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of hyperuricemia after renal
transplantation
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Hyperuricemia (HUA) is a common complication after renal transplantation.
Currently, there is no uniform consensus on factors which increase the risk
for and treatment of HUA in renal transplant recipients. The purpose of this
review is to summarize current and proposed risk factors and strategies to
manage HUA after renal transplantation in order to assist renal function
protection and prolong graft survival time.
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Introduction

Hyperuricemia (HUA) is a common complication after renal transplantation (1), and

the upper limit of the HUA incidence in renal transplant recipients reported over 80%

with the wide applications of cyclosporine (1). HUA is defined as a serum uric acid

(UA) level greater than 7.0 mg/dl in men and 6.0 mg/dl in women (2). UA reportedly

causes oxidative damage in various tissues (3). HUA induces kidney damage traditionally

thought to occur from inflammation brought on by sodium urate crystals deposition in

renal tissue (4, 5). There are a number of risk factors associated with post transplant

HUA including, older age, male gender, calcineurin inhibitors, diuretics, hypercalcemia,

lower estimated glomerular filtration rate (eGFR), long-term pre transplantation dialysis

and the presence of pre transplant hyperuricemia (1, 6–9). Elevated serum UA levels can

decline long-term eGFR and worsen kidney graft function (10). More specifically, HUA

was found to be associated with an increase in graft loss, short term graft survival and a

higher risk of cardiovascular disease and mortality (11), resulting in poor quality of life

and a dramatic increase in the economic burden of renal transplant recipients.

This review aims to deliver a comprehensive and accurate understanding of the risk factors

for HUA after renal transplantation, as well as provide new insights into individualized

prevention strategies and therapy protocols for HUA in renal transplant recipients.
Production and excretion of uric acid

Production of uric acid

UA is an end product of the digestion of exogenous purines derived largely from animal

proteins in the liver, intestines, and vascular wall (12). In addition, UA is also the byproduct

of the degradation of endogenous purines of damaged, dying, and dead cells that have
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nucleic acids, adenine, and guanine (12, 13). Adenine and guanine

are converted to inosine and guanosine through deamination and

dephosphorylation, respectively. The enzyme purine nucleoside

phosphorylase subsequently converts inosine and guanosine to

hypoxanthine and guanine, which are both converted to

xanthine by xanthine oxidase (XO) through oxidation of

hypoxanthine and deamination of guanine by guanine

deaminase (14). XO further oxidizes xanthine to UA (15).
Excretion of uric acid

The kidney excretes approximately 70% of UA produced

daily, and the remaining 30% is excreted via the intestine by

bacteria cleaving UA into waste substances that are ultimately

eliminated in feces (12, 16). Renal urate excretion mainly

involves three processes: filtration, reabsorption and secretion

(17). As reported, the proximal tubule is the main site of UA

reabsorption and secretion, and approximately 90% of UA is

reabsorbed into blood, which is primarily accomplished at the

proximal tubular level by transporters that exchange

intracellular anions for UA (18). Various transporters play a

significant role in renal reabsorption of UA (13, 19). The urate

transporter 1 (URAT1) protein is the product of the SLC22A12

gene, which is mainly located on the apical (luminal) side of

the proximal tubule; while glucose transporter 9 (GLUT9)

encoded by SLC2A9, which has roles similar to those of

URAT1, is present on the basolateral side of proximal tubule

cells (13, 15, 19). These two transporters are the main targets

of present uricosuric drugs (19). Apart from these, organic

anion transporter 4 (OAT4) and OAT10, respectively encoded

by the SLC22A11 and SLC22A13 genes, are both expressed on

the apical membrane of the proximal tubule and have similar

roles as URAT1 (13).

The kidney also expresses secretory transporters to excrete

UA. OAT1, which is encoded by the SLC22A6 gene and

OAT3, encoded by SLC22A8, are both present on the

basolateral membrane of renal proximal tubules, and they are

principally involved in luminal secretion of UA (14),

transporting urate from the interstitial fluid into proximal

tubule cells (13). Since the balance of production and

elimination of UA determines the level of UA in the body, an

increased UA production and/or impaired renal UA excretion,

causes the development of HUA (12).
Risk factors for HUA after renal
transplantation

The risk factors for HUA after renal transplantation can be

broadly classified into demographic characteristics, metabolism-

related factors, drug use and other factors.
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Demographic characteristics

Factors such as age, sex seem to affect UA in kidney

transplant recipients. A study reported that reduced renal

function appears likely to be responsible for the increase in

UA in aged people (20). Kevin et al. conducted a retrospective

cohort study of 59,077 renal transplant patients, and found

that an older recipient age significantly contributed to

increased risks of new-onset gout after renal transplantation

(21). A retrospective cohort study of 302 renal transplant

recipients showed that hyperuricemic patients were

predominately older age (22). Therefore, older age is a risk

factor for HUA after renal transplantation, but the detailed

mechanisms remain unknown.

Many studies have shown that the development of HUA

after renal transplantation is associated with the male sex

(8, 22). Malheiro et al. found that hyperuricemic patients were

overwhelmingly male of 302 renal transplant patients (22).

This gender bias could be explained by the fact that

estrogenic compounds enhance renal urate excretion in

women, possibly reducing the active renal urate transporters

resulting in less tubular UA reabsorption (7, 23).
Metabolism-related factors

HUA is associated with metabolism-related factors, such as

obesity, diabetes mellitus, hypertriglyceridaemia and

hypertension. Metabolic risk factors could negatively affect the

graft function and cause graft loss (24). Previous studies

showed that an increase in Body Mass Index was directly

related to a higher risk for HUA, and obesity could contribute

to elevated UA levels by decreasing urinary UA excretion (22,

25, 26). A study of 302 renal transplant patients showed that

increasing Body Mass Index is a risk factor for HUA after

renal transplantation (22). The most probable reason for this

link is that obesity is characterized by insulin resistance,

which activates the sympathetic nervous system and renin–

angiotensin system and then produces lactic acid, which

competitively inhibits UA secretion and ultimately causes

higher serum UA (26).

As extensively reported, diabetic nephropathy causes renal

structural changes (including glomerular hypertrophy, glomerular

basement membrane thickening, partial glomerulosclerosis and

extensive glomerulosclerosis) and dysfunction of renal tubular

excretion (26, 27). HUA in renal transplant recipients with

diabetes is possibly caused by the reduced eGFR and the

increased reabsorption of renal tubules (26, 27). So diabetes

mellitus may increase the risk of HUA after renal

transplantation.” after the references number (26, 27).

The activity of glyceraldehyde 3 phosphate dehydrogenase

which is reduced by hyperglycemia and hyperlipidemia can also

enhance UA synthesis (26). At present, there is not much
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evidence available to fully elucidate whether hypertriglyceridaemia

is a risk factor for HUA after kidney transplantation. Some studies

have shown that UA progressively increases with increasing serum

triglyceride levels (6, 28). The exact mechanisms, however, remain

unknown. It is generally known that adenosine-triphosphate is

needed for fatty acid synthesis and triglyceride anabolism, and

depletion of adenosine-triphosphate can lead to the

accumulation of adenosine monophosphate and overproduction

of UA (28). Thus, hypertriglyceridaemia is a probable risk

factor for HUA after kidney transplantation.

Many studies have reported that hypertension is associated

with HUA in renal transplant recipients (8, 25, 29).

Hypertension-caused renal ischemia could enhance reabsorption

of UA by the renal proximal tubule (30). Experimental studies

have reported that HUA induces hypertension and kidney injury

via renal vasoconstriction mainly induced by endothelial

dysfunction and the activation of the renin-angiotensin system

(29). However, further studies are still needed to confirm a

bidirectional link between HUA and hypertension.
Drug use

Currently, calcineurin inhibitors (CNIs) are the standard

immunosuppressive therapy after renal transplantation (31).

Previous studies have observed that CNIs, including

tacrolimus and cyclosporin A (CsA), are risk factors for HUA

after renal transplantation (1, 22, 32). Calcineurin is a

significant target of immunosuppressive therapy with the

main aim of inhibiting T-cell proliferative responses to donor

alloantigens (33). CsA and tacrolimus are widely used in

clinical transplantation (33), and their primary mechanism of

pharmacological function mainly includes inhibiting

phosphorylation of nuclear factor of activated T- cell which

consequently reduces T-cell activation and proliferation

mediated by Interleukin-2 and inhibits T cell-mediated

rejection (34, 35). CNIs are nephrotoxic agents, and HUA is a

common complication of CNI therapy (36, 37). Cyclosporine-

induced HUA has been associated with the reduction of

urinary clearance of UA due to increased proximal tubular

reabsorption, decreased tubular secretion, and decreased GFR

(22, 38, 39). Tacrolimus has also been found to be associated

with HUA (38, 40), but at a less frequency compared to CsA

(32). For tacrolimus, the effect on UA levels is not as well

established and is only known to decrease the excretion and

glomerular filtration of UA caused by vasoconstriction (41, 42).

Apart from that, renal transplant recipients are prone to

hypertension and edema, so diuretics and other

antihypertensive drugs are commonly used in their

management (38). A large case-control study of 74,768 patients

from the United Kingdom reported that beta blockers and

diuretics were related to a higher risk of HUA (43). Since,

there is not much evidence to prove that the use of beta
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blockers is a risk factor for HUA after renal transplantation, a

detailed mechanism needs further investigation. Multiple

studies have reported that diuretics were directly related to a

higher risk for HUA after renal transplantation (7, 8, 32).

Among these, thiazide diuretics and loop diuretics can interact

with renal OAT; they enter the proximal tubular cells from the

blood by OAT1 and OAT3, which could probably compete

with UA, causing the reduced secretion of UA (30, 44, 45).

Moreover, diuretics also decrease UA excretion, possibly by

causing blood volume depletion with a consequent increase in

proximal tubular reabsorption of UA (38).
Hypercalcemia

A retrospective study revealed that of 356 renal transplant

recipients, 55 (15.45%) had HUA and their serum calcium

concentrations were significantly associated with increased UA

levels (46). Therefore, hypercalcemia highly increases the risk

of HUA after kidney transplantation. It was reported that

hypercalcemia can induce kidney injury, and the

pathophysiologic mechanisms may be vasoconstrictive

processes, intra-tubular calcifications, interstitial nephritis and

hypovolemia (47). Additional studies are needed to explore

the effects of serum calcium concentrations in HUA after

renal transplant recipients.
Lower eGFR

Although, the incidence of rejection has already decreased

with the development and administration of

immunosuppressants, chronic cellular or humoral rejection

unavoidably occurs (48). Renal ischemia reperfusion injury is

also a common and unavoidable event after renal

transplantation (49). The factors mentioned could cause renal

graft injury, which probably causes reduced eGFR. A study

showed significantly increased odds of HUA linked to a decline

in eGFR values in renal allograft recipients (22). Numakura et

al. found that decreased eGFR (<60.0 mL/min /1.73 m2) was a

risk factor for HUA at 1 year after renal transplantation (8).

Since UA is excreted mainly by the kidney, a rise in serum UA

occurs as the GFR falls (7, 8). Conversely, HUA induces

arteriolopathy of preglomerular vessels and impairs the

autoregulatory response of afferent arterioles, which causes

glomerular hypertension and reduced GFR (8), ultimately

leading to loss of graft function. Thus, HUA is both a result of

and a cause of reduction of eGFR in renal transplant recipients.
Long-term pre transplantation dialysis

Maintenance hemodialysis is the commonly used kidney

replacement methods in end-stage kidney disease (50). Studies
frontiersin.org
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have shown that short-term hemodialysis significantly reduces

UA levels by approximately 60% without additional ULT in

patients with end-stage kidney disease (50, 51). However,

some studies have shown that long-term pre transplantation

dialysis (>36 months) is associated with HUA after renal

transplantation (8, 32). One reliable interpretation is that

hyperparathyroidism, a common complication in dialysis

patients, causes HUA by increased urate absorption (52).

Another possible explanation is that hypoxia and oxidative

stress contribute to an increase in hypoxanthine, which can be

converted to UA by xanthineoxidase. Hemodialysis patients

are undoubtedly exposed to potential hypoxia and oxidative

stress during the hemodialysis process (53). Thus, long-term

pre transplantation dialysis is a risk factor for HUA after

kidney transplantation.
The presence of pre transplant HUA

As we have already mentioned, although short-term

hemodialysis significantly reduces UA levels, long-term pre

transplantation dialysis may cause HUA. Previous studies

have demonstrated that a preexisting history of HUA is

related to HUA after kidney transplantation (1, 32, 46). The

mechanisms of HUA-induced inflammation, oxidative stress,

endothelial dysfunction, and renal fibrosis (54) may be

associated with HUA post transplantation.

As mentioned above, numerous risk factors act separately or

synergistically to induce HUA after renal transplantation. Serum

UA concentration elevated to pathological levels may lead to

renal damage (55), which may affect renal graft function. Thus,

HUA may contribute to the reduced renal allograft function and

eventually cause graft loss. In the following section, we will

discuss the progress in HUA management after renal

transplantation.
Management of HUA after renal
transplantation

At-risk populations

Keeping in view all the factors discussed so far, it can be

concluded that recipients are at a high risk of HUA after

renal transplantation. Improving treatment adherence for

metabolism-related factors, selecting rational CNIs and

standardizing the utilization of drugs that inhibit UA

excretion are particularly important for reducing the risk of

HUA in recipients. When the condition allows, drugs that

increase UA levels should be discontinued, such as loop and

thiazide diuretics, beta-blockers (56). Moreover, HUA can be

caused using CNIs, especially CsA (57). Thus, individualized

immunosuppressive protocols that focus on cellular rejection
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as well as humoral rejection during renal transplantation

promise a better balance between necessary control of

alloreactivity (58) and reduced incidence of HUA.

Additionally, new therapeutic strategies targeting renal

ischemia reperfusion injury to extend graft survival include

machine perfusion, exogenous administration of mesenchymal

stem cells, and ex vivo preservation using preservation

solutions saturated with alternative gases (49). This may

reduce renal injury during renal transplantation and maintain

normal UA excretion.
Lifestyle intervention

HUA may be caused by UA overproduction as a result of a

high purine diet, fructose ingestion, alcohol consumption, and

genetic causes such as hypoxanthine-guanine phosphor-

ribosyl-transferase deficiency and phosphor-ribosyl-

pyrophosphate synthetase hyperactivity (59). A critical review

reported that the metabolism of fructose can cause elevated

UA levels due to decreased UA excretion and increased

hepatic adenosine-triphosphate degradation to adenosine

monophosphate, a UA precursor (16, 59). A 2018 meta-

analysis showed that several kinds of food: soft drinks, wine,

liquor, beer and meat (lamb, pork, beef) contributed to raised

UA levels (60). Thus, lifestyle intervention may play a pivotal

role in the prevention of HUA after renal transplantation.

Lifestyle interventions including exercise, weight reduction,

low consumption of purine-rich meat, limiting the intake of

alcoholic beverages, and avoiding high fructose intake

(including sweetened soft drinks and energy drinks), are

recommended for all HUA patients (61). Remarkably, gradual

weight loss is more beneficial than a drastic reduction, as

abrupt weight loss contributes to ketosis, which increases UA

reabsorption via URAT1, resulting in increased serum UA

(62). In addition, profuse sweating exercise causes a reduction

in urinary UA excretion and results in increased serum UA

after exercise; therefore, drinking enough fluids to prevent

dehydration and maintain sufficient urine output is

recommended (63). Moreover, alkalization of urine via

manipulation of food materials can promote the removal of

UA (64). Dairy products, such as vegetables, fruits (less

sugary ones), legumes, nuts and whole grains are beneficial

for the comorbidities of HUA and may also help prevent

HUA by reducing insulin resistance (65).
Treatment for HUA after renal
transplantation

It has been reported that lowering UA can prevent renal

functional loss and vascular injury (66). UA-lowering

treatments (ULTs) can be classified as direct-acting and
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indirect-acting agents. For direct-acting agents, there are two

major classes of ULT agents widely used in clinical practice:

one suppressing UA synthesis and another promoting UA

excretion (67). Most guidelines do not recommend treating

asymptomatic HUA, but drug therapy is officially allowed in

asymptomatic HUA according to the Japanese guidelines on

management of HUA, particularly when serum UA level

reaches 8.0 mg/dL or more in cases with comorbidities such

as hypertension, renal impairment (68).
Uricostatic drugs

Allopurinol is an XO inhibitor and its major metabolite,

oxypurinol, is predominantly eliminated by the kidney; thus it is

required to adjust the dose in renal impairment. Patients with

renal impairment may also have a higher risk of life-threatening

allopurinol hypersensitivity syndrome (69). For patients with

creatinine clearances above 60 ml/min, the allopurinol should

decrease serum UA to below 6.0 mg/dl in individualized dosage

(70). It should be noted that administering allopurinol in renal

transplant recipients receiving azathioprine has the danger of

fatal pancytopenia. Azathioprine is a commonly used

immunosuppressive agent for the prevention of graft rejection in

renal transplant patients (71). Azathioprine is a prodrug, and its

active form is 6-mercaptopurine. 6-mercaptopurine has three

metabolic pathways in the body: by thiopurine methyltransferase

into 6-methylmercaptopurine, by XO into 6-thiouracil, and by

hypoxanthine guanine phosphoribosyltransferase into

6-thioguanine (72). Severe anemia is a recognized but

uncommon manifestation of azathioprinerelated

myelosuppression (73). It was reported that an interaction

between azathioprine and allopurinol inhibiting the XO pathway

of azathioprine metabolism, was the main reason for severe

anemia (74). Therefore, when using allopurinol with

azathioprine, a lower dose is suggested, with weekly complete

blood counts in the first month to monitor for toxic adverse

effects, simultaneously (72, 75).

Febuxostat, which is a novel nonpurine-selective XO

inhibitor, is metabolized primarily by glucuronide formation

and oxidation in the liver (76), and strongly inhibits both the

oxidized and reduced forms of XO at low concentrations;

therefore, there is no need to adjust its dose in mild to

moderate renal impairment (77). Although febuxostat should

be administered with caution in patients with severe renal

dysfunction (GFR < 30 ml/min), its metabolic characteristics

are more advantageous than allopurinol (78).
Uricosuric drugs

Benzbromarone, a URAT-1 inhibitor, generally shows high

efficacy and safety even for patients with chronic kidney diseases
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(79). The drug was not licensed in the United States and

numerous European Union nations due to its severe

idiosyncratic hepatotoxic side effects (80); however, in some

HUA patients with impaired renal function, benzbromarone is

significantly effective in lowering UA levels (81). However,

liver toxicity due to benzbromarone is still a concern (82).

Probenecid, inhibiting OAT and URAT1, exhibits less

potent hypouricaemic effects than benzbromarone (80).

Notably, probenecid cannot be used in patients with

urolithiasis and a GFR < 50 ml/min when adverse events and

drug interactions frequently occur (83). Thus, probenecid is

not recommended for patients with severe renal impairment

(eGFR < 30 ml/min/1.73 m2) (82).

Arhalofenate, a novel anti-inflammatory uricosuric agent,

mainly decreases UA by inhibiting URAT1, OAT4 and

OAT10, and reduces the release of interleukin-1β stimulated

by monosodium urate crystals through the peroxisome

proliferator-activated receptor gamma pathway (84, 85). The

dual mode of action of arhalofenate exhibits a substantial

advantage over other ULTs (86). Arhalofenate was reported to

be more potent than probenecid in uricosuric activity (85),

and could be a potentially attractive novel agent for HUA

therapy for renal transplant recipients.

Tranilast, also an anti-inflammatory drug, exerts uricosuric

properties by interacting with URAT1, GLUT9, OAT4, and

OAT1 (87). Preclinical trials of tranilast in healthy volunteers

showed that not only did it have a urate-lowering effect but

also reduced urate crystal-associated inflammation (88),

making it an ideal therapeutic agent for HUA after renal

transplantation. Nevertheless, the adverse effects of tranilast,

such as liver injury, eosinophilic cystitis, eosinophilic

polymyositis and immune thrombocytopenia, have been

reported (83). Therefore, a better knowledge of the kidney

tolerance of these new uricosuric drugs is urgently needed to

determine their risk: benefit ratio (82).
Indirect UA-lowering treatment

HUA is usually accompanied by various comorbidities,

including cardiovascular disease, metabolic syndrome and

other conditions (89, 90). When making treatment regimens

for these comorbidities, drugs that increase renal UA

excretion are recommended, such as calcium channel

inhibitors or losartan for hypertension, glitazones and

biguanides for diabetes (sodium-glucose cotransporter 2

inhibitors, SGLT-2), and fenofibrate or atorvastatin for

dyslipidemia (56, 90–92).

Losartan has a hypouricaemic effect among

antihypertensive medications (93). Hyon et al. showed that

losartan and calcium channel blockers may be protective

against the risk of HUA among people with hypertension due

to their uricosuric properties (92, 94).
frontiersin.org

https://doi.org/10.3389/fsurg.2022.956213
https://www.frontiersin.org/journals/surgery
https://www.frontiersin.org/


Zi et al. 10.3389/fsurg.2022.956213
SGLT-2 inhibitors are a new class of antidiabetic drugs that

increases urinary glucose excretion by reducing renal glucose

reabsorption in the proximal convoluted tubule (95). Several

clinical trials of patients with and without type 2 diabetes

have shown that SGLT-2 inhibitors have consistently favorable

cardiovascular and kidney effects (96). The SGLT-2 inhibitors

(dapagliflozin, empagliflozin, canagliflozin, etc.) reportedly

had a UA-lowering effect by increasing the glucose

concentration in renal tubules and excreting UA at the S1

segment of the proximal tubule, both of which enhanced the

excretion of UA (66, 97). Moreover, SGLT-2 inhibitors have

added benefits, such as blood pressure control, weight loss,

and possible lipid lowering effects, to meet uncertain clinical

needs (98). However, SGLT-2 inhibitors have not been

approved for renal transplant recipients, and may have

great application prospects in renal transplant recipients with

type 2 diabetes and HUA to reduce the risk of cardiovascular

death (67).

Fenofibrate, a peroxisome proliferator-activated receptor

alpha agonist, has lipid-modifying effects on high triglyceride

and reduces the microvascular complications of diabetes (99).

Fenofibrate was recommended as part of a comprehensive

strategy to lower UA concentrations, as it decreases UA by

promoting UA clearance (91). Thus, the renal transplant

recipients with HUA with different comorbidities should use

corresponding indirect UA-lowering drugs to enhance the

effect of UA lowering therapy.
Conclusions

Renal transplant recipients are particularly vulnerable to

HUA since there are several risk factors that contribute to

deteriorating renal function. HUA severely impairs renal
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function and ultimately results in graft loss. Thus, the

management of risk factors for HUA and lifestyle

interventions in renal transplant recipients are critical to

prevent renal damage caused by HUA and are extremely

important for prolonging the survival time of grafts. Future

studies need to focus on the mechanisms of HUA-induced

renal injury in renal transplant recipients, which will further

guide effective treatments for HUA after renal transplantation.
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