk group. The nomogram based on the risk

score, T stage, and N stage showed good prognostic predictive power. We

found significant differences in immune scores, immune infiltration analysis,

and immune checkpoints between the high- and low-risk groups (p < 0.05).

Conclusion: We screened for DENRGs based on the TCGA database by using

bioinformatics methods, and constructed prognostic models based on the

signature DENRGs, which we confirmed as possibly having important biological

functions in CC. Our study provides a new perspective on CC prognosis and

immunity, and offers a series of new targets for future treatment.
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1 Introduction

Cervical cancer (CC) is one of the most common cancers in

women, and it is the fourth leading cause of cancer death (Vu

et al., 2018). Globally, there are an estimated 530,000 new cases

and 270,000 deaths each year. Today, preventive human

papillomavirus (HPV) vaccination for CC is available

worldwide, but more than a quarter of patients with CC still

die each year due to a severe lack of medical supplies in many

developing countries (Small et al., 2017). Despite the

multidisciplinary approach of surgery combined with

chemotherapy that has been applied to patients with CC, their

prognosis remains unsatisfactory, making the search for an

effective therapeutic target an urgent issue (Ghasemi et al., 2019).

Cell death is an important component in maintaining

homeostasis in an organism, and resistance to cell death is

usually the cause of tumor formation. Cell death can be

divided into two types: necrosis and apoptosis. In recent

years, a novel type of cell death has been identified that

differs from necrosis and apoptosis, namely necroptosis,

which is mechanistically and morphologically similar to

apoptosis and necrosis (Gong et al., 2019). Necroptosis, a

complementary mode of apoptotic failure, is a type of

programmed cell death that is activated by caspase-

independent signaling pathways, mainly by the receptor-

interacting protein kinase 1 and 3 (RIPK1/RIPK3)/mixed

lineage kinase domain-like protein (MLKL) complex (Quarato

et al., 2016). Necroptosis is thought to play a key role in cancer

progression and metastasis, and some studies have identified

necroptosis-related genes (NRGs) as possible biomarkers of

cancer prognosis (Gong et al., 2019). MLKL has recently been

identified as a downstream component of RIPK3, a key factor in

tumor necrosis factor (TNF)-induced necroptosis, and as a

prognostic biomarker in CC (Ruan et al., 2015). Necroptosis

also plays an important role in tumor immunology and cancer

immunotherapy, where it is involved in triggering CD8+

T cell–driven antitumor immunity (Sprooten et al., 2020).

RIPK3, a regulator of necroptosis in tumor cells, also serves as

a novel predictive marker for cancer immunotherapy

personalization (Smola, 2016). Fibroblasts in the tumor

microenvironment (TME) induce a robust immune response

through necroptosis and initiate transduction through nuclear

factor κB (NF-κB) signaling (Yatim et al., 2015). Considering its

important role in cancer biology and antitumor immunity,

necroptosis has emerged as a new target for bypassing cell

death resistance and modulating antitumor immunity and

tumor therapy in oncological treatment. Induction of

necroptosis by pharmacological intervention is emerging as a

promising tool for multiple anti-apoptotic cancer cells. RETRA

has been shown to play a role in CC treatment as a drug-induced

necroptosis anticancer agent by selectively inducing necroptosis

in CC cells through phosphorylation of the structural domains of

RIPK1/RIPK3 and MLKL (Mohanty et al., 2022). However, to

date, few studies have investigated the significance of NRGs in

the prognosis and immunotherapy of CC.

In this study, we screened NRGs as prognostic biomarkers for

CC using The Cancer Genome Atlas (TCGA) database and

constructed an associated risk prediction model based on

16 signature DENRGs. We comprehensively analyzed the role

of NRGs in CC and highlighted their prognostic and

immunotherapeutic potential for CC. Analysis of immune

infiltration, TME, immune checkpoints, mutations, and

clinicopathological features revealed significant differences

between the high- and low-risk CC groups. Our study

provides accurate prognostic predictions and effective

immunotherapy strategies for patients with CC.

2 Materials and methods

2.1 Data collection

We extracted transcriptome profiles, clinical characteristics,

and tumor mutation data (simple nucleotide variation) of

patients with cervical squamous cell carcinoma and

endocervical adenocarcinoma (CESC) from the TCGA
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database (https://portal.gdc.cancer.gov/). We collected NRGs

from the following Gene Ontology (GO) terms: necroptotic

process (GO:0070266), execution phase of necroptosis (GO:

0097528), necroptotic signaling pathway (GO:0097527),

negative regulation of necroptotic process (GO:0060546),

positive regulation of necroptotic process (GO:0060545),

regulation of necroptotic process (GO:0060544), ripoptosome

assembly involved in necroptotic process (GO:1901026),

negative regulation of programmed necrotic cell death (GO:

0062099), positive regulation of programmed necrotic cell

death (GO:0062100), programmed necrotic cell death in

response to starvation (GO:0097385), regulation of

mitochondrial membrane permeability involved in

programmed necrotic cell death (GO:1902445), and

regulation of programmed necrotic cell death (GO:0062098).

We identified 651 genes associated with necrotizing apoptosis

via GeneCards. A published study proposed 159 genes (Zhang

et al., 2022). After removing the duplicated genes involved in

the above GO terms, we had a total of 749 NRGs for the

downstream analysis.

2.2 Identification and functional analysis of
differentially expressed NRGs in CC

We identified differentially expressed genes (DEGs) between

306 CC and three adjacent control samples by using the

“DESeq2” R package with |log2FC| >1 and adjusted

p-value <0.05 as criteria (Waardenberg and Field, 2019). We

obtained differentially expressed NRGs (DENRGs) by

overlapping DEGs with the 749 NRGs. We used the

“ClusterProfiler” R package to screen significantly enriched

GO terms and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathways of DENRGs with the threshold of an

adjusted p-value <0.05. Furthermore, we uploaded DENRGs

to the STRING database (https://string-db.org/) to investigate

their interactions.

2.3 Construction and verification of the
risk score model in CC

According to the expressions of prognostic DENRGs and

coefficients, we calculated the risk score of each patient in the

training set with the following formula: ∑(coefficient × gene

expression). According to the median value of the risk score, we

divided patients in the training set into high- and low-risk

groups. We analyzed the overall survival of high- and low-risk

groups with Kaplan-Meier analysis. To evaluate the accuracy of

risk score model, we plotted receiver operating characteristic

(ROC) curves using “survivalROC” in R. We used the

International Cancer Genome Consortium (ICGC) dataset as

the validation group to verify the above results. Moreover, to test

the reliability of the risk score model, we conducted similar

analyses in the validation set.

2.4 Construction of the nomogram to
predict prognosis of CC

To determine independent prognostic factors for CC

patients, we used clinical characteristics (age, sex, and TNM

stage) and the risk score for univariate and multivariate Cox

regression analysis. Then, we incorporated independent

prognostic factors to construct the nomogram to predict the

1-, 3-, and 5-year survival of patients with CC. We plotted

calibration curves to evaluate the performance of the nomogram.

2.5 Exploration of the mechanisms
underlying necroptosis-related CC

To explore the potential mechanisms of prognostic DENRGs

in regulating CC, we performed the following analyses. 1) We

compared the risk score among different subgroups stratified by

T stage (T1, T2, T3, T4), N stage (N0, N1), M stage (M0,M1), and

grade (G1, G2, G3, G4) using the Wilcoxon or Kruskal–Wallis

test to investigate the relationship between risk score and the

progression of CC. 2) We downloaded GO and KEGG reference

gene sets from the MSigDB database (https://www.gsea-msigdb.

org/gsea/msigdb/) to perform gene set enrichment analysis

(GSEA). We identified significantly enriched GO terms and

KEGG pathways between the low- and high-risk score with an

adjusted p-value <0.05. 3) We calculated the immune and

stromal score of each patient with the ESTIMATE algorithm,

and then determined the correlations between the risk score and

immune/stromal scores. 4) We downloaded a 28 immune cell

gene sets from The Cancer Imaging Archive (TCIA) database.

We calculated the single sample GSEA (ssGSEA) scores for the

different types of immune cells in each sample by using the

“GSVA” package in R to compare the differences in immune

infiltration levels between samples from the high- and low-risk

groups (Cheng et al., 2021).We used theWilcoxon test to analyze

difference.

2.6 Analysis of the TME score, tumor
mutation burden, and immune checkpoint
molecules

1) We predicted the proportion of infiltrating stromal and

immune cells in tumor tissue using the “estimate” package in R,

based on ssGSEA. We generated the stromal score, the immune

score, and the ESTIMATE score (Ke et al., 2021). 2) We

downloaded mutation data from the TCGA database, selecting

the TCGA-ESCA project, simple nucleotide variation as the data
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category, VarScan2 Variant Aggregation as the workflow type,

and used masking. We used “maftools” in R to calculate the

mutation load for each sample. We evaluated the mutations in

the 16 genes used to establish the prognosis. 3) We extracted the

expression of 47 immune checkpoint molecules from the training

set expression matrix and compared their expression differences

between the high- and low-risk groups using the Wilcoxon test.

We screens 27 differentially expressed immune

checkpoint–related genes between the high- and low-risk

groups using an adjusted p-value <0.05 as the screening criterion.

2.7 Statistical analysis

We assessed the difference in overall survival between the

high- and low-risk groups by the Kaplan-Meier method and log-

rank test. We determined the predictive accuracy of the risk

model by determining the area under the ROC curve (AUC). We

used R version 4.0.0 for all analysis. We considered significant

differences as p < 0.05 unless otherwise specified.

3 Results

3.1 One hundred eighty DENRGs are
associated with CC

The study flow chart is presented in Figure 1. We identified

4,857 DEGs between the CC and control samples, including

2,998 upregulated and 1,859 downregulated genes (Figure 2A).

We identified 749 NRGs from GeneCards and the literature; the

list is shown in Table S1. The top 15 upregulated and top

FIGURE 1
The flow chart of this study. Abbreviations: DENRGs, differentially expressed necroptosis-related genes; GO, Gene Ontology; GSEA, gene set
enrichment analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; NRGs, necroptosis-related genes.
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15 downregulated genes are shown in a heatmap (Figure 2B); the

logFC of the top 20 NRGs is shown in another heatmap

(Supplementary Figure S1). A volcano plot of NRGs is

presented in Figure S2. After overlapping DEGs with NRGs,

we identified 180 genes as DENRGs (Figure 2C). The list of

180 DENRGs is shown in Table S2. In addition, we constructed a

protein–protein interaction (PPI) network, in which we observed

the interplay among most DENRGs (Figure 2D).

3.2 Functional enrichment of DENRGs

Functional analysis showed that DENRGs are mainly

enriched in GO terms and KEGG pathways relevant to

necroptosis and apoptosis. In biological processes, DENRGs

are mainly enriched in cell death and related receptor

signaling pathways. In cellular components, DENRGs are

mainly enriched in DNA damage repair related pathways. In

molecular functions, DENRGs are enriched in pattern

recognition receptor activity pathways (Figures 3A–C).

Moreover, KEGG analysis revealed that these DENRGs are

mainly enriched in necroptosis, influenza A, and apoptosis

(Figure 3D).

3.3 Construction and validation of
DENRG-related prognostic signature

We evaluated the prognostic value of 16 DENRGs in CC by

univariate Cox and LASSO regressions. By univariate Cox

regression, we found 26 DENRGs (TPM3, CHMP4C, EEF1A1,

FASN, TNF, MY O 1B, S100A10, IL1A, H2BC12, ALOX15,

H2AC8, H1.2, EZH2, GSN, SLC25A5, FASLG, GLTP, IFNG,

H2AC13, TRAF2, TUBB4B, AKNA, BCL2, TYK2, H2AC16,

and H1.5) to be significantly related with the survival of

patients with CC (Figure 4A). To obtain a more robust

FIGURE 2
(A) Identification of differentially expressed necroptosis-related genes (DENRGs). Identification of differentially expressed genes (DEGs) in
cervical cancer (CC) tumor tissue and normal control tissue based on a volcano plot. (B) The expression of the top 15 upregulated and downregulated
genes in CC presented in a heatmap. (C) The expression of 180 DENRGs between the tumor and normal groups. (D) Protein–protein interaction
network of the 180 DENRGs.
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prognostic signature, we input those 26 DENRGs into the LASSO

algorithm. We narrowed the prognostic signature down to

16 DENRGs (TPM3, CHMP4C, EEF1A1, FASN, TNF,

S100A10, IL1A, H1.2, SLC25A5, GLTP, IFNG, H2AC13,

TUBB4B, AKNA, TYK2, and H1.5) (Figures 4B,C). Then, we

calculated the DENRG-related prognostic as: [the expression of

TPM3 × 0.102505 + expression of CHMP4C × 0.189606 +

expression of EEF1A1 × 0.033772 + expression of FASN ×

0.192809 + expression of TNF × 0.203929 + expression of

S100A10 × 0.007325 + expression of IL1A × 0.103649 +

expression of H1.2 × (−0.10396) + expression of SLC25A5 ×

(−0.11957) + expression of GLTP × (−0.38244) + expression of

IFNG × (−0.19587) + expression of H2AC13 × (−0.10861) +

expression of TUBB4B × (−0.31664) + expression of AKNA ×

(−0.27736) + expression of TYK2 × (−0.27591) + expression of

H1.5 × (−0.34445)]. These 16 prognostic DENRGs were

expressed abnormally in the CC samples compared with the

normal samples (Figure 4D).

According to the median risk score, we divided the patients

with CC in the TCGA training set into high- and low-risk groups

(Figure 5A). As the risk score increased, we observed more dead

patients (Figure 5B). The high-risk group had worse survival

compared with the low-risk group (Figure 5C). The AUC of the

ROC curves were 0.792, 0.818, and 0.855 for 1-, 3-, and 5-year

survival, respectively (Figure 5D), suggesting that the risk score

model had good performance in predicting the prognosis of

patients with CC. Furthermore, we tested the risk score model in

the ICGC validation set and obtained similar results (Figures

5E–G). The AUC of ROC curves in the validation set were 0.767,

0.788 and 0.828 for 1-, 3-, and 5-year survival (Figure 5H),

further demonstrating the reliability of the DENRG-related

prognostic signature in predicting the survival of patients

with CC.

3.4 The development of a DENRG-related
nomogram

We performed univariate and multivariate analyses with

independent prognostic factors in CC, including the risk

score, T stage, N stage (Figures S3, 6A). We established the

nomogram based on prognostic factors to predict the 1-, 3-, and

5-year survival of patients with CC (Figure 6B). Calibration

curves showed that the predicted overall survival was close to

the actual overall survival (Figures 6C–E). The AUC values for 1-,

3-, and 5-year survival of the nomogrammodel were 0.815, 0.840,

FIGURE 3
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of differentially expressed necroptosis-
related genes (DENRGs). GO enrichment of DENRGs for (A) biological processes, (B) cellular components, and (C) molecular functions. (D) KEGG
enrichment of DENRGs.
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and 0.815, respectively, indicating the good performance of the

nomogram (Figure 6F).

3.5 Risk score and tumor stage

To further evaluate the utility of prognostic DENRGs, we

compared the risk scores among different groups divided by T

stage, N stage, M stage, and grade. Interestingly, we

noticed that the risk score increased with the

progression of CC, and patients with T4 CC had the

highest risk scores (p < 0.05). However, the risk score was

not significantly changed in other stages and grades (p > 0.05)

(Figures 7A–D). These results indicate that prognostic

DENRGs play important roles in the T stage metastasis and

malignancy degree of CC, which may further affect the

survival of patients with CC.

3.6 Gene set variation analysis between
high- and low-risk groups

We performed GSVA to unveil the potential molecular

mechanisms and to identify biological processes. For GO

biological process, cellular component, and molecular function

analysis, the pathways enriched in the high-risk group include cell

junctions, phosphorylation, and other related pathways; the

pathways enriched in the low-risk group include those related

to viral defense, T-cell differentiation, cell adhesion, cytokine

receptors, and protein coupling (Figures 7E–G). Among the

KEGG pathways, the high-risk group was significantly enriched

in pathways related to glycosaminoglycan biosynthesis, while the

low-risk group was significantly enriched in pathways related to

immunity and lysosomes (Figure 7H). These results suggest that

prognostic DENRGs may regulate the development and

progression of CC via cell proliferation.

FIGURE 4
(A) Cox regression analysis to identify differentially expressed necroptosis-related genes (DENRGs) related to biochemical recurrence-free
survival. Univariate Cox regression identified 26 DENRGs significantly associated with prognosis (p < 0.05). (B) Screening for genes that can be used
independently for prognostic risk prediction using the best LASSOmodel parameter λ. (C) Variable number change. (D)Heatmap of the expression of
the 16 DENRGs in the high- and low-risk groups.
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3.7 Differences in immune-related
outcomes between the high- and low-risk
groups

Increasing evidence has demonstrated the important role of

the immune microenvironment in the outcome of CC. Thus, we

explored whether NRGs could modulate the immune

microenvironment of patients with CC. We found that the

risk score was not correlated with stromal score (p > 0.05,

Figure 8A). In addition, although the risk score was

significantly correlated with immune score, it was weak (p <
0.01, r = -0.303, Figure 8B). The TME score analysis showed that

the immune score was significantly higher in the low-risk group

than in the high-risk group (p < 0.01, Figure 8C). Furthermore,

we compared the immune infiltration between patients in the

low- and high-risk groups and observed that the infiltration levels

of activated B-cell, activated CD4+ T-cell, activated CD8+ T-cell,

activated dendritic cells, central memory CD4+ T-cell, effector

FIGURE 5
(A) Construction and evaluation of a risk model. Distribution of risk scores in the training set. (B) Survival status of patients in the training set. (C)
Kaplan–Meier plot of the training set (p < 0.05). (D)Receiver operating characteristic curves showing the 1-, 3-, and 5-year predictive efficiency of the
risk score. (E) Distribution of risk scores in the validation set. (F) Survival status of patients in the validation set. (G) Kaplan–Meier plot of the validation
set (p < 0.05). (H) The area under the receiver operating characteristic curves in the validation set for 1-, 3-, and 5-year survival.
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memory CD4+ T-cell, immature B-cell, immature dendritic cells,

natural killer T-cell, and natural killer T-cell, were different

(Figure 8D). Figure 8E shows the mutation status of the

16 genes used to build the prognostic model.

4 Discussion

The occurrence and development of CC is a complex process

regulated by multiple factors, and the incidence of CC has been

trending younger in recent years (Torre et al., 2015; Small et al.,

2017). Necroptosis is a newly discovered mode of programmed

cell death and often used as an alternative when apoptosis

induction is compromised. Necroptosis is involved in tumor

proliferation and metastasis and is closely associated with the

TME and tumor immunity (Su et al., 2015). In recent years, it has

been shown that necroptosis enhances anti-tumor immunity in

cancer therapy and could become an effective cancer treatment

(Wu et al., 2022). Therefore, we developed an NRG

characterization model to predict the prognosis of patients

with CC, and we used the obtained risk score to group them

into high- and low-risk groups for the analysis of clinical

indicators, the ESTIMATE score, the tumor mutational load,

immune checkpoint molecules, and immune infiltrating cells.

Both apoptosis and necroptosis are forms of programmed

cell death, which is a natural barrier limiting the survival and

propagation of malignant cells. The molecular mechanisms

regulating necroptosis are closely related to the signaling

cascades that control apoptosis and necrosis (Schmidt et al.,

2015). MLKL is a prognostic biomarker for cervical squamous

cell carcinoma and has recently been identified as a key

RIPK3 downstream component of TNF-induced necroptosis

FIGURE 6
Construction of a prognostic model and nomogram. (A) Forest plot of themultivariate Coxmodel. (B)Nomogram for the prognosticmodel. (C)
Calibration curve for 1-year survival. (D) Calibration curve for 3-year survival. (E) Calibration curve for 5-year survival. (F) Receiver operating
characteristic curve for 1-, 3-, and 5-year survival.
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FIGURE 7
Risk score and tumor stages and gene set enrichment analysis (GSEA). Difference in risk score among (A) T stages, (B)N stages, (C)M stages, and
(D) grades. Differences in pathway enrichment in tumors of patients in the high- and low-risk groups: (E) Gene Ontology (GO) analysis of biological
processes, (F) GO analysis of cell components, and (G) GO analysis of molecular functions. (H) Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis.
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(Ruan et al., 2015). Through the use of CC models, PolyIC-

driven immunogenicity has been shown to be dependent on the

necroptosis regulator RIPK3 in tumor cells, suggesting that

RIPK3 could serve as a novel predictive marker for the

personalization of cancer immunotherapy (Smola, 2016).

Considering the above criteria, NRGs may be involved in

necroptosis, necrosis, apoptosis, tumor immunity, and

their interactions. Consistently, based on our GO, KEGG,

and GSEA analyses, these DENRGs are involved in

necroptosis, necrosis, apoptosis, and immune- and tumor-

related pathways.

We identified 16 DENRGs, and they have been reported that

are associated with necroptosis. TPM3, CHMP4C, EEF1A1, FASN,

TNF, S100A10, and IL1A represent a high-risk score and poor

prognosis, suggesting that these genes may be associated with the

tumor process in patients with CC and appear to be pro-

oncogenes. In contrast, H1.2, SLC25A5, GLTP, IFNG, H2AC13,

TUBB4B, AKNA, TYK2, andH1.5 are abundantly expressed in the

low-risk group, suggesting that these genes may be oncogenes for

CC. CHMP4C is highly expressed in CC tissues and cell lines and

plays a role as a pro-oncogene in them (Lin et al., 2020). The

EEF1Aprotein blocks apoptosis and facilitates viral replication and

FIGURE 8
Differences in immune-related outcomes between the high-risk and low-risk groups. Risk and ESTIMATE scores: (A) correlation between the
risk score and the stromal score. (B) Correlation between the risk score and the immune score. (C) Differences in tumor microenvironment scores
between the high- and low-risk groups. (D) Boxplot of differences in the degree of immune cell infiltration. (E) Mutation map of prognosis-related
genes in patients with cervical cancer. (F) Differential expression of immune checkpoint molecules.
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interacts with the E7 protein of human papillomavirus (HPV)

38 to participate in events related to incidence of CC formation-

related events (Ghittoni et al., 2010). FASN plays a key role in

tumor lipid metabolism and is associated with the tumor-

associated phosphoinositide 3-kinase (PI3K)/AKT signaling

pathway. Its overexpression is often associated with tumor

progression and poor prognosis (Cao et al., 2017). FASN may

be a potential therapeutic target for CC, and a FASN inhibitor

(orlistat) reduces apoptosis triggered by CC cells (C-33A, ME-180,

HeLa, and SiHa) in a time-dependent manner (Nascimento et al.,

2022). S100A10 may have anti-apoptotic effects in cancer cells,

interacting with Bad and impeding its pro-apoptotic activity

(Bharadwaj et al., 2021). The S100A10 subunit promotes L2-

mediated human papillomavirus infection, which is associated

with the development of CESC (Taylor et al., 2018). Elevated

expression of IL1A, a pleiotropic pro-inflammatory cytokine, is

associated with poorer prognosis in CC through multiple complex

mechanisms involving cell proliferation, apoptosis, angiogenesis,

and the inflammatorymicroenvironment (Song et al., 2016). There

is growing evidence that H1-2 has important functions in multiple

cellular processes including apoptosis, autophagy, the cell cycle,

and gene transcription. H1-2 acts as a signalingmolecule to initiate

apoptosis, and its deletion may lead to resistance to apoptosis in

mice and tumor cells (Lai et al., 2021). Both SLC25A5 and GLTP

are associated with good prognosis in CC (Qu et al., 2021). Colon

cancer cells overexpressing GLTP (HT-29) exhibit RIPK-3-

mediated MLKL phosphorylation, increased intracellular Ca2+,

levels and induce cell death through necroptosis (Mishra et al.,

2019). The CC-associated oncoprotein HPV E6 can downregulate

AKNA and lead to cancer progression (Wang et al., 2020). In

contrast, AKNA contributes to dysregulation of the cancer

immune system and can serve as a genetic factor and

biomarker of susceptibility to CC (Ramírez-González et al.,

2021). This is consistent with our results that TYK2 is a

protective gene in the prognostic model of necroptosis in CC

(Ding et al., 2020). Both TNF and IFGN are triggers of necroptosis

and can synergistically induce RIPK-dependent necroptosis (Hojo

et al., 2019). MLKL was initially identified as a key mediator of

TNF-induced necroptosis and can be used to assess the prognosis

of patients with cervical squamous cell carcinoma, and TNF is also

important for immune and cellular homeostasis in mammals

(Ruan et al., 2015). Its role as a major regulator to balance cell

survival, apoptosis, and necroptosis has been studied extensively in

various cell types and tissues (Blaser et al., 2016). IFNG is an

immune response gene and some of its single nucleotide

polymorphisms (SNPs) are associated with cervical

carcinogenesis and plays a decisive prognostic role in squamous

cervical cancer (Chen et al., 2020). However, there are few reports

on the role of TPM3, H2AC13, TUBB4B, and H1.5 in CC, which

will be an important direction for our future research.

Resistance to apoptosis is one of the characteristics of tumors,

and therefore induction of cell death mechanisms other than

apoptosis is emerging as a new cancer treatment strategy.

Necroptosis mediates cancer-related immune responses by

promoting interactions between cancer and immune cells

through the release of damage-associated molecular patterns

(DAMPs), cytokines, or chemokines in the TME (Sprooten

et al., 2020). The TME plays an important role in the course of

tumorigenesis, progression, and prognosis of CC. In this study, we

found that risk scores were negatively correlated with immune

scores, and different risk score groups showed different TME

infiltration characteristics. In low-risk group, the abundance of

CD8+ T-cell, CD4+ T-cell, and NK cells were increased. These

immune cells have been widely reported as effector cells in the

TME, and have a positive immune response to cancer cells (Litwin

et al., 2021). Furthermore, tumor cells undergo necroptosis, which

activates CD8+ T-cell to eliminate cancer cells and thus induce an

anti-tumor immune response. Necroptosis-associated genes

(EEF1A1, IFNG) can activate CD8+ T-cell (Guan et al., 2022).

DAMP from necrotic tumor cells can induce strong anti-tumor

CD8+ T-cell expression (Yatim et al., 2015). According to our

results, it indicates that the lower the risk score, the better the

immunity and prognosis of patients. In high-risk group,

neutrophil was increased. Tumors can increase tumor cell

proliferation by inducing the conversion of neutrophils into

tumor-associated neutrophils and releasing inflammatory

mediators (Demkow, 2021). Therefore, the patients with high

risk score might have more severe inflammatory reaction,

tumor proliferation and worse prognosis. Overall, we could

roughly predict immunity of patients according to their risk score.

Immune checkpoints present an effective

immunosuppressive mechanism in cancer, providing more

effective treatment options to improve cancer survival.

Immune checkpoint inhibitor (ICI) therapy is considered an

effective treatment for CC (Mauricio et al., 2021). In our results,

most immune checkpoint molecules—including BTLA, CD27,

CD28, CD86, CTLA4, ICOS, ID O 1, TIGIT, TNFRSF14,

TNFRSF18, TNFRSF25, TNFRSF9, and VTCN1—are highly

expressed in the low-risk group. CTLA-4, CD28, BTLA,

TIGIT, and ICOS belong to the immunoglobulin-associated

receptor family and are responsible for various aspects of

T-cell immune regulation. CTLA-4 is an immune checkpoint

protein receptor that downregulates the immune system. CTLA-

4 has been identified as a prognostic marker in CC, and CTLA-4

inhibitors CTLA-4 inhibitors in combination with radiation/

chemotherapy may improve outcomes for patients with CC

(Odiase et al., 2021). Blocking CTLA-4 allows the body to

overcome HPV-driven immunosuppression associated with

CC (Callahan and Wolchok, 2013). In addition to

conventional ICIs targeting CTLA4, PD-1, and PD-L1, novel

ICIs including agonists targeting BTLA, TIGIT, and the co-

stimulatory receptor ICOS are increasingly being used in

clinical therapy. IDO1 induces immunosuppression of T-cell

by depleting L-tryptophan and kynurenine in the local TME,

suppressing effector T-cell and over-activating regulatory T-cell

(Jung et al., 2019). Blockade of IDO1 contributes to shrinkage of
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CC (Blocking IDO1 Helps Shrink Bladder, Cervical Tumors,

2018). In addition, members of the tumor necrosis factor

receptor superfamily (TNFRSF) are present on T-cell and play

a key role in T-cell development, survival, immune activation,

and the anti-tumor immune response (Schaer et al., 2014).

Combined with our results, patients in the high-risk group

may be less sensitive to ICIs, and thus ICI treatment may be

more effective in the low-risk group. Taken together, these

immune checkpoint molecules may be explored as meaningful

targets for CC, and the combination strategy of ICIs with

radiation/chemotherapy offers a new direction for the future

treatment of CC and may help to overcome resistance to

radiation/chemotherapy and immunotherapy alone.

In conclusion, we have identified 16 NRGs that are

significantly associated with CC prognosis. Our findings

provide possible explanations for the different prognostic

assessments of patients with CC and offer prospects for future

studies on necroptosis as a therapeutic target for CC and

exploration of new immunotherapeutic approaches.
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