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As one of common and severe mental illnesses, schizophrenia is difficult to be

diagnosed exactly. Both its pathogenesis and the causes of its development are

still uncertain because of its etiology complexity. At present, the diagnosis of

schizophrenia is mainly based on the patient’s symptoms and signs, lacking

reliable biomarkers that can be used for diagnosis. Circular RNAs in extracellular

vesicles (EV circRNAs) can be used as promising candidate biomarkers for

schizophrenia and other diseases, for they are not only high stability and disease

specificity, but also are rich in contents and easy to be detected. The review is to

focus on the research progress of the correlation between circRNAs and

schizophrenia, and then to explores the possibility of EV circRNAs as new

biomarkers for the schizophrenia diagnosis.
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Introduction

Schizophrenia is a severe mental disease which is caused by both environmental and

genetics factors (Ershova et al., 2019). Schizophrenia affects about 1% of world’s

population (Mueser and McGurk, 2004). More than 80%–90% of the inpatients in

mental hospitals belong to schizophrenia patients (Mueser and McGurk, 2004). However,

the status quo of schizophrenia diagnosis is that doctors primarily rely on their subjective

perceptions and assessments of patients’ symptoms and signs. There are no biochemical

or genetic biomarkers detected for the doctors to rely on. Therefore, to ascertain

schizophrenia biomarkers constitutes a research hotspot in psychiatry. CircRNAs are

endogenous and closed loop structure RNA molecules, which can regulate mammalian

gene expression at different levels. CircRNAs are particularly abundant in mammalian

brains, and participate in mammalian neurodevelopment and function, brain health
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maintenance, and prevention of neuropsychiatric diseases

(Mahmoudi et al., 2019). It has been confirmed that

abnormally expressed circRNAs are present in the different

tissues of schizophrenia patients, and they may play important

roles in the occurrence of schizophrenia (Mahmoudi et al., 2019).

EVs are membranous vesicles that are actively secreted by cells,

and are widely present in various body fluids. Since EV circRNAs

have the characteristics of disease specificity, high stability,

abundant contents, and easy to be detected, they can be used

as potential biomarkers for many diseases including

schizophrenia. Li, et al. (2020a) briefly reviewed circRNAs

potential as diagnostic biomarkers for schizophrenia and

depression (Li et al., 2020b). Singh, et al. (2022) carried out a

review focusing on the circRNA expression and activities in

different tissue samples (Singh et al., 2022). The present

review is to provide a detailed study summary of circRNAs in

schizophrenia and to explore the feasibility of EV circRNAs as

new biomarkers for the diagnosis of schizophrenia.

Circular RNAs

CircRNAs are a special class of endogenous circular single-

stranded RNA molecules are formed in the process of splicing.

Sanger et al. (1976) first discovered circRNAs in plants (Sanger et al.,

1976) and they were initially considered to be typical by-products of

mRNA post-transcriptional modification (Cocquerelle et al., 1993).

With the evidence gathered, it has been found that circRNAs can not

only be detected in different tissue samples and body fluids, but also

are found to participate in the normal developmental processes,

physiology, and disease states.

Despite the fact that the expression levels of some

exceptionally abundant circRNAs are higher than that of their

cognate linear mRNAs (Salzman et al., 2013; Rybak-Wolf et al.,

2015), the abundance of most of circRNAs are relatively lower

than that of mRNAs in cytoplasm and circRNAs which exhibit

diverse expression patterns in mammal tissues and cell types

(Chen, 2020). A significant enrichment of circRNAs was

observed in brains (Rybak-Wolf et al., 2015; Veno et al.,

2015). Unlike linear RNAs, circRNAs contain covalently

closed loops, which make them resistant to RNase R’s

digestion. They are relatively stable molecules with a longer

half-life and resistance to degradation than other RNA

molecules (Enuka et al., 2016). According to their origin, they

can be divided into exon circRNA (EcircRNA), intron circRNA

(ciRNA) and exon-intron circRNA (EIcircRNA) (Figure 1).

Therefore, they have potential to become the biomarkers and

therapeutic targets for human diseases.

Extracellular vesicles

Extracellular vesicles (EVs) are small diverse membrane

vesicles limited by a lipid bilayer that are secreted by almost

FIGURE 1
The overview diagram shows biosynthetic pathways of threemajor subclasses of circRNAs. A precursormRNA (pre-mRNA) can produce a linear
mRNA and circRNAs. (A) A precursor mRNA (pre-mRNA) can produce a linearmRNA undergo canonical splicing. Under back-splicing, it can produce
a circRNA. They are threemajor subclasses of circRNAs, EcircRNA, ciRNA and EIcircRNA. (B) EcircRNA is themain group of circRNA class that consist
of only exon(s). (C) cirRNA is derived from intron lariat. (D) EIcircRNA is composed of at least two exons and one retained intron.
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all kinds of cells into the extracellular space under both

physiological and pathological states (Robbins and Morelli,

2014; van Niel et al., 2018; Gassama and Favereaux, 2021).

The subtypes of EVs include exosomes, microvesicles,

retrovirus like particles, and apoptotic bodies, etc. These EVs

contain many kinds of factors including proteins, lipids and the

genetic material from secreted cells to recipient cells. These

factors are able to modify gene expression and activate

immune responses of recipient cells at a distance (Robbins

and Morelli, 2014; Gassama and Favereaux, 2021). EV is an

additional mechanism for intercellular communication and can

trigger multiple physiological and pathological processes such as

immune surveillance and regulation of inflammation (Record

et al., 2018).

The diameter of exosomes is about 30–150 nm that are

actively secreted by cells to the outside and exist in most body

fluids. Exosomes originate from the endosomal network. During

endosomal maturation, intraluminal vesicles (ILVs) are

generated by invagination of the limiting membrane of

endosomes which result in the apparent selective sequestration

of a small portion of cytosol (Stahl and Raposo, 2019). The

endosomes that include ILVs are named multivesicular bodies

(MVEs). MVBs can fuse with lysosomes for degradation of their

contents or some multivesicular bodies fuse with the plasma

membrane to release the ILVs into the extracellular environment.

Once released, they are termed exosomes. Many different types of

cells can secrete exosomes and it is a way of intercellular

communication in normal and pathological states (Colombo

et al., 2014). As a new mode of intercellular communication,

exosomes can include biologically active macromolecules,

transport from secreted cell to receptor cells, thereby finishing

the exchange of genetic information between cells (Kalishwaralal

et al., 2019). Many cells of the nervous system can release

exosomes, such as neurons and glial cells can release

exosomes (Von Bartheld and Altick, 2011; Chivet et al., 2013).

Exosomes participate in the nervous system development and

functions and the occurrence of neurological diseases (Osier

et al., 2018; Zhang and Yang, 2018).

Microvesicles are another type of EVs which have different

modes of the biogenesis of exosomes. Their formation occurs at

the cellular plasma membrane during cell activation, apoptosis

and mechanical injury (Deolindo et al., 2013). Microvesicles arise

by outward budding and fission of plasma membrane that

induced by translocation of phosphatidylserine to the outer-

membrane leaflet (Akers et al., 2013; Raposo and Stoorvogel,

2013). Relative to exosomes, the size of microvesicles is large with

the diameter range of 50–2,000 nm. Because they are also

membranous vesicles, they can protect the contents from

degradation and help them maintain biological activities in

the process of long-term and long-distance transportation. By

affecting autophagy, apoptosis and inflammation pathways,

microvesicles and the cargos can change the biological effects

of receptor cells (Lv et al., 2019). Neurons, astrocytes, microglia,

and neural stem cells, have been described to release

microvesicles and they involve in some central nervous

diseases (Porro et al., 2015).

Apoptotic bodies are typically released frommembrane blebs

of apoptotic cells with the diameter ranging from 1,000 to

5,000 nm (Caruso and Poon, 2018). Apoptotic bodies are

formed during the process of cell apoptosis process along with

many intrinsic changes (Lu et al., 2005; Seo and Rhee, 2018).

Apoptotic bodies are different from other subtypes of EVs and

they encapsulate a spectrum of cargos, ranging from DNA

fragments to intracellular components such as mitochondria

(Xu et al., 2019; Kang et al., 2021). Retrovirus-like particles

(RLPs) are non-infectious particles which resemble retroviral

vesicles under Electron Microscope (EM). RLPs arise by direct

budding from the plasmamembrane (Bieda et al., 2001) and their

diameter range are from 90 to 100 nm. A subset of retroviral

proteins can be encapsulated in RLPs (Bronson et al., 1979;

Mueller-Lantzsch et al., 1993; Dewannieux et al., 2005).

EVs are present in various biological fluids including

peripheral blood, cerebrospinal fluid, urine, and saliva (Yuana

et al., 2013). They can not only invade various tissues with the

bloodstream, but also act as multimolecular messengers by an

autocrine and paracrine manner. The uptake mode of EVs may

be dependent on the type of cell and its physiologic state, and

ligands on the surface of the EV and different cell types have

different mechanisms of internalization (Abels and Breakefield,

2016).

It is well-known that intercellular communication is a vital

event for multicellular organisms. Research about the

intercellular communication mediated by EVs has attracted an

increasing attention in recent years. EVs can play many roles in

multiple biological processes. It is necessary to determine the

potential physiological and pathological roles, clinical

applications, and their relevance to disease. Because of their

molecular cargos and easy accessibility, EVs have been

suggested as enormous potential of biomarkers for the

diagnosis of various diseases. EVs that released by cells of

nervous system have been recognized as important

modulators in the physiology of central nervous system and

in neurodegenerative and neuroinflammatory disease states

(Rufino-Ramos et al., 2017). At the same time, emerging

evidences also indicates the potential utilities of EVs as early

biomarkers for several brain disorders (Cheng et al., 2015; Zhao

and Yang, 2021). EVs can pass the blood-brain barrier (Alvarez-

Erviti et al., 2011). Recent studies suggested that brain-derived

EVs were detected in rodent and human peripheral blood

(Dickens et al., 2017; Mullins et al., 2017). Schizophrenia is

generally considered to be a neurodevelopmental disorder of

the brain. Increasing evidences suggested that inflammation

contributes to occurrence and development of schizophrenia

(van Beveren et al., 2014; Muller, 2018). EVs may contribute

to the regulation of immune responses such as in autoimmune

(Sáenz-Cuesta et al., 2014) and inflammatory diseases (Buzas
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et al., 2014) and infectious diseases (Silverman and Reiner, 2011).

So, EVs are excellent candidate biomarkers for schizophrenia.

Correlations between circRNAs and
schizophrenia

CircRNAs play important role in neurodevelopment and

function, maintaining brain health, and preventing

neuropsychiatric diseases (Zhuo et al., 2020). Multiple studies

have confirmed that circRNAs are important regulators in normal

developmental processes, physiology, and disease states, including

cancer, mental illness, and cardiovascular disease (Floris et al., 2017;

Liu et al., 2017; Han et al., 2018). At the same time, some studies have

also revealed the relationship between circRNAs and neurological

diseases (Errichelli et al., 2017; Bai et al., 2018). It has been confirmed

that circRNAs are involved in the occurrence and development of a

variety of neuropsychiatric diseases, such as schizophrenia

(Mahmoudi et al., 2019), depression (Cui et al., 2016),

Alzheimer’s disease (AD) (Akhter, 2018; Huang et al., 2018),

epilepsy (Gong et al., 2018; Li et al., 2018) and Parkinson’s

disease (PD) (Kumar et al., 2018).

It has been confirmed that there are abnormally expressed

circRNAs in the brains of schizophrenia patients, and

dysregulation circRNAs are involved in the occurrence of

schizophrenia (Table 1). Piwecka, et al. (2017) have demonstrated

that CDR1as regulatesmicroRNA levels in themammalian brain and

knocked out CDR1as could make abnormal neural activity and

behavioral disorders in mice and show impaired prepulse inhibition

(PPI) (Piwecka et al., 2017). PPI is an important behavioral parameter

for the measurement of the sensorimotor gating function is perfect.

Sensorimotor gating dysregulation has been found in patients with

neuropsychiatric disorders. In addition, knockout of the CDR1as

locus of modeled mice also affected mRNAs encoding proteins

involved in the maintenance of the mouse sleep-wake cycle. The

study provides indirect evidence for the possible involvement of

CDR1as in the pathogenesis of schizophrenia (Piwecka et al., 2017).

As a large class of post-transcriptional regulators, circRNAs have

been shown to act as a miRNA sponge/inhibitor to reduce miRNA

activities, they are so-called competing endogenous RNAs. CDR1as

was verified to act as a powerful miR-7 sponge to reduce miR-7

activity in developing midbrain of embryonic zebrafish and mouse

brain (Hansen et al., 2013; Memczak et al., 2013). Mahmoudi, et al.

(2019) performed transcriptome sequencing of the dorsal lateral

prefrontal cortex (DLPFC) of 17 schizophrenia patients and

18 healthy controls and found that the overall expression of

circRNAs in the DLPFC of schizophrenia showed a downward

trend, and verified that hsa_circ_HP1BP3-7, hsa_circ_PPP2CA-3,

hsa_circ_LONP2-6, hsa_circ_TOP1-10, hsa_circ_VCAN-2, hsa_

circ_GPR137B-3, hsa_circ_ZNF236-2, and hsa_circ_MYO9A-66

were significantly downregulated in post-mortem cortex of

schizophrenia patients by qRT-PCR (Mahmoudi et al., 2019). The

expression of circHomer1a was verified to downregulated in the

prefrontal cortex (PFC) of schizophrenia patients and schizophrenia

patient-derived neural cells (Zimmerman et al., 2020).

At present, the study of schizophrenia-related peripheral blood

circRNAs is still in its infancy. Abnormally expressed circRNAs were

found in the peripheral blood of schizophrenic patients. Yao et al.

TABLE 1 The circRNAs abnormally expressed in different tissues of schizophrenic patients.

Author Years Main findings

Piwecka et al. (2017) 2017 The mice knocked out circRNA CDR1as could make abnormal neural activities and behavioral disorders, show a phenotype
associated with neuropsychiatric disorders—impaired PPI, and also affected mRNAs encoding proteins involved in the
maintenance of the mouse sleep-wake cycle. The study provides indirect evidence for the possible involvement of CDR1as in the
pathogenesis of schizophrenia

Mahmoudi et al. (2019) 2019 The overall expression of circRNAs in the DLPFC brain region of schizophrenia showed a downward trend and verified
hsa_circ_HP1BP3-7, hsa_circ_PPP2CA-3, hsa_circ_LONP2-6, hsa_circ_TOP1-10, hsa_circ_VCAN-2, hsa_circ_GPR137B-3,
hsa_circ_ZNF236-2, and hsa_circ_MYO9A-66 were significantly down-regulated in post-mortem cortex of schizophrenia
patients

Yao et al. (2019) 2019 The expression level of hsa_circRNA_101836, hsa_circRNA_102101, and hsa_ circRNA_104597 are significantly downregulated,
whereas hsa_circRNA_103704 and hsa_circRNA_103102 are significant upregulated in schizophrenia patients compared with
healthy controls. After 8-week antipsychotic treatment, the expression level of hsa_circRNA_104597 has changed to significant
upregulation and indicated that hsa_circRNA_104597 can be schizophrenia diagnostic and therapeutic biomarker

Zimmerman et al. (2020) 2020 The circHomer1a was found to be declined considerably in the prefrontal cortex (PFC) of schizophrenia patients and
schizophrenia patient-derived neural cells

Mahmoudi et al. (2021) 2021 22 circRNAs were verified to significant alteration in circulating PBMCs from individuals with schizophrenia

Tan et al. (2021) 2021 In plasma EVs of schizophrenia patients, 44 differentially expressed circRNAs were verified by high-throughput sequencing
technology and the expression levels of chr3_196488683_196483770_-4913, hsa_circ_0077837, hsa_circ_0001495,
hsa_circ_0074371 and hsa_circ_0042174 significantly down-regulated compared with six healthy controls by qRT-PCR.

Liao et al. (2022) 2022 In the peripheral blood of schizophrenia patients, 450 differentially expressed circRNAs were found by the whole transcriptome
sequence technology and 5 circRNAs were confirmed by RT-qPCR.
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(2019) verified that the expression level of hsa_circRNA_102101,

hsa_circRNA_101836, and hsa_ circRNA_104597 are significantly

downregulated, whereas those of hsa_circRNA_103102 and hsa_

circRNA_103704 are significantly upregulated in peripheral blood

mononuclear cells (PBMCs) of 102 schizophrenia patients compared

with 103 healthy controls by RT-qPCR (Yao et al., 2019). After 8-

week antipsychotic treatment, hsa_circRNA_104597 has changed to

significant upregulation. So, the results indicated that hsa_circRNA_

104597 can be schizophrenia diagnostic and therapeutic biomarker

(Yao et al., 2019). Mahmoudi, et al. (2021) used deep RNA-seq

technology to analyzed circRNA expression in PBMCs from

20 patients with schizophrenia, 19 patients with bipolar disorder

as well as 20 controls. It showed that 22 and 33 circRNAs were

significantly altered in PBMCs from individuals with schizophrenia

and bipolar depression, respectively (Mahmoudi et al., 2021). Tan

et al. (2021) found 44 differentially expressed circRNAs in the plasma

exosomes of schizophrenia patients by high-throughput sequencing

technology and verified that the expression levels of chr3_

196488683_196483770_-4913, hsa_circ_0077837, hsa_circ_

0001495, hsa_circ_0074371 and hsa_circ_0042174 were

significantly downregulated in plasma EVs of six schizophrenia

patients compared with six healthy controls by RT-qPCR (Tan

et al., 2021). Liao, et al. (2022) used the whole transcriptome

sequence technology to assess the expression profiles of circRNAs

in the peripheral blood of three schizophrenia patients and three

healthy controls, they found that 450 differentially expressed

circRNAs were found to aberrantly express in the peripheral

blood of schizophrenia patients (Liao et al., 2022). They further

confirmed five circRNAs aberrantly expressed by RT-qPCR (Liao

et al., 2022).

The lack of commonality was found in previous studies. The

reasons for discordant results between previous studies are as

follows. Firstly, the samples that used in these researches are

different, some being peripheral blood, others PBMCs and still

others plasma EVs. Although Yao et al. (2019) (Yao et al., 2019)

and Mahmoudi et al. (2021) (Mahmoudi et al., 2021) used the same

samples, the methods of them were different. Secondly, the sample

numbers are small in Tan et al. (2021) and Liao et al. (2022).

Although the above studies have confirmed that circRNAs are

significantly associated with schizophrenia, the roles in the

pathogenesis of schizophrenia that circRNAs play are still a

mystery and needs to be studied systematically. In addition, the

associations of differentially expressed circRNAs with schizophrenia

weremostly confirmed in brain. Since it is difficult to obtain samples

from living human brain, biomarkers that abnormally expressed in

brain tissue are difficult to be used for early warning and diagnosis of

schizophrenia. They prompted scientists to verify biomarkers of

schizophrenia from peripheral blood, especially from the EVs of

peripheral blood. However, whether circRNAs in peripheral blood

can accurately reflect the states of the brain and whether they are as

specific biomarkers for brain-related diseases need further

examination.

FIGURE 2
The overview diagram shows multiple characteristics and biological functions of EVs-circRNAs. The functions of EV circRNAs are as templates
for translating proteins, efficient microRNA sponges, and interacting with RNA-binding proteins. EV circRNAs have such characteristics, as disease
specificity, high stability, abundant contents, and easy to be detected. These functions and characteristics make them to be used as promising
candidate biomarkers for many diseases.
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EV circRNAs as schizophrenia biomarkers

Biomarkers are biochemical and physiological indicators that

have a very wide range of uses including change marking in the

structure or function of cells, tissues, organs, and systems. The

contents of EVs mirror the aspects of the secreting cell, including

genetic and proteomic aspects (Akers et al., 2013). As a newmode

of intercellular communication, EVs carry diverse molecules

such as DNA, RNAs, protein, lipids, metabolites, and others,

which transport from host cells to recipient cells, thereby

affecting the function of recipient cells (van Niel et al., 2018;

Kalishwaralal et al., 2019; Mathieu et al., 2019). In recent years,

studies have shown that EVs are important carriers of circRNAs.

The abnormally expressed circRNAs in the brain of

schizophrenia patients can be transported through EVs, cross

the blood-brain barrier, enter the circulatory system and exist

stably (Zhuo et al., 2020). Due to the protective effect of EV

membrane, the existence of circRNAs is more stable and

abundant, and can better reflect the local state of the disease.

RNA sequencing revealed that circRNAs are abundant in EVs of

human Blood (Li et al., 2019). EV circRNAs have such

characteristics, as disease specificity, high stability, content

abundancy, and easy detection; these features make them to

be used as promising candidate biomarkers for many diseases

and have great potential and important significance in the

development of new disease diagnosis and treatment methods.

The overview diagram showing multiple characteristics and

biological functions of EV circRNAs can be seen in Figure 2.

Existing studies have linked EV circRNAs with tumors,

confirming that they are excellent biomarkers for tumor

diagnosis (Pan et al., 2019; Li et al., 2020a).

Most of the research on EV circRNAs focusing on tumors,

and their correlations with psychiatric diseases is still in its

infancy. Although the fact that the expression of EV circRNAs

synchronizing with that of the brain and can accurately reflecting

the abnormal pathological state of the brain need to further

verify, we must admit that EV circRNAs are promising

candidates as biomarkers for neuropsychiatric diseases,

especially for schizophrenia. However, the research on EV

circRNAs as the biomarkers of psychiatric and neurological

disorders is in its infancy, only a small number of literatures

paying attention to EV circRNAs as biomarkers of schizophrenia.

Only the study of Tan et al. (2021) explored plasma exosomal

circRNAs as diagnostic biomarkers for schizophrenia and found

that some circRNAs have the potential as diagnostic biomarkers

and the therapeutic strategy for schizophrenia (Tan et al., 2021).

EV circRNAs participate in the occurrence and development

of schizophrenia, so they have important scientific and clinical

application values. Further and in-depth research on them will

not only be conducive to the diagnosis, treatment and prognosis

of schizophrenia, but also help to reveal the pathogenic

mechanism of schizophrenia. With the further discoveries of

more and more psychiatric disease-related EV circRNAs and the

identification of their regulatory mechanisms, the role of EV

circRNAs in the pathological mechanisms of schizophrenia can

be clarified. Therefore, it is important to carry out the research of

investigating the expression profile of circRNAs in EVs of

patients with schizophrenia, exploring the feasibility of

differentially expressed EV circRNAs as diagnostic markers

for schizophrenia, and verifying biological pathways related to

the occurrence of schizophrenia that EV circRNAs participate.

Despite the fact that biology and utility of EVs have attracted

much attention, the researches of EVs is still in the initial stage.

Further research on EV circRNAs in schizophrenia may help to

understand intercellular communications in diseased brains, and

to find novel biomarkers and new therapeutic strategies in

schizophrenia.

Conclusion

EV circRNAs participate in the pathogenesis of

schizophrenia, have important scientific and clinical

application values. Exploring EV circRNAs involvement in the

occurrence and development of schizophrenia has increasingly

become the direction of the diagnosis and treatment of

schizophrenia. With the continuous improvement of

detection, evaluation and intervention technologies, the

relation studies between EV circRNAs and schizophrenia will

not only help the diagnosis and treatment of schizophrenia, but

also provide reference for the diagnosis and treatment of other

psychiatric diseases. It is expected to become a research hotspot

of mental illness.
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