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Background: Idiopathic pulmonary fibrosis (IPF) is a life-threatening disease

whose etiology remains unknown. This study aims to explore diagnostic

biomarkers and pathways involved in IPF using bioinformatics analysis.

Methods: IPF-related gene expression datasets were retrieved and downloaded

from the NCBI Gene Expression Omnibus database. Differentially expressed

genes (DEGs) were screened, and weighted correlation network analysis

(WGCNA) was performed to identify key module and genes. Functional

enrichment analysis was performed on genes in the clinically significant

module. Then least absolute shrinkage and selection operator (LASSO)

logistic regression and support vector machine-recursive feature elimination

(SVM-RFE) algorithmswere run to screen candidate biomarkers. The expression

and diagnostic value of the biomarkers in IPF were further validated in external

test datasets (GSE110147).

Results: 292 samples and 1,163 DEGs were screened to construct WGCNA. In

WGCNA, the bluemodule was identified as the keymodule, and 59 genes in this

module correlated highly with IPF. Functional enrichment analysis of blue

module genes revealed the importance of extracellular matrix-associated

pathways in IPF. IL13RA2, CDH3, and COMP were identified as diagnostic

markers of IPF via LASSO and SVM-RFE. These genes showed good

diagnostic value for IPF and were significantly upregulated in IPF.

Conclusion: This study indicates that IL13RA2, CDH3, and COMP could serve as

diagnostic signature for IPF and might offer new insights in the underlying

diagnosis of IPF.
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Introduction

Idiopathic pulmonary fibrosis (IPF) is a chronic,

progressive, fibrotic lung disease of unknown cause

(Spagnolo et al., 2021). The global annual incidence of IPF is

estimated to range from 0.2 to 93.7 cases per 100,000 people

(Hutchinson et al., 2015), and the median survival time from

diagnosis is 4.5 years (Kaunisto et al., 2019). Substantial

progress has been made in the clinical management of IPF.

Two effective agents, nintedanib and pirfenidone, benefit

physiological deterioration and progression-free survival

(Noble et al., 2016; Raghu et al., 2017). Timely diagnosis

may improve outcomes for patients in the future, but the

coexistence of other disorders and the lack of specific

symptoms delay diagnosis, which has worsen mortality

(Lamas et al., 2011). Current efforts are directed at

identifying IPF early, potentially relying on combinations of

biomarkers (Martinez et al., 2017), and identifying key

biomarkers that may direct more personalized medicine to

improve long-term prognosis (Barratt et al., 2018).

Major advances recognizing biological mechanisms and

biomarkers have occurred over the past decade with the

development of transcriptome analysis (Casamassimi et al.,

2017; Raza et al., 2022). Numerous studies have focused on

circulating molecular markers or lung-specific sampling to

improve the diagnosis of IPF (Ley et al., 2014). These

biomarkers include extracellular matrix (ECM)-modifying

enzymes (Kropski et al., 2015), matrix metalloproteinase

(MMP)-degraded proteins (Jenkins et al., 2015), inflammatory

proteins (Li et al., 2022), and the transcriptomic signature (Bauer

et al., 2015). However, knowledge of molecular biomarkers for

IPF remains in its infancy (Ley et al., 2014).

In this study, we used multiple bioinformatics methods to

identify key gene co-expression modules, functional pathways,

FIGURE 1
The workflow of analysis.
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and significant diagnostic biomarkers in IPF, and constructed a

potential diagnostic signature for IPF.

Materials and methods

Acquisition of microarray data

The workflow of this study is shown in Figure 1. Microarray

datasets of IPF-related gene expression profiles were retrieved

and downloaded from the NCBI Gene Expression Omnibus

public database (https://www.ncbi.nlm.nih.gov/geo/). The

included datasets met several selection criteria: 1) the datasets

published in the past 15 years; 2) samples had been extracted

from lung tissue; 3) the total sample size in two groups was at

least 30; and 4) raw data were available in the datasets. Five

datasets that met the selection criteria and the diagnostic criteria

for IPF were analyzed in this study (American Thoracic Society,

2000; Holmes et al., 2006; Raghu et al., 2011), and information

about them was presented in Table 1. Ethical approval for this

study was not required because these involved datasets were

freely available in public datasets.

Data preprocessing and differential
expression analysis

Raw data from the GSE10667, and datasets were normalized

with the normexp function and the between-array-normalization

quantile in Limma R package (Ritchie et al., 2015) and merged

into a training dataset. These three datasets were selected for

integrated analysis because they had the same platform, which is

crucial when combining different datasets. Then SVA R package

was used to remove batch effects using the combat algorithm

(Leek et al., 2012). Two-dimensional principal component

analysis (PCA) was used to evaluate whether the batch effect

had been removed. Outlier samples were detected and removed

by hierarchical cluster analysis with average linkage. Limma R

package was used to investigate the DEGs in the training dataset,

and genes with a false discovery rate <0.05 and absolute log2 fold
change >0.5 were considered DEGs.

Construction of Co-Expression network

We used DEGs to construct a gene co-expression network via

WGCNA R package (Langfelder and Horvath, 2008). We

constructed a scale-free network (R2 = 0.85) based on the

following criteria: the soft-thresholding power β was set as 20,

the minimum number of genes in the modules was 30, and the

threshold for cut height to merge possible similar modules was

0.25. To further analyze the module, we calculated the module

eigengene, which represents the expression of all genes in a given

module. The correlation between the module eigengene and the

genes was defined as the module membership, and the

correlation between the genes and clinical traits was defined

as the gene significance. Model eigengene values were correlated

with control and IPF groups by Pearson’s correlation. Finally, the

module most highly associated with IPF groups was selected for

further analysis.

Functional enrichment analysis

For further understanding the function of the genes in the

most related module for IPF, we conducted Gene Ontology (GO)

and Kyoto Encyclopedia of Genes and Genomes (KEGG)

enrichment analyses using Clusterprofiler R package (Wu

et al., 2021). The ontology of the GO analysis contains three

categories: molecular function, biological process, and cellular

component. Adjusted p < 0.05 was set as the cutoff to identify

significantly enriched pathways.

Screening of candidate diagnostic
biomarker

To screen candidate diagnostic biomarkers, we identified

genes with high within-module connectivity of the modules (|

module membership| > 0.8) and |gene significance| > 0.6 as hub

genes and used them to build the least absolute shrinkage and

selection operator (LASSO) and support vector machine-

recursive feature elimination (SVM-RFE) algorithms (Huang

et al., 2014). The LASSO algorithm, with penalty parameter

TABLE 1 Microarray datasets included in this study.

Geo accession Publication year Sample size (IPF/Control) Source Platform

GSE110147 2018 22/11 Lung tissue Affymetrix Human Gene 1.0 ST Array

GSE53845 2014 40/8 Lung tissue Agilent-014850Whole Human GenomeMicroarray 4 × 44K G4112F

GSE47460 2013 122/91 Lung tissue Agilent-028004 SurePrint G3 Human GE 8 × 60K Microarray

GSE32537 2013 119/50 Lung tissue Affymetrix Human Gene 1.0 ST Array

GSE10667 2009 31/15 Lung tissue Agilent-014850Whole Human GenomeMicroarray 4 × 44K G4112F
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tuning conducted by 10-fold cross-validation, was applied with

the glmnet R package. The SVM-RFE algorithm was established

by e1071 R package to search for lambda with the smallest

classification error to select appropriate features, and the

k-fold cross-validation was set as 10. The overlapping genes

between the two algorithms were selected as candidate diagnostic

biomarkers, and their expression was further validated by the

validation datasets (GSE110147, GSE32537).

Verification of diagnostic markers

The area under the curve and the receiver operating

characteristic (ROC) curve were plotted with the pROC

package to evaluate the capability of candidate diagnostic

biomarkers between controls and IPF. We randomly

divided samples from the training dataset into a training

set and a test set (7:3) using the createDataPartition

function in the caret R package and constructed the

diagnostic model using the logistic regression algorithm in

the training set. We used the test set and validation datasets to

evaluate the capability of the diagnostic model between IPF

and controls via ROC analysis.

Results

Removal of batch effects and
identification of DEGs

The training dataset sample distributions before and after

the removal of batch effects were visualized in a two-

dimensional PCA cluster diagram (Figures 2A,B), and the

scatter plot of PCA based on normalized expression showed

that batch processing effects were eliminated (Figure 2B).

15 outlier samples were removed by hierarchical cluster

analysis (cutHeight = 90; Figure 2C), and a total of

1,163 DEGs—529 downregulated and 634 upregulated

FIGURE 2
Principal component analysis (PCA) and differential expression analysis (DEGs). (A,B) Two-dimensional PCA cluster diagram before and after
removing the batch effect. (C) Sample clustering to detect outliers. (D) The volcano plot of DEGs in training dataset, and the interested genes were
plot in the volcano plot. Red represents upregulated DEGs, blue represents downregulated DEGs, and grey represents no significant difference
genes.
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genes—were identified in the training dataset (Figure 2D and

Supplementary Table 1).

Construction of the weighted Co-
expression network and identification of
key modules

A total of 292 samples and 1,163 DEGs were used to construct

the co-expression network analysis. The power of β = 20 (scale-free

R2 = 0.85) was selected as the correlation coefficient threshold to

identify the module-trait relationship (Figure 3A). A total of five

modules were identified (Figure 3B). The blue module, which

included 315 genes, had the strongest association with IPF

(Figure 3C), and 59 genes with high connectivity in the blue

module were selected for further analysis based on the cutoff

criteria (|gene significance| > 0.6 and |module membership| > 0.8;

Figure 3D and Supplementary Table 2).

GO and KEGG pathway analyses

In the biological process category (Figure 4A), the genes

were mainly enriched in ECM organization, extracellular

structure organization, and external encapsulating

structure organization. In the molecular function category

(Figure 4B), the genes were mainly enriched in ECM

structural constituent, endopeptidase activity, and

glycosaminoglycan binding. In the cellular component

category (Figure 4C), the genes were mainly enriched in

collagen-containing ECM, endoplasmic reticulum lumen,

and collagen trimer. KEGG pathway analysis revealed that

protein digestion and absorption, complement and

coagulation cascades, and ECM-receptor interaction were

the most significant pathways (Figure 4D). These results

indicate that blue module genes might impact the

development of IPF by influencing these biological

processes and signaling pathways.

FIGURE 3
Co-expression modules construction and key module identification. (A) Determination of soft-thresholding power in the WGCNA. Analysis of
the scale-free fit index for various soft-thresholding powers (β) and analysis of the mean connectivity for different soft-thresholding powers. (B)
Clustering dendrogram of genes based on a dissimilarity measure (1-TOM). (C)Heatmap of the correlation betweenmodule eigengenes and clinical
traits (each cell contained the correlation coefficient and corresponding p-value). (D) Scatter plot for correlation between the module
membership and gene significance of blue module (one dot represents one gene).
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Screening and verification of diagnostic
markers

A total of 23 genes were identified as signature genes by the

LASSO algorithm (Figures 5A,B), and three genes were identified

by the SVM-RFE algorithm (Figure 5C). Interleukin-13 receptor

alpha 2 (IL13RA2), cadherin 3 (CDH3), and Cartilage oligomeric

matrix protein (COMP) were selected as signature genes by both

the LASSO and SVM-RFE algorithms (Figure 5D), and they were

identified as candidate diagnostic markers. The expression of the

three genes was tested in the validation datasets, and it was

notably higher in IPF lung tissue (p < 0.001; Figures 5E,F).

Construction and verification of the IPF
diagnostic model

Every area under the ROC curve (AUC) of IL13RA2, CDH3,

and COMP was greater than 0.9 in training and validation

datasets (GSE110147) (Figures 6A–C). When the three genes

were combined into one variable, the area under the curve in the

test set was 0.94 (Figure 6D). It is important to note that we also

used external test datasets to validate the diagnostic value of the

three-gene signature. The area under the curve for the three-gene

signature was 0.98 in GSE110147 (Figure 6E) and 0.97 in

GSE32537 (Figure 6F), which indicated that the three-gene

signature had high diagnostic value.

Discussion

Numerous studies have found that dysregulated genes are

involved in the progression of IPF and might be potential

diagnostic biomarkers of IPF (Ley et al., 2014; Martinez et al.,

2017). However, most of these studies have focused on the

diagnostic value of a single biomarker, and small sample sizes

may limit the clinical application of these biomarkers. Integrating

multiple biomarkers and increasing sample sizes with developing

FIGURE 4
GO and KEGG pathway analysis of blue module genes. (A) Biological process analysis. (B) Molecular function analysis. (C) Cellular component
analysis. (D) KEGG pathway analysis.
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FIGURE 5
Two algorithms were used for gene signature selection. (A) LASSO algorithm to screen diagnostic markers. Different colors represent different
genes. (B) The gene signature selection of optimal parameter (lambda) in LASSO algorithm. (C) The root mean square error of the estimate
generation for the SVM-RFE algorithm. (D) Venn diagram shows the intersection of signature genes obtained from LASSO and SVM-RFE algorithms.
(E,F) Validation of the expression levels of candidate diagnostic biomarkers in the validation datasets (GSE110147, GSE32537).***p < 0.001,t-test
was used to evaluate the statistical significance of differences.

Frontiers in Genetics frontiersin.org07

Wu et al. 10.3389/fgene.2022.985217

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.985217


high-throughput technologies and bioinformatics may improve

predictive accuracy. In this study, we constructed a novel gene

signature for diagnosing IPF by integrating multiple datasets and

combining multiple statistical methods. Three genes (IL13RA2,

CDH3, and COMP) were identified as independent diagnostic

biomarkers. An integrated three-gene signature was built based

on their regression coefficients and expression profiles, ROC

analysis indicated that the signature had high diagnostic

accuracy, as confirmed by two external test datasets.

The mouse bleomycin-induced fibrosis model is generally

viewed as the standard in modeling pulmonary fibrosis (Jenkins

et al., 2017). Recent studies revealed that genes related to the

mouse bleomycin-induced fibrosis model and human IPF have

much in common (Bauer et al., 2015; Toren et al., 2021).

Interleukin (IL)-13 is a type 2 cytokine with important roles

in inflammatory and fibrotic diseases (Gieseck et al., 2018; Bieber,

2020). IL-13 receptor α2 (IL-13Rα2), which has great affinity for

IL-13, acts as a non-signaling decoy receptor (Chandriani et al.,

2014; Ulzii et al., 2019). IL-13 and its receptors are increased in

the blood and lung tissue of IPF patients (Murray et al., 2008;

Chandriani et al., 2014). TGF-β is upregulated and activated in

fibrotic diseases and is considered a central mediator of

fibrogenesis (Györfi et al., 2018; Frangogiannis, 2020).

Previous studies have found that IL-13 signals through IL-

13R2 to induce transforming growth factor beta (TGF-β) and
fibrosis progression (Fichtner-Feigl et al., 2008), and silencing of

IL-13Rα2 reduced TGF-β production and lung fibrosis (Fichtner-
Feigl et al., 2006). In contrast, Robert V et al. found that

overexpression of IL-13Rα2 inhibited the IL-13 induction of

fibrotic markers and bleomycin-induced pulmonary fibrosis

(Lumsden et al., 2015). IL-13Rα2 deficiency had been shown

to lead to increases in collagen deposition (Wilson et al., 2007).

Given these contrasting possibilities, it is vital to interpret the

meaning of dysregulated IL-13R2 expression in IPF and the

function of IL-13Rα2. The expression of IL13RA2 was

significantly higher in IPF and acute exacerbation of IPF (AE-

IPF) compared with control samples, but there was no significant

difference between IPF and AE-IPF (Konishi et al., 2009). These

results indicate that IL13RA2 may serve as a signature for IPF,

but can’t predict the onset of AE-IPF.

CDH3, also known as placental cadherin, is a classic cell-to-

cell adhesion molecule that regulates multiple cellular

homeostatic processes in normal tissue (Vieira and Paredes,

2015). High CDH3 expression is associated with tumor

progression in invasive epithelial tumors (Ribeiro et al., 2010)

and non-small-cell lung cancer (Imai et al., 2018). A well-known

FIGURE 6
Verification of potential diagnostic signature of IPF. Verification of potential diagnostic signature of IPF. (A–C) The ROC curve of the diagnostic
efficacy verification of diagnostic markers in the training dataset and validation datasets (GSE110147, GSE32537). (D–F) The ROC curves of the
diagnostic markers in the test set and validation datasets (GSE110147, GSE32537).
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mechanism associated with CDH3-induced cancer cell invasion

is MMP activation (Ribeiro et al., 2010; Imai et al., 2018). MMPs

have been implicated in the pathogenesis of IPF, and most MMPs

promote the development of IPF (Craig et al., 2015;

Mahalanobish et al., 2020). CDH3 was expressed in aberrant

basaloid cells in the IPF lung (Adams et al., 2020; Travaglini et al.,

2020) and overexpressed in all three stages of IPF (early-,

progressive, and end-stage IPF) (Ghandikota et al., 2022), but

was not found to be differentially expressed in bleomycin-treated

animals (Bauer et al., 2015). It was not further investigated due to

lack of translational relevance.

COMP is an ECM glycoprotein that plays a role in

fibrillogenesis and collagen secretion (Rockey et al., 2015; Posey

et al., 2018). Dysregulated COMP expression is involved in

numerous diseases (Posey et al., 2018), including fibrosis

(Agarwal et al., 2013; Vuga et al., 2013). COMP expression was

increased in skin fibroblasts and lung epithelial cell induction by

TGF-β, silencing COMP expression in human lung fibroblasts was

associated with a reduction in TGF- β1 (Agarwal et al., 2013; Vuga
et al., 2013). Once fibrosis is initiated, COMP and TGF-β constitute
a mutual positive regulation loop (Agarwal et al., 2013; Cui and

Zhang, 2022). Serum COMP was upregulated in IPF patients and

correlated with declines in force vital capacity, indicating that it is a

potential biomarker for disease activity (Vuga et al., 2013). K. Miller,

et al. found that the expression of COMPwas significantly increased

in bleomycin-treated mice, while tissue elastance and lung function

testing showed significant differences compared to control

group. However, there was no significant difference between

bleomycin treated WT and COMP-KO mice. It indicated COMP

maybe a biomarker for pulmonary fibrosis but not a causative factor

in bleomycin-induced fibrosis (Miller et al., 2019).

IPF is a chronic, progressive lung disease characterized by the

progressive deposition of ECM proteins. Available evidence

suggests that the ECM plays a central role in the pathogenesis

of IPF (Hewlett et al., 2018). WGCNA is a bioinformatics

application for exploring the relationships between clinical

traits and co-expression modules (Langfelder and Horvath,

2008). In the present study, one module mostly associated

with IPF was found by WGCNA. Functional enrichment

analysis revealed that the module’s genes involved in multiple

biological processes, including ECM organization, extracellular

structure organization, and collagen metabolism by protein

digestion and absorption signaling pathways. These results

suggest that dysregulated expression of these genes could play

important roles in orchestrating the development of IPF by

influencing ECM-associated pathways.

Although the three-gene signature constructed here

appears to be a potential diagnostic signature for IPF, this

study has some limitations. First, the expression and exact

mechanisms of the biomarkers should be further investigated

experimentally. Second, the diagnostic value of the three-gene

signature was only tested in microarray datasets in this study

and should be further validated with clinical data. Third, other

genes in the clinically significant module were not studied in

this study.

In conclusion, we revealed the involvement of the key gene

co-expression module and functional pathways in the

pathogenesis of IPF. In addition, we identified IL13RA2,

CDH3, and COMP as potential biomarkers of IPF and

constructed an integrated three-gene signature of IPF. This

work provides further insights into the underlying molecular

mechanisms and diagnosis of IPF.
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