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The identification of pathogenically-relevant genes and tissues for complex traits can
be a difficult task. We developed an approach named genome-wide imputed
differential expression enrichment (GIDEE), to prioritise trait-relevant tissues by
combining genome-wide association study (GWAS) summary statistic data with
tissue-specific expression quantitative trait loci (eQTL) data from 49 GTEx tissues.
Our GIDEE approach analyses robustly imputed gene expression and tests for
enrichment of differentially expressed genes in each tissue. Two tests (mean
squared z-score and empirical Brown’s method) utilise the full distribution of
differential expression p-values across all genes, while two binomial tests assess
the proportion of genes with tissue-wide significant differential expression. GIDEE
was applied to nine training datasets with known trait-relevant tissues and ranked
49 GTEx tissues using the individual and combined enrichment tests. The best-
performing enrichment test produced an average rank of 1.55 out of 49 for the
known trait-relevant tissue across the nine training datasets—ranking the correct
tissue first five times, second three times, and third once. Subsequent application of
the GIDEE approach to 20 test datasets—whose pathogenic tissues or cell types are
uncertain or unknown—provided important prioritisation of tissues relevant to the
trait’s regulatory architecture. GIDEE prioritisation may thus help identify both
pathogenic tissues and suitable proxy tissue/cell models (e.g., using enriched
tissues/cells that are more easily accessible). The application of our GIDEE
approach to GWAS datasets will facilitate follow-up in silico and in vitro research
to determine the functional consequence(s) of their risk loci.
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1 Introduction

Genome-wide association studies have been successfully applied to thousands of traits.
However, single nucleotide polymorphisms (SNPs) identified via GWAS only explain a small
fraction of heritability for most traits, and the genome-wide significant variants (p < 5 × 10−8) do
not necessarily pinpoint the causal variants and genes (Manolio et al., 2009; Boyle et al., 2017).
Moreover, the functional interpretation of GWAS variants remains largely unknown.
Therefore, annotating the possible functional effect of GWAS variants is important to
understanding their effect on a trait. Also, SNPs that are associated at a genome-wide
suggestive threshold (i.e., 5 × 10−8 < p < 1 × 10−5) can nonetheless be truly associated with
the trait and can be identified (implicated) by leveraging multi-omic data such as gene
expression. Integration of GWAS studies with functional data, such as expression
quantitative trait loci (eQTL), is one way to demonstrate that a GWAS variant within a

OPEN ACCESS

EDITED BY

Jared C. Roach,
Institute for Systems Biology (ISB),
United States

REVIEWED BY

Saad Murtaza Khan,
Massachusetts General Hospital and
Harvard Medical School, United States
Sahin Naqvi,
Stanford University, United States

*CORRESPONDENCE

Ammarah Ghaffar,
a.ghaffar@qut.edu.au

SPECIALTY SECTION

This article was submitted to Human and
Medical Genomics,
a section of the journal
Frontiers in Genetics

RECEIVED 31 July 2022
ACCEPTED 19 December 2022
PUBLISHED 06 January 2023

CITATION

Ghaffar A and Nyholt DR (2023), Genome-
wide imputed differential expression
enrichment analysis identifies trait-
relevant tissues.
Front. Genet. 13:1008511.
doi: 10.3389/fgene.2022.1008511

COPYRIGHT

© 2023 Ghaffar and Nyholt. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Genetics frontiersin.org01

TYPE Original Research
PUBLISHED 06 January 2023
DOI 10.3389/fgene.2022.1008511

https://www.frontiersin.org/articles/10.3389/fgene.2022.1008511/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1008511/full
https://www.frontiersin.org/articles/10.3389/fgene.2022.1008511/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fgene.2022.1008511&domain=pdf&date_stamp=2023-01-06
mailto:a.ghaffar@qut.edu.au
mailto:a.ghaffar@qut.edu.au
https://doi.org/10.3389/fgene.2022.1008511
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/journals/genetics#editorial-board
https://www.frontiersin.org/journals/genetics#editorial-board
https://doi.org/10.3389/fgene.2022.1008511


particular region influences the expression of the gene (Stranger et al.,
2007), and has the potential to implicate SNPs and genes via
differential expression even at GWAS loci that do not reach
genome-wide significance.

Complex traits have multiple genes involved in their aetiology and
their pathogenic tissues or cell types are mostly uncertain or unknown.
Identifying the likely pathogenic trait-relevant tissue(s) is critical for
developing systems to explore gene regulatory mechanisms that
contribute to the trait. In recent years, a lot of data and research
has been published that provides insight into which parts of the
genome are active in a range of tissues and cell types—for example,
which parts of the genome are accessible (e.g., region of open
chromatin) and which genes are expressed (Feingold and Pachter,
2004; Kundaje et al., 2015; Ward et al., 2015). Combining this type of
information with GWAS data offers the potential to identify
pathogenic tissues and cell types for complex traits.

The majority of GWAS risk variants are non-coding and are thus
expected to impact the expression of the gene by altering its regulation
(Ward and Kellis, 2012). eQTL analysis is the most common approach
to evaluating the effect of variants present in the human genome on
gene expression (Morley et al., 2004; Grundberg et al., 2012; Westra
et al., 2013). However, eQTL studies are expensive and often limited by
the availability of relevant tissue. This limitation has been addressed by
the Genotype-Tissue Expression (GTEx) project that hosts gene
expression, eQTL and genotype data from the same individuals
across different tissues (Ward et al., 2015). The eQTL status of a
trait-associated SNP provides a potential link between GWAS loci and
genes mediating potential genetic effects (Nicolae et al., 2010).
Recently, several methods such as MetaXcan (Barbeira et al., 2016)
have been developed which integrate eQTL information with GWAS
to impute genetically regulated trait-associated gene expression. These
methods also have the advantage of combining small effects of
multiple cis-SNPs at the gene level, thus reducing the multiple test
burden compared to testing all individual SNPs across the genome.

Linkage disequilibrium (LD) score regression applied to
specifically expressed genes (LDSC-SEG) is another approach that
attempts to identify trait-relevant tissue and cell types using GWAS
summary statistics and gene expression data (Finucane et al., 2018). In
this approach, the authors calculated a t-statistic for each gene
expressed in a specific tissue versus all other tissues and identified
the top 10% of genes ranked by the t-statistic. A 100 kb window was
added around the top 10% of genes and LDSC score regression was
performed to estimate SNP-based heritability for each tissue-gene set.
Using LDSC-SEG, Finucane et al. (2018) were able to find tissue
(heritability) enrichments for several GWAS traits using gene
expression data from five different sources including GTEx.

In this study, a novel approach named genome-wide imputed
differential expression enrichment (GIDEE) was developed, to
prioritise tissues relevant to the trait’s regulatory architecture by
combining GWAS summary statistic data with tissue-specific eQTL
data. This method can be viewed as an extension of transcriptome-
wide association studies (TWAS). GIDEE utilises the top 50th
percentile of accurately imputed gene expression in downstream
enrichment analyses. For each tissue, the enrichment of trait-
associated differential expression is evaluated using four tests. Two
tests utilise the distribution of differential expression p-values across
all genes, and two tests assess the proportion of genes with tissue-wide
significant differential expression. The GIDEE approach was able to
prioritise trait-relevant tissues for the training dataset in the top 3 of

the 49 GTEx tissues. For the test datasets, GIDEE provided important
prioritisation of tissues with regulatory mechanisms (eQTLs)
associated with the trait. These tissues could be the pathogenic
tissues or accessible proxy tissues that will aid in the design of
follow-up functional laboratory studies aimed at characterising
GWAS risk loci.

2 Materials and methods

An overview of the methods followed for the GIDEE approach of
the 29 GWAS traits used in this study is provided in Figure 1. The first
step was to access GWAS summary statistics for 29 traits from
multiple resources. Once GWAS summary statistics were pre-
processed and harmonised, TWAS was performed for all traits and
all 49 GTEx tissues. This was followed by enrichment analysis
including only the genes having prediction performance better than
the median prediction performance. Four enrichment tests were
performed and 49 GTEx tissues were ranked according to
15 different combinations of these primarily four enrichment tests.
Tissues were prioritised for each trait based on differential gene
enrichment tests. Each step is described in detail in the following
sections.

2.1 Datasets

2.1.1 GWAS summary statistics datasets
A total of 29 GWAS datasets were analysed (Table 1; Table 2).

Nine of these GWAS datasets were used as training datasets. They are
called training datasets because biological evidence to support the
involvement of a specific tissue in its pathogenesis exists. For example,
T-cells lymphocytes play an important role in the pathogenesis of
asthma (Lloyd and Hessel, 2010) and eczema (Tamaki and Nakamura,
2001). Similarly, the spleen, an organ that plays an important role in
the body’s immune response, is known to be associated with several
gastrointestinal diseases. Functional hyposplenism, loss of function of
the spleen, is associated with ulcerative colitis, Crohn’s disease and
inflammatory bowel disease (Ryan et al., 1978). Breast and prostate are
associated with the pathogenesis of breast and prostate cancer,
respectively. Similarly, the pancreas is associated with type
2 diabetes (Galicia-Garcia et al., 2020). In type 2 diabetes, the body
builds up insulin resistance and more insulin is needed to bring down
blood glucose levels. As a result, the pancreas needs to produce more
insulin than it would normally need to. Similarly, adipose tissue
distribution is associated with the waist-to-hip ratio (Daniel et al.,
2003). Table 1 shows the trait in the training dataset along with the
respective tissue that is involved in the pathogenicity of the trait (with
references). Therefore, these datasets were termed “training” datasets
as they were used to test and calibrate the GIDEE approach, in
particular, the differential expression enrichment tests. The
resulting approach was then applied to 20 “test” datasets, whose
pathogenic tissues or cell types are uncertain or unknown, to
prioritise their likely trait-relevant pathogenic tissues and tissues
related to the regulatory mechanism of the trait. However, it is
important to note that although we do not know the exact
biological tissue(s) involved in the test datasets, a general biological
system has been implicated. For example, we know attention deficit
hyperactivity disorder (ADHD), Alzheimer’s disease, autism spectrum
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disorder, bipolar disorder, depressive symptoms, neuroticism, and
schizophrenia are neurological disorders (implicating the nervous
system). Similarly, blood pressure GWASs (e.g., diastolic blood
pressure, hypertension, systolic blood pressure) can be grouped and
related to vascular function (implicating the circulatory/
cardiovascular system).

Details of the training and test datasets are provided in Table 1 and
Table 2, respectively. All GWAS datasets were pre-processed to
harmonise the SNP summary statistics with respect to their effect
allele, non-effect allele, and chromosome position (i.e., their base pair
(bp) position was “lifted over” to genome build 38) to ensure
compatibility with the genetic (gene expression) predictor models
from GTEx version 8. The datasets contained a mix of binary and
continuous traits.

2.1.2 Gene expression dataset
The gene expression and eQTL datasets were obtained fromGTEx.

The GTEx project aimed to establish a comprehensive database and
resource that enables the study of tissue-specific gene expression. The
pilot study for the GTEx utilised 1,641 samples of 43 tissues from
175 donor individuals to perform RNA sequencing, gene expression
analysis across tissues (53,934 genes in total), eQTL analysis (single

tissue and multiple tissue eQTL analysis), allele-specific expression
analysis, and splicing QTLs analysis (Ward et al., 2015). The current
release of GTEx version 8 (v8) has data for 54 tissues obtained from
948 donors summing to a total number of 17,382 samples. Genotype
and eQTL data were available for 49 tissues (N ≥ 70 samples) from
838 donors summing to a total number of 15,201 samples. Fully
processed, filtered, and normalised gene expression matrices (in BED
format) for each tissue were downloaded from GTEx v8 portal
(https://gtexportal.org/home/).

2.2 Gene-trait association (MetaXcan)

MetaXcan was used to compute gene-trait association (differential
gene expression) in 49 human tissues from GTEx v8. MetaXcan uses a
set of reference individuals whose gene expression and genotyping
have been measured for the same individuals. The authors of
MetaXcan utilised the GTEx data, adjusted for sex and
experimental/population confounders, and used an elastic net
model to calculate expression weights for each SNP present ± 1
Mb of the gene (Barbeira et al., 2016). These weights for each
tissue are available in the form of SQLite weight files available on

FIGURE 1
Overview of the methodology followed for each of the 29 GWAS datasets used in this study.
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TABLE 1 Detail of all GWASs used as the training dataset.

Trait name Asthma Breast
cancer

Eczema Prostate
cancer

Ulcerative
colitis

Waist–hip
ratio (BMI
adjusted)

Crohn’s
disease

IBD Type
2 diabetes

GWAS sample
size

361,141 247,173 361,141 140254 27,432 458,417 20,883 34,652 361,141

Cases 41,934 133,384 9321 79148 6968 5,956 12,882 2292

Controls 319,207 113,789 351820 61106 20464 14,927 21,770 358849

Consortium United Kingdom
Biobank

BCAC United Kingdom
Biobank

PRACTICAL N/A United Kingdom
Biobank

N/A N/A United Kingdom
Biobank

GWAS type Binary Binary Binary Binary Binary Continuous Binary Binary Binary

Tissue Cells EBV
transformed
lymphocytes

Breast Cells EBV
transformed
lymphocytes

Prostate Spleen Adipose
subcutaneous

Spleen Spleen Pancreas

References Lloyd and Hessel,
(2010)

Boyd
et al.
(2010)

Tamaki and
Nakamura,
(2001)

Mohler et al.
(2010)

Muller et al.
(1993)

Daniel et al.
(2003)

Corazza
and
Gasbarrini,
(1983)

Ryan
et al.
(1978)

Ozougwu et al. (2013)

Adipose
Subcutaneous

4316 4307 4316 4315 4307 4316 4305 4307 4316

Adipose Visceral
Omentum

3661 3656 3661 3661 3651 3661 3650 3651 3661

Adrenal Gland 2415 2410 2415 2415 2410 2415 2409 2410 2415

Artery Aorta 3793 3786 3793 3793 3785 3793 3783 3785 3793

Artery Coronary 2016 2013 2016 2015 2013 2016 2013 2013 2016

Artery Tibial 4299 4293 4299 4298 4293 4299 4292 4293 4299

Brain Amygdala 1388 1386 1388 1388 1384 1388 1383 1384 1388

Brain Anterior
cingulate cortex
BA24

1767 1766 1767 1767 1764 1767 1763 1764 1767

Brain Caudate
basal ganglia

2495 2491 2495 2494 2487 2495 2487 2487 2495

Brain Cerebellar
Hemisphere

2870 2866 2870 2870 2865 2870 2864 2865 2870

Brain Cerebellum 3389 3383 3389 3390 3384 3389 3382 3383 3389

Brain Cortex 2740 2736 2740 2741 2736 2740 2734 2736 2740

Brain Frontal
Cortex BA9

2272 2269 2272 2272 2266 2272 2266 2266 2272

Brain
Hippocampus

1839 1836 1839 1839 1836 1839 1836 1836 1839

Brain
Hypothalamus

1821 1819 1821 1821 1816 1821 1816 1816 1821

Brain Nucleus
accumbens basal
ganglia

2419 2416 2419 2419 2414 2419 2413 2414 2419

Brain Putamen
basal ganglia

2213 2209 2213 2213 2208 2213 2207 2208 2213

Brain Spinal cord
cervical c-1

1622 1620 1622 1621 1618 1622 1618 1618 1622

Brain Substantia
nigra

1277 1275 1277 1275 1273 1277 1273 1273 1277

Breast Mammary
Tissue

3223 3218 3223 3223 3214 3223 3213 3214 3223

(Continued on following page)
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TABLE 1 (Continued) Detail of all GWASs used as the training dataset.

Trait name Asthma Breast
cancer

Eczema Prostate
cancer

Ulcerative
colitis

Waist–hip
ratio (BMI
adjusted)

Crohn’s
disease

IBD Type
2 diabetes

Cells Cultured
fibroblasts

4458 4454 4458 4458 4450 4458 4449 4450 4458

Cells EBV-
transformed
lymphocytes

1448 1447 1448 1448 1444 1448 1444 1444 1448

Colon Sigmoid 3078 3074 3078 3078 3068 3078 3068 3068 3078

Colon Transverse 3145 3139 3145 3145 3139 3145 3138 3139 3145

Esophagus
Gastroesophageal
Junction

3138 3134 3138 3138 3134 3138 3132 3133 3138

Esophagus
Mucosa

4251 4246 4251 4251 4243 4251 4242 4243 4251

Esophagus
Muscularis

4107 4104 4107 4106 4095 4107 4094 4095 4107

Heart Atrial
Appendage

3314 3310 3314 3314 3306 3314 3305 3306 3314

Heart Left
Ventricle

3002 2999 3002 3002 2997 3002 2996 2997 3002

Kidney Cortex 818 817 818 818 815 818 815 815 818

Liver 1881 1879 1881 1881 1877 1881 1877 1877 1881

Lung 3975 3970 3975 3976 3968 3975 3966 3968 3975

Minor Salivary
Gland

1455 1453 1455 1454 1451 1455 1451 1451 1455

Muscle Skeletal 3786 3783 3786 3786 3782 3786 3781 3782 3786

Nerve Tibial 4997 4989 4997 4997 4987 4997 4985 4987 4997

Ovary 1788 1785 1788 1788 1785 1788 1784 1785 1788

Pancreas 2943 2936 2943 2942 2937 2943 2936 2937 2943

Pituitary 2836 2832 2836 2836 2830 2836 2829 2830 2836

Prostate 2145 2141 2145 2146 2140 2145 2140 2140 2145

Skin Not Sun
Exposed
Suprapubic

4318 4309 4318 4316 4311 4318 4309 4311 4318

Skin Sun Exposed
Lower leg

4641 4634 4641 4641 4631 4641 4630 4631 4641

Small Intestine
Terminal Ileum

1829 1825 1829 1829 1827 1829 1827 1827 1829

Spleen 2881 2873 2881 2880 2876 2881 2874 2876 2881

Stomach 2569 2566 2569 2568 2563 2569 2562 2562 2569

Testis 4976 4967 4976 4976 4965 4976 4964 4965 4976

Thyroid 4817 4814 4817 4817 4812 4817 4810 4812 4817

Uterus 1266 1265 1266 1266 1262 1266 1262 1262 1266

Vagina 1276 1272 1276 1276 1273 1276 1273 1273 1276

Whole Blood 3620 3616 3620 3620 3614 3620 3613 3614 3620
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predictdb.org (Gamazon et al., 2015; Barbeira et al., 2018; Barbeira
et al., 2021). The GTEx v8 elastic net prediction models “elastic_net_
eqtl.tar” containing weights of the predictor SNPs on each gene within
each tissue along with a single tissue covariance file were retrieved
from predictdb.org on 11/03/2020.

To derive a quality metric for each gene model, the authors used
10-fold cross-validation to compare imputed gene expression results
with the original gene expression data available via GTEx. This metric
is labelled as “pred.perf.R2” which is the square of the correlation
measure between the imputed and original gene expression. Thus, the
higher the value of “pred.perf.R2” the higher the accuracy of gene-trait
association. Therefore, to ensure our enrichment tests use robust
estimates of genetically predicted differential expression, for each
tissue, enrichment analysis was restricted to genes having
“pred.perf.R2” greater than the median of “pred.perf.R2” (i.e., the
top 50th percentile of accurately imputed genes from each tissue for
each trait were used).

The genetic prediction weights were used to impute gene
expression (which is unobserved in a typical GWAS) by estimating
the genetically determined component using elastic net prediction
models. The 1000 genomes project data was used as the LD reference.
The imputed gene expression was then tested for association with the
GWAS trait. The association is quantified via a z-score. Briefly, the
z-score represents differential expression, where a positive z-score
indicates an increased expression of a gene is associated with the trait
(i.e., increased risk for the GWAS trait). A negative z-score means a

reduced expression of a gene is associated with the trait. The statistical
significance of the association is expressed as a z-score and its
corresponding two-sided p-value.

2.3 Enrichment analysis

Four tests were used to assess differential expression
enrichment in each tissue. Two tests utilised the distribution of
differential expression p-values across all genes, while two tests
assessed the proportion of genes with tissue-wide significant
differential expression.

2.3.1 Differential expression z-score adjusted for
GTEx sample size

The average significance of differential expression, quantified as
the mean squared z-score across all genes, was the first measure of
enrichment that utilised the distribution of differential expression
p-values across all genes. The square was taken to remove positive and
negative signs. Here, the need to account for differential power to
detect associations for the different GTEx tissue sample sizes
was recognised. Supplementary Table S1 shows the GTEx
v8 tissues, their sample size, and the system category to which
they belong. Hence, a linear regression model (lm function in R)
was used and the mean z-squared value for each tissue was regressed
on the GTEx tissue sample size. The distance along the y-axis from

TABLE 2 Detail of all GWASs used as the test dataset.

Trait name N Cases Controls Consortium Type

ADHD 55,374 20,183 35,191 Brainstorm, PGC Binary

Alzheimer’s disease 54,162 17,008 37,154 Brainstorm, IGAP Binary

Autism Spectrum Disorder 46,351 18,382 27,969 Brainstorm, PGC Binary

Bipolar Disorder 51,710 20,352 31,358 Brainstorm, PGC Binary

Depressive symptoms 161,460 SSGAC Continuous

Diastolic blood pressure 340,162 United Kingdom Biobank Continuous

Ischemic stroke and subtypes 74,339 12,389 62,004 Brainstorm, ISGC Binary

Fasting Glucose 46,186 MAGIC Continuous

HDL 99,900 N/A Continuous

Heel T-Score 445,921 United Kingdom Biobank Continuous

Height 360,388 United Kingdom Biobank Continuous

Hypertension 361,141 93,560 267,581 United Kingdom Biobank Binary

LDL 95,454 N/A Binary

Migraine (all subtypes) 375,752 59,674 316,078 Brainstorm, IHGC Binary

Neuroticism 170,911 SSGAC Continuous

Schizophrenia 306,011 69,369 236,642 Brainstorm, PGC Binary

Smoking Status 457,683 United Kingdom Biobank Continuous

Systolic blood pressure 340,159 United Kingdom Biobank Continuous

Triglycerides 96,598 N/A Continuous

Years of Education 394,792 SSGAC Continuous
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the fitted line to the observed point for each tissue (residual) was
noted. The larger the distance from the fitted line (i.e., the larger the
residual), the more the tissue was enriched for differentially expressed
genes.

2.3.2 Combining dependent p-values (Brown’s
method) adjusted for GTEx sample size

The second measure of enrichment combined all imputed
differential expression p-values using the empirical Brown’s
method. Brown’s method was chosen because it takes into
account the dependency of p-values, whereas other methods
such as Fisher’s method and Stouffer’s method assume p-values
to be independent and uncorrelated (Poole et al., 2016). Brown’s
method uses a correlation factor ‘c’ which is the ratio of the degree
of freedom used by Fisher’s method (considering all genes as
independent) and the re-scaled degrees of freedom used by
Brown’s method (taking into account the correlation within
genes in each tissue). Brown’s method uses an empirical

cumulative distribution function derived directly from data.
Brown’s method combines equally weighted dependent
p-values assuming normally distributed underlying data. The
package implementing Brown’s method is available in R which
requires a data matrix (from which dependency is estimated) and
p-values as input. Therefore, gene expression matrices for all
49 tissues from GTEx v8 were downloaded. For each tissue, the
expression values for genes, whose differential expression was
imputed by MetaXcan, were extracted from the GTEx gene
expression matrices and used, along with the differential
expression p-values from MetaXcan, as input to Brown’s
method. Analogous to the mean z-squared enrichment test,
Brown’s p-values were adjusted for GTEx tissue sample size
using a linear regression model (lm function in R). The
distance along the y-axis from the fitted line to the observed
point for each tissue (residual) was noted. The larger the distance
(residual) the more the tissue was enriched for differentially
expressed genes.

FIGURE 2
Enrichmentmethods used in this study for one of the training GWAS (asthma) datasets. (A) shows the enrichmentwith amean squared z-score. (B) shows
enrichment with Brown’s p-value.
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2.3.3 Binomial tests for the effective number of
independent genes with two thresholds (Bonferroni
and FDR)

The last two enrichment measures used one-sided binomial
tests to see if the proportion of differentially expressed genes in
each tissue was greater than expected (p < 0.05). Two thresholds of
tissue-wide significant differential expression were used. First, for
each tissue, the effective number of independent genes was
estimated to account for the substantial covariance in expression
across genes—i.e., multiple-test adjustment using the total raw
number of genes would be too stringent and would not reflect the
true biology. The effective number of independent genes analysed
for differential expression in each tissue was estimated using matrix
spectral decomposition (matSpD) (Nyholt, 2004). The matSpD
approach estimates the effective number of independent
variables (in this case genes) by analysing the eigenvalues
produced from the spectral decomposition of a correlation
matrix. The expression values for genes whose differential
expression was predicted by MetaXcan were extracted from
normalised gene expression matrices obtained from GTEx.
Briefly, a gene expression pairwise Pearson correlation matrix
was generated using R and used as input to the matSpD.R script
(downloaded from https://drive.google.com/open?id=1-r-
HWsKOD8NfbOG4C4SFIwjj8yYze2Zu). The output is an
effective number of independent genes along with a p-value to
effectively control for type 1 error at 5%. The estimated effective
number of independent genes was used as “n: number of trials” in
the binom.test function in R and to calculate a tissue-wide
significant threshold adjusted for multiple testing (i.e., p = 0.05/
effective number of independent genes). Genes having a differential
expression p-value less than the matSpD-adjusted significance
threshold were considered to have tissue-wide significant

differential expression. The effective number of independent
genes with tissue-wide significant differential expression was
estimated via matSpD and was used as the “x: number of
successes” in the binom.test function in R. The observed
proportion of enriched genes was thus calculated as x: number
of successes divided by n: number of trials. The null (expected)
proportion was calculated as the sum of all independent genes
having differential expression less than the matSpD-adjusted
p-value and subtracting the number of independent genes less
than the matSpD p-value present in tissue i divided by the sum of
the number of independent genes across all tissues and subtracting
the number of independent genes present in tissue i. This approach
assessed whether tissue i had a significantly increased proportion of
tissue-wide significant (p < 0.05) differentially expressed genes
compared to the mean of the other 48 tissues. We repeated the same
procedure for all tissues i ranging from 1 to 49.

null i[ ] � sum success( ) − success i[ ]
sum trial( ) − trial i[ ] (1)

The fourth and final enrichment test used a binomial test with a
less stringent tissue-wide significant differential expression threshold,
where the p-values were adjusted for multiple testing using the
Benjamini & Hochberg False Discovery Rate (FDR) procedure
implemented in the p.adjust function from the stats base R
package, with option method= “BH”. Genes having a differential
expression p.adjust p-value (FDR) less than 0.05 were considered to
have tissue-wide significant differential expression. The effective
number of independent genes with tissue-wide significant differential
expression (FDR < 0.05) was subsequently estimated via matSpD and
used as the x: number of successes in the binom.test function in R. The
null proportion was calculated as in (1) analogous to the first binomial
test. The second binomial test assessed whether tissue i had a

FIGURE 3
Enrichment methods used in this study for one of the training GWAS datasets (asthma). It shows the enrichment with the binomial test with Bonferroni
and FDR threshold.
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significantly increased proportion of tissue-wide significant (FDR <
0.05) differentially expressed genes compared to the mean of the other
48 tissues.

Both binomial tests were not additionally adjusted for GTEx tissue
sample size because the x: number of successes and n: number of trials
estimates are calculated specific to each tissue and are thus related to
the GTEx tissue sample size.

2.4 Rank and average of the rank of
enrichment methods

Given the utilised enrichment measures use and examine
different sections of the differential expression p-value
distribution, for each GWAS dataset we examined the rank of
each tissue according to the enrichment p-values from the four
enrichment methods.

2.4.1 Ranking of enrichment methods
Mean squared z-score and Brown’s method p-value residuals

were ranked in ascending order (i.e., the larger the residual the
higher the tissue’s rank). The binomial test p-values were ranked in
descending order (i.e., the smaller the p-value the higher the tissue’s
rank).

2.4.2 Average of different combinations of
enrichment methods followed by ranking of all
combinations

In addition to assessing tissue rankings for the four enrichment
measures in the training datasets, we assessed all possible
combinations of the four rankings by estimating the average ranks
of the combined ranks. Supplementary Table S2 shows all 15 possible
combinations which were used for ranking. The higher the average
rank of tissue, the higher the evidence for differential expression
enrichment and the more likely the tissue is pathogenically relevant
to the GWAS datasets.

3 Results

3.1 Analysis of training datasets across
49 GTEx tissues

For nine training datasets, the tissue that plays a major role in the
pathogenicity of the trait is known.

Table 1 shows the number of genes in the top 50th percentile of
accurately imputed genes from each tissue for each trait that were used
in downstream enrichment analyses. Supplementary Table S3 shows
R2, adjusted R2, and p-value describing the variance in mean squared

TABLE 3 Unadjusted mean squared z-score, Brown’s p-value and tissues crossing nominal Bonferroni and FDR p < 0.05 for the training dataset.

Traits z-score across all
49 tissues

Brown’s p-value across all
49 tissues

Binomial Bonferroni
p-value < 0.05

Binomial FDR
p-value < 0.05

Asthma 2.18—2.89 4.77 × 10−11—0.0024 Cells EBV transformed lymphocytes Brain Cerebellum

Liver

Breast Cancer 1.94—2.59 1.96 × 10−37—2.99 × 10−10 Minor Salivary Gland Liver

Vagina Heart Left Ventricle

Minor Salivary Gland

Eczema 2.17—3.15 8.64 × 10−13—0.00094 Whole Blood

Prostate Cancer 1.59—2.388 1.43 × 10−06—0.022 Brain Amygdala

Ulcerative Colitis 1.49—1.94 0.00020—0.109 Whole Blood

Spleen

Waist–hip ratio (BMI
adjusted)

3.17—4.66 1.02 × 10−26—1.84 × 10−06 Vagina Adipose Subcutaneous

Ovary Breast Mammary Tissue

Uterus Cells Cultured fibroblasts

Liver

Muscle Skeletal

Crohn’s Disease 1.27—1.75 0.0015—0.1269 Uterus Whole Blood

IBD 1.60—2.06 1.66 × 10−05—0.048 Uterus Whole Blood

Cells EBV transformed
lymphocytes

Type 2 Diabetes 1.33—1.88 0.00032—0.058 Heart Left Ventricle Heart Left Ventricle

Minor Salivary Gland Heart Atrial Appendage

Minor Salivary Gland
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z-score and Brown’s p-value explained by GTEx tissue sample size.
Supplementary Table S3 shows that for eight of the nine training
datasets, the variance in mean squared z-score values was
significantly (p < 0.05) related to GTEx tissue sample size.
Similarly, for six of the nine training datasets, the variance in
Brown’s p-values was related to GTEx tissue sample size. For
both tests, the number of genes found to be differentially
expressed was proportional to the tissue sample size. It is
important to note that GTEx tissues with larger eQTL sample
sizes impute differential expression for more genes because they
have more power to model a relationship between genotypes and
expression. Hence, there is greater power to detect differentially

expressed genes in tissues with larger sample sizes. It is also
important to note that Brown’s method takes into account the
correlation in expression that exists between genes in each tissue.
Therefore, when combining p-values using Brown’s method, the
tissue sample size is partly taken into consideration; however,
residual analysis using the lm function in R still indicated a
correlation between differential gene expression and GTEx sample
size. The importance of such sample-size adjustment was even more
evident for the mean squared z-score test—which was expected,
given the mean estimate does not take into account correlation
among genes within each tissue, so the relationship with sample size
would be more pronounced compared to the Brown’s test.

TABLE 4 The top 10% of tissues prioritised as having candidate causal regulatory effects for the test datasets.

Trait Combination 5: SZBP System

ADHD liver, uterus, breast mammary tissue, prostate, pituitary, brain
substantia nigra

Digestive, CNS, Endocrine

Alzheimer Disease artery aorta, liver, esophagus gastroesophageal junction, skin not
sun exposed suprapubic, brain nucleus accumbens basal ganglia

Cardiovascular, Digestive, CNS

Autism Spectrum Disorder artery coronary, brain cerebellum, breast mammary tissue, artery
aorta, brain cerebellar hemisphere

Cardiovascular, CNS

Bipolar pancreas, esophagus gastroesophageal junction, spleen, artery aorta,
stomach

Digestive, Cardiovascular, Blood/Immune

Depressive Symptoms liver, artery coronary, esophagus gastroesophageal junction,
pituitary, ovary, brain hippocampus

Digestive, Cardiovascular, CNS, Endocrine

Diastolic Blood Pressure pancreas, artery aorta, esophagus gastroesophageal junction, artery
coronary, artery tibial

Digestive, Cardiovascular

Fasting Glucose colon sigmoid, adrenal gland, cells EBV-transformed lymphocytes,
ovary, heart left ventricle

Digestive, Cardiovascular, Endocrine, Blood/Immune

HDL cells cultured fibroblasts, brain cerebellum, heart left ventricle, heart
atrial appendage, brain cortex

CNS, Cardiovascular

HeelTscore pancreas, breast mammary tissue, cells EBV-transformed
lymphocytes, liver, artery aorta

Digestive, Blood/Immune, Cardiovascular

Height esophagus gastroesophageal junction, breast mammary tissue,
artery aorta, small intestine terminal ileum, adipose subcutaneous

Digestive, Cardiovascular, Blood/Immune

Hypertension pancreas, liver, artery coronary, artery aorta, breast mammary
tissue

Digestive, Cardiovascular

IschemicStrokeAndSubtypes ovary, cells cultured fibroblasts, minor salivary gland, brain
hypothalamus, breast mammary tissue

Endocrine, Digestive, CNS

LDL liver, pancreas, brain substantia nigra, esophagus mucosa, minor
salivary gland

Digestive, CNS

Migraine artery aorta, artery tibial, spleen, artery coronary, pancreas Cardiovascular, Digestive, Blood/Immune

Neuroticism esophagus gastroesophageal junction, breast mammary tissue,
esophagus muscularis, brain caudate basal ganglia, liver

Digestive, CNS

Schizophrenia liver, pancreas, breast mammary tissue, artery aorta, brain
cerebellum

Digestive, Cardiovascular, CNS

Smoking Status liver, esophagus muscularis, brain cerebellum, small intestine
terminal ileum, pancreas

Digestive, CNS

Systolic Blood Pressure pancreas, artery aorta, esophagus gastroesophageal junction, artery
coronary, artery tibial

Digestive, Cardiovascular

Triglycerides cells EBV-transformed lymphocytes, pancreas, prostate, brain
hippocampus, skin not sun exposed suprapubic, liver*

Blood/Immune, Digestive, CNS

Years of Education small intestine terminal ileum, artery aorta, muscle skeletal, cells
cultured fibroblasts, brain cerebellum

Digestive, Cardiovascular, CNS

Frontiers in Genetics frontiersin.org10

Ghaffar and Nyholt 10.3389/fgene.2022.1008511

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1008511


Figure 2 shows the enrichment test results for the asthma GWAS
training dataset. Figure 2A shows the linear regression plot of the mean
squared z-score against the GTEx sample size for all tissues. The blue line
shows the best fit through the data. Cells_EBV_transformed_lymphocytes
is the furthest tissue from the fitted line, thus implying that it had the
highest enrichment of differentially expressed genes (as represented by
z-score). Whole blood is one of the tissues having a large sample size
because it is easily accessible. This results in more genes whose differential
expression is imputed within this tissue. If not adjusted with tissue sample
size, whole blood would be in the top 5 ranked tissues for asthma. This
nicely exemplifies the importance of adjusting for GTEx tissue sample
size. Similarly, Figure 2B shows that cells_EBV_transformed_
lymphocytes had the highest enrichment of genes differentially
expressed (as represented by Brown’s p-value). Figure 3 shows the
proportion of differentially expressed genes present in cells_EBV_
transformed_lymphocytes is highest as compared to other 48 tissues
with strict threshold Bonferroni while using FDR threshold cells_EBV_
transformed_lymphocytes was ranked 10th (Supplementary Table S4).
Supplementary Table S5 contains raw values from each enrichment test
for traits in the training datasets including Brown’s p-value, the effective
number of independent genes calculated by matSpD, and the number of
genes that were tested in the binomial tests. Supplementary Table S6
contains residuals for the Brown’s p-value andmean squared z-score after
adjusting for GTEx sample size. Tissues were ranked based on these
residuals as explained in the methods section. The file “Supplementary
Figure S1” shows the plots for the mean squared z-score for each training
dataset trait. The file “Supplementary Figure S2” shows plots for Brown’s
p-values adjusted with GTEx sample size.

The file “Supplementary Figure S3” shows plots containing binomial
test p-values using genes crossing the Bonferroni threshold (binomial_
MatSpD) and FDR (binomial_FDR) threshold for tissue-wide significant

differential expression (also see Supplementary Table S5 for raw values).
For the four enrichment tests and their combinations (Supplementary
Table S2), Supplementary Table S4 shows the individual and average rank
of the known pathogenic tissue for the GWAS training datasets (specified
in Table 1). Supplementary Table S7 contains the ranks for all tissues for
all GWAS training datasets for the enrichment tests. Table 3 shows the
range of unadjusted mean squared z-score, Brown’s p-value, and the
tissues that crossed binomial Bonferroni and FDR p < 0.05. It is important
to note that for six traits (asthma, breast cancer, eczema, prostate cancer,
waist-hip ratio and IBD) all the tissues were significantly enriched for
differentially expressed genes.

Supplementary Table S4 shows that the SZBP combination (i.e., an
average of the rank of the mean squared z-score and Brown’s p-value) is
the overall smallest (highest-ranked) enrichment measure, implying
that the combination of these two enrichment measures performed best
in implicating the known pathogenic tissue (as described in Table 1) for
the GWAS training dataset traits. Moreover, it is worth noting that the
top-performing tests, according to average rank, were combinations
containing Brown’s method. It is also to be noted that for the training
dataset, the trait-relevant tissue was always in the top 3. For asthma,
eczema, Crohn’s disease, inflammatory bowel disease and type
2 diabetes, the respective (expected) pathogenic tissue was ranked
first. For prostate cancer, ulcerative colitis, and waist-hip ratio, the
respective pathogenic tissue was ranked second.While for breast cancer,
the respective pathogenic tissue was ranked third.

3.2 Analysis of test datasets

Once it was established that the SZBP combination was the best-
performing method in the training datasets, the GIDEE approach

FIGURE 4
The heatmap for all the traits against 49 GTEx tissues. The yellow colour indicates the tissues that are enrichedwith regulatory effects for a particular trait.
* represents the traits present in the training datasets.
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(utilising the SZBP combination) was applied to the 20 test datasets.
Supplementary Table S8 shows the range of unadjusted mean squared
z-score and Brown’s p-value for the test traits. Although some support
for biologically-related systems exists for the test datasets, these traits
lack robust and validated biological evidence implicating a specific tissue
in its pathogenesis. It was therefore reassuring to observe that the
GIDEE approach ranked tissues higher (among the top 10% of GTEx
tissues) from biologically-relevant systems compared to tissues from
other systems. Also, although the training datasets had their trait-
relevant tissues ranked in the top 3, for the test datasets, we
highlight the top 5 tissues (top 10%) of the 49 tissues. Highlighting
the top 5 tissues aligns well with gene expression profiling in GTEx,
which showed that approximately a third of eQTL effects were estimated
to be active in all or almost all tissues, while a fifth of eQTL effects were
active in five or fewer tissues (Flynn et al., 2022). Therefore, of the genes
imputed from GTEx eQTL data, approximately a third may be imputed
in all tissues—and thus provide minimal insight into tissue ranking/
prioritisation, while a fifth will be imputed in five or fewer tissues.
Further support for highlighting the top 5 enriched tissues was provided
by the results from the test datasets. For example, for neurological traits,
brain tissues from GTEx were ranked among the top 10% of tissues. For
hypertension, blood pressure traits, and migraine, artery tissues were
ranked among the top 10% of tissues. Table 4 shows the top 10% of
tissues prioritised as being enriched for candidate causal regulatory
effects for the test traits. Supplementary Table S9 contains ranks for each
tissue for all test datasets. For the test datasets, we found enrichment in
tissues that recapitulate known biology of traits even if the pathogenic
tissue(s) are unknown or unclear (i.e., tissues from biologically relevant
systems were highly ranked).

Figure 4 shows the heatmap for all the traits against 49 GTEx
tissues. The ranks of the tissues were based on the best-performing
method i.e., SZBP. A Pearson correlation matrix was generated using
the “cor” function in R (3.6.1). The distance matrix was generated
using the Euclidean distance method embedded in the heatmap R
package, where the correlation between the rank of the tissues for each
trait is used as a distance function (Supplementary Figure S4).
Clustering was performed using the “complete linkage method”
(Defays, 1977) embedded in the “hclust” function in R. The traits
were clustered together and the same re-ordering was used to generate
the heatmap in Figure 4. The yellow colour indicates the tissues that
are enriched with regulatory effects for a particular trait.

4 Discussion

In this study, a novel approach was developed—genome-wide
imputed differential expression enrichment (GIDEE)—to prioritise
tissues that are enriched for regulatory effects (eQTLs) that are
associated with a GWAS trait. This approach was applied to
29 GWAS datasets that were divided into two groups: 1) training
datasets and 2) test datasets. The involvement of specific tissues in the
pathogenicity of the training datasets had been established and
reported in the literature. Therefore, the performance of four
enrichment tests and their combinations was benchmarked utilising
the training datasets by assessing the GIDEE ranking of the known
pathogenic tissue. The best-performing enrichment test combination
was utilised in the subsequent GIDEE analysis of the test datasets.

This approach can be viewed as a logical extension of TWAS and the
application of tools such as MetaXcan (Barbeira et al., 2018). Although

~200 studies utilising MetaXcan (Sakornsakolpat et al., 2017; Khawaja
et al., 2018; Sanchez-Roige et al., 2019; Guo et al., 2020; Li et al., 2021)
and/or other TWAS approaches have been published, less attention has
been paid to the quality of genetic predictors/weights. Initial
benchmarking for GIDEE using all genes within each tissue resulted
in poor prioritisation of expected “known” pathogenic tissues for the
training datasets. We suspected that the poor prioritisation was due to
random “noise” generated by including poorly performing prediction
models in the enrichment tests. Furthermore, it was shown by the
authors of TWAS that MetaXcan’s results tend to be more significant as
the genetic component of gene expression increases (i.e., larger cross-
validated prediction performance R2) (Barbeira et al., 2018).

Employing the hypothesis that enrichment of trait-associated
differentially expressed genes should be based on robustly imputed
gene expression, genes having a MetaXcan prediction performance R2

greater than the median R2 for each tissue were taken forward in the
GIDEE approach. Of the four enrichment measures examined, the
empirical Brown’s method (Poole et al., 2016) performed best
individually and performed best overall when combined with the mean
squared z-score method. Brown’s method of combining non-independent
p-values has shown utility for examining gene sets such as in pathway
analysis (Devlin et al., 2015; Becher et al., 2018). The implementation of
Brown’s method computed the empirical co-variance of p-values for each
tissue within each trait and used this empirical co-variance to scale the chi-
square distribution. The advantage of this approach is that the empirical
co-variance calculated is non-parametric (i.e., it does not assume any
underlying distribution of p-values) and is thus applicable to complex and
correlated datasets (Rheinbay et al., 2017).

One study (reported in a bioRxiv preprint) examined TWAS-based
differential expression enrichment, which interestingly, used an
approach related to our second-best performing mean squared
z-score approach to test for tissue enrichment associated with type
2 diabetes (Torres et al., 2017). However, there are two key differences in
our mean squared z-score enrichment method. Firstly, our analysis was
limited to the top 50th percentile of accurately imputed genes
(i.e., prediction performance R2 greater than the median R2) for each
tissue. Secondly, residuals from a linear regressionmodel were used that
regressed the mean z-squared value for each tissue on its GTEx tissue
sample size to adjust for sample size and quantify tissue enrichment. In
contrast, the bioRxiv type 2 diabetes study (Torres et al., 2017) used the
mean squared z-score produced by TWAS for all genes and ranked
tissues based on the sample size and mean squared z-score. The top
tissues having a mean squared z-score rank less than the sample size
rank were considered enriched—thus providing only a qualitative (yes/
no) enrichment classification of tissues, whereas the GIDEE approach
provides a quantitative enrichment measure that provides a ranked
prioritisation for each tissue adjusted for GTEx sample size.

To check the stability of the best-performing enrichment test’s
(SZBP) ranking across the training datasets, we sequentially dropped
datasets having a smaller number of GWAS cases (Supplementary Table
S10). The combined mean squared z-score and Brown’s p-value (SZBP)
consistently remained the top-ranked method after sequentially
dropping type 2 diabetes, Crohn’s disease, ulcerative colitis, and eczema.

Although the Brown’s method and mean squared z-score
approach performed far better overall than the binomial tests using
a Bonferroni-adjusted or FDR significance threshold, the binomial
tests were still able to highly rank the known pathogenic tissue for
some of the training datasets and implicate tissues belonging to
biological systems related to some of the test traits. Given the
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binomial test approaches utilised the more extreme end of the gene
differential expression p-value distribution, we expect the binomial tests
to be more sensitive to GWAS power and pathogenic tissue
homogeneity. That is, given complex traits are not necessarily
restricted to a single biological and/or pathogenic pathway limiting
enrichment analysis to only genes with tissue-wide significant
differential expression will typically result in counts insufficient to
provide well-powered binomial tests. Nonetheless, the binomial test
enrichment measures can still provide a clear and tangible assessment of
tissue enrichment which may assist researchers to prioritise tissue(s),
and individual or groups of genes, for follow-up studies. For example,
researchers may wish to target specific genes and or tissues based on the
strength of their differential expression signals and tissue availability.

The GIDEE approach replicated most of the findings and provided
insights into some traits that previous LDSC-SEG GTEx-based analyses
did not characterise. Supplementary Table S11 provides a comprehensive
list and comparison of the tissues prioritised by GIDEE and LDSC-SEG.
Given the LDSC-SEG characterization utilised multiple eQTL and
chromatin datasets, whereas GIDEE utilised only the GTEx eQTL data,
to provide a direct comparison, we note in the table whether LDSC-SEG
was able to prioritise GTEx tissues. Notably, for several traits, GIDEE
prioritised tissues using only GTEx data, that LDSC-SEG did not prioritise
any tissues for using any gene expression dataset. Reassuringly, many of
these novel GIDEE GTEx-based eQTL tissue prioritisations were
prioritised by LDSC-SEG using chromatin data—e.g., ADHD,
depressive symptoms, hypertension, LDL, and migraine.

For ADHD, Alzheimer’s disease, autism spectrum disorder,
depressive symptoms, and hypertension, LDSC-SEG did not find any
enrichment using gene expression data, but ourGIDEE approachwas able
to implicate endocrine, central nervous system (CNS), vascular, liver, and
digestive tissue, respectively—involvement of which is supported by the
literature. For the neurological traits ADHD, Alzheimer’s disease, autism
spectrum disorder, and depressive symptoms, GIDEE ranked brain tissue
in the top 10% of tissues. It is interesting to note that some other tissues
such as liver were also highly ranked for Alzheimer’s disease and the
association of liver in Alzheimer’s disease has been reported in multiple
studies (Nho et al., 2019; Bassendine et al., 2020). Similarly, studies have
shown that the risk factors associated with vascular thickening due to
accumulation of plaque, are also associated with the progression of
Alzheimer’s disease (Kalback et al., 2004). There exists a network of
arteries at the base of the brain named the circle ofWillis and dysfunction/
thickening plays a major role in disease development (Roher et al., 2004).
Similarly for ADHD, pituitary tissue was among the top 10% of ranked
tissues. The pituitary is the main hormone-producing gland influencing
almost all body functions such as growth, blood pressure, and
reproduction. There is genetic evidence for the involvement of the
hypothalamic-pituitary-adrenal (HPA) axis in ADHD (Ma et al., 2011;
Fortier et al., 2013). TheHPA axis is a complex set of direct influences and
feedback interactions among three main components (hypothalamus,
pituitary, and adrenal). It is mainly activated as a response to stress and it
is dysregulated in ADHD cases (Raz and Leykin, 2015). Brain and
vascular tissue enrichment were found in autism spectrum disorder.
Autism is considered a neurological disease (Xiong et al., 2019; Lord et al.,
2020); however, some studies also suggest autism is linked with higher
blood flow in the white and greymatter of the brain thus suggesting a role
for vascular mechanisms in autism (Peterson et al., 2019). A study
published in 2016 investigated the post-mortem brains of young
patients with autism and indirectly suggested abnormal angiogenesis
(Azmitia et al., 2016). Later, in 2020, vascular endothelial impairment

was also linked to autism using mice models (Ouellette et al., 2020).
GIDEE was not able to find CNS enrichment in the case of bipolar
disorder; however, tissues from the digestive system and pancreas were
among the top 10% ranked, analogous to some other genetic studies
(Finucane et al., 2018). For depressive symptoms and neuroticism, in
addition to brain tissues, GIDEE found enrichment for tissues involved in
the digestive system (Clapp et al., 2017). For blood pressure traits in the
test datasets (i.e., diastolic blood pressure, systolic blood pressure and
hypertension) artery tissues were ranked among the top 10% tissues.
Lipids have been known to be associated with multiple traits including
diseases of the circulatory system such as coronary heart disease (Ference
et al., 2018) and diseases of the nervous system such as multiple sclerosis
(Reale and Sanchez-Ramon, 2017) and Alzheimer’s disease. Height
exhibited differential expression enrichment implicating digestive,
vascular, and adipose tissues—in agreement with previous findings
(Wood et al., 2014; Finucane et al., 2018). There is an ongoing debate
on whether migraine is primarily a disease of neurological or vascular
dysfunction. Using GIDEE, vascular tissues were the most strongly
enriched for differentially expressed genes, suggesting vascular tissues
to be likely pathogenic, in line with previous suggestions (Gormley et al.,
2016; Choquet et al., 2021). Lastly, brain cerebellum was ranked among
the top 10% tissues for smoking status and years of
education—implicating the CNS—as previously reported (Finucane
et al., 2018; Xu et al., 2020).

Other important differences between LDSC-SEG and GIDEE
include 1) LDSC-SEG eliminates housekeeping and other
potentially important trait-related genes that are expressed across
multiple tissues; 2) GIDEE assesses gene-tissue enrichment with
respect to the gene’s association with the GWAS trait; and 3)
GIDEE allows for different and tissue-specific regional relationships
between GWAS risk SNPs and gene expression (e.g., heterogenous
eQTL effect magnitude and direction across tissues).

Two other tissue-prioritisation approaches similar to LDSC-SEG
are deTS (Pei et al., 2019) and RolyPoly (Calderon et al., 2017). deTS
uses the top 5% of the genes after differential expression analysis using
t-statistics and assign this gene list to specific tissues (SEGs). Afterwards,
it uses Fisher’s exact test to test for enrichment in focal tissue. deTS was
applied to 26 traits and results were similar to GIDEE—i.e., blood and
spleen were associated with immune-related traits such as Crohn’s
disease, Eczema and Ulcerative Colitis, and brain tissue associated with
neurological diseases. RolyPoly, another approach similar to LDSC-
SEG, is designed for single-cell expression studies. RolyPoly ranks all
genes in a descending order based upon normalised expression values
and takes the top 20% of the genes within each tissue as SEGs.
Afterwards, RolyPoly creates a binary SNP annotation based on
whether a SNP is within a 10 kb window nearby the transcription
start site of any SEGs. In the second step, RolyPoly applies the same
linear mixed model as used in LDSC-SEG to identify trait-relevant cell
types. However, both of these approaches use gene expression levels and
eliminated housekeeping genes.

Another method, eQTLEnrich (Gamazon et al., 2018), tests for the
enrichment of trait associations among eQTLs in each tissue. For a
given trait, eQTLEnrich finds the most significant cis-eQTL per gene
in each tissue and extracts GWAS association p-values for each set of
eQTLs. The p-value distribution of each set of eQTL per tissue is then
tested for enrichment as compared to an empirical null distribution.

In contrast to the above approaches, GIDEE uses information
from tissue-specific genetically regulated expression levels directly
related to and associated with the GWAS trait. That is, instead of
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using a most significant cis-SNP, it aggregates the information from all
cis-SNPs that relate to gene expression via elastic net regression
models. The predicted gene expression is then tested for
association with the trait in a tissue-specific manner. It is also
important to note that tissues prioritised by GIDEE, in its basic
form, means that the trait’s GWAS loci have increased regulatory
effects in the tissue that are associated with the trait. Such enrichment
may be due to the tissue being pathogenic, or because the tissue has
increased co-regulatory effects with a pathogenic tissue. Importantly,
our GIDEE approach is based on existing and well-characterised
TWAS methods but uses TWAS results in a new and creative way.

GIDEE utilises the GTEx data set for the prioritisation of tissues
relevant to the trait’s regulatory architecture. GTEx is the most
comprehensive transcriptome dataset collected from multiple tissue
samples from nearly 1000 individuals and sequenced to high coverage.
It provides a comprehensive cross-tissue survey of the functional
consequences of genetic variation at the transcript level (Barbeira
et al., 2018). Introducing additional eQTL datasets on reduced and
heterogeneous subsets of tissues will introduce selection bias into the
TWAS results and their subsequent comparison for the enrichment of
regulatory effects at GWAS loci.

One potential limitation of GIDEE is that it outputs the
prioritisation (ranking) of the trait-associated tissues and not a
formal statistical test comparing tissues. However, we note that our
approach’s rankings are based on relevant and sound statistical
enrichment tests and that these enrichment tests rely upon the
results generated by TWAS which has been shown to have a robust
type 1 error rate. We also limited the enrichment tests to gene-trait
associations with higher prediction performance R2 and the average
z-score and Brown’s test produce valid estimates of enrichment of
differentially expressed genes on which the trait-associated tissues are
ranked. It is difficult to envisage a formal statistical test comparing
enrichment across tissues. Issues that would complicate a more formal
test include differences in sample sizes and heterogenous lists of
differentially expressed genes across tissues.

It is interesting to note that some tissues which appear not to be
obviously related and relevant to some traits were prioritised by GIDEE.
For example, breast mammary tissue in ADHD, autism spectrum
disorder, hypertension, ischemic stroke, neuroticism, and
schizophrenia. We hypothesise that such tissue prioritisations could
result from individual or combinations of factors such as GTEx tissue
sample sizes, gene co-regulation/co-expression (e.g., between a prioritised
tissue and a true pathogenic tissue), and/or isoform abundance of
pathogenic genes (i.e., GIDEE currently tests for enrichment of
differential total gene expression; however particular isoforms
associated with a trait may be more abundant in non-obvious
prioritised tissues). Moreover, gene regulation mechanisms are
complicated by context specificity, feedback loops, and hidden
confounders in expression data. To further elaborate on this point, we
also measured the correlation in gene expression across the 49 GTEx
tissues and found that breast mammary tissue had a high gene expression
correlation (r > 0.9) with all 13 brain tissues present in GTEx. This may
explain why breast mammary tissue is being highlighted in multiple
neurological traits (i.e., due to expression correlation in the larger GTEx
breast mammary tissue which has a larger sample size compared to the
brain tissues). Therefore, although the regulatory mechanism may be
shared across tissues (Ward et al., 2015), an agnostic scanning of multiple
tissues provides us with an additional window of opportunity to detect
relevant regulatory activity and develop potential proxy tissue/cell models.

Our results show that the application of our GIDEE approach to
GWAS summary statistics can provide important prioritisation of
putative pathogenic tissues and/or accessible proxy tissues that will aid
in the design of follow-up laboratory studies aimed at functionally
characterising GWAS risk loci.

URLs

https://github.com/AmmarahGhaffar/GIDEE.git

Data availability statement

The original contributions presented in the study are publicly
available. This data can be found here: https://github.com/
AmmarahGhaffar/GIDEE.git.

Author contributions

Conceptualisation: AG and DN; analysis and writing—original
draft preparation: AG; writing—critical review and editing: DN;
supervision: DN. All authors have read and agreed to the published
version of the manuscript.

Acknowledgments

We would like to thank the research participants and employees of
23andMe, Inc. formaking this work possible. In addition, we acknowledge
the contributions of the International Headache Genetics Consortium
(IHGC) and the other GWAS authors for sharing their GWAS summary
statistics. The first author would like to thank the Queensland University
of Technology (QUT) and the Australian Government’s Research
Training Program (RTP) for providing a scholarship.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fgene.2022.1008511/
full#supplementary-material

Frontiers in Genetics frontiersin.org14

Ghaffar and Nyholt 10.3389/fgene.2022.1008511

https://github.com/AmmarahGhaffar/GIDEE.git
https://github.com/AmmarahGhaffar/GIDEE.git
https://github.com/AmmarahGhaffar/GIDEE.git
https://www.frontiersin.org/articles/10.3389/fgene.2022.1008511/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fgene.2022.1008511/full#supplementary-material
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1008511


References

Azmitia, E., Saccomano, Z., Alzoobaee, M., Boldrini, M., and Whitaker-Azmitia, P.
(2016). Persistent angiogenesis in the autism brain: An immunocytochemical study of
postmortem cortex, brainstem and cerebellum. J. autism Dev. Disord. 46 (4), 1307–1318.
doi:10.1007/s10803-015-2672-6

Barbeira, A. N., Bonazzola, R., Gamazon, E. R., Liang, Y., Park, Y., Kim-Hellmuth, S.,
et al. (2021). Exploiting the GTEx resources to decipher the mechanisms at GWAS loci.
Genome Biol. 22 (1), 49–24. doi:10.1186/s13059-020-02252-4

Barbeira, A. N., Dickinson, S. P., Bonazzola, R., Zheng, J., Wheeler, H. E., Torres, J. M.,
et al. (2018). Exploring the phenotypic consequences of tissue specific gene expression
variation inferred fromGWAS summary statistics.Nat. Commun. 9 (1), 1825. doi:10.1038/
s41467-018-03621-1

Barbeira, A., Shah, K. P., Torres, J. M., Wheeler, H. E., Torstenson, E. S., Edwards, T.,
et al. (2016). MetaXcan: Summary statistics based gene-level association method infers
accurate PrediXcan results. BioRxiv, 045260.

Bassendine, M. F., Taylor-Robinson, S. D., Fertleman, M., Khan, M., and Neely, D.
(2020). Is Alzheimer’s disease a liver disease of the brain? J. Alzheimer’s Dis. 75 (1), 1–14.
doi:10.3233/JAD-190848

Becher, I., Andrés-Pons, A., Romanov, N., Stein, F., Schramm, M., Baudin, F., et al.
(2018). Pervasive protein thermal stability variation during the cell cycle. Cell 173 (6),
1495–1507. e1418. doi:10.1016/j.cell.2018.03.053

Boyd, N. F., Martin, L. J., Bronskill, M., Yaffe, M. J., Duric, N., and Minkin, S. (2010).
Breast tissue composition and susceptibility to breast cancer. J. Natl. Cancer Inst. 102 (16),
1224–1237. doi:10.1093/jnci/djq239

Boyle, E. A., Li, Y. I., and Pritchard, J. K. (2017). An expanded view of complex traits:
From polygenic to omnigenic. Cell 169 (7), 1177–1186. doi:10.1016/j.cell.2017.05.038

Calderon, D., Bhaskar, A., Knowles, D. A., Golan, D., Raj, T., Fu, A. Q., et al. (2017).
Inferring relevant cell types for complex traits by using single-cell gene expression. Am.
J. Hum. Genet. 101 (5), 686–699. doi:10.1016/j.ajhg.2017.09.009

Choquet, H., Yin, J., Jacobson, A. S., Horton, B. H., Hoffmann, T. J., Jorgenson, E., et al.
(2021). New and sex-specific migraine susceptibility loci identified from a multiethnic
genome-wide meta-analysis. Commun. Biol. 4 (1), 864–869. doi:10.1038/s42003-021-
02356-y

Clapp, M., Aurora, N., Herrera, L., Bhatia, M., Wilen, E., and Wakefield, S. (2017). Gut
microbiota’s effect on mental health: The gut-brain axis. Clin. Pract. 7 (4), 987–136. doi:10.
4081/cp.2017.987

Corazza, G. R., and Gasbarrini, G. (1983). Defective splenic function and its relation to
bowel disease. Clin. gastroenterology 12 (3), 651–669. doi:10.1016/s0300-5089(21)00600-3

Daniel, M., Martin, A. D., Drinkwater, D. T., Clarys, J. P., and Marfell-Jones, M. J.
(2003). Waist-to-hip ratio and adipose tissue distribution: Contribution of subcutaneous
adiposity. Am. J. Hum. Biol. 15 (3), 428–432. doi:10.1002/ajhb.10165

Defays, D. (1977). An efficient algorithm for a complete link method. Comput. J. 20 (4),
364–366. doi:10.1093/comjnl/20.4.364

Devlin, B., Kelsoe, J. R., Sklar, P., Daly, M. J., O’Donovan, M. C., Craddock, N., et al.
(2015). Psychiatric genome-wide association study analyses implicate neuronal, immune
and histone pathways. Nat. Neurosci. 18 (2), 199–209. doi:10.1038/nn.3922

Feingold, E., and Pachter, L. (2004). The ENCODE (ENCyclopedia of DNA elements)
project. Science 306 (5696), 636–640. doi:10.1126/science.1105136

Ference, B. A., Graham, I., Tokgozoglu, L., and Catapano, A. L. (2018). Impact of lipids
on cardiovascular health: JACC health promotion series. J. Am. Coll. Cardiol. 72 (10),
1141–1156. doi:10.1016/j.jacc.2018.06.046

Finucane, H. K., Reshef, Y. A., Anttila, V., Slowikowski, K., Gusev, A., Byrnes, A., et al.
(2018). Heritability enrichment of specifically expressed genes identifies disease-relevant
tissues and cell types. Nat. Genet. 50 (4), 621–629. doi:10.1038/s41588-018-0081-4

Flynn, E. D., Tsu, A. L., Kasela, S., Kim-Hellmuth, S., Aguet, F., Ardlie, K. G., et al.
(2022). Transcription factor regulation of eQTL activity across individuals and tissues.
PLoS Genet. 18 (1), e1009719. doi:10.1371/journal.pgen.1009719

Fortier, M.-È., Sengupta, S. M., Grizenko, N., Choudhry, Z., Thakur, G., and Joober, R.
(2013). Genetic evidence for the association of the hypothalamic–pituitary–adrenal (HPA)
axis with ADHD and methylphenidate treatment response. Neuromolecular Med. 15 (1),
122–132. doi:10.1007/s12017-012-8202-1

Galicia-Garcia, U., Benito-Vicente, A., Jebari, S., Larrea-Sebal, A., Siddiqi, H., Uribe, K.
B., et al. (2020). Pathophysiology of type 2 diabetes mellitus. Int. J. Mol. Sci. 21 (17), 6275.
doi:10.3390/ijms21176275

Gamazon, E. R., Segrè, A. V., Van De Bunt, M., Wen, X., Xi, H. S., Hormozdiari, F., et al.
(2018). Using an atlas of gene regulation across 44 human tissues to inform complex
disease-and trait-associated variation. Nat. Genet. 50 (7), 956–967. doi:10.1038/s41588-
018-0154-4

Gamazon, E. R., Wheeler, H. E., Shah, K. P., Mozaffari, S. V., Aquino-Michaels, K.,
Carroll, R. J., et al. (2015). A gene-based association method for mapping traits using
reference transcriptome data. Nat. Genet. 47 (9), 1091–1098. doi:10.1038/ng.3367

Gormley, P., Anttila, V., Winsvold, B. S., Palta, P., Esko, T., Pers, T. H., et al. (2016).
Meta-analysis of 375, 000 individuals identifies 38 susceptibility loci for migraine. Nat.
Genet. 48 (8), 856–866. doi:10.1038/ng.3598

Grundberg, E., Small, K. S., Hedman, Å. K., Nica, A. C., Buil, A., Keildson, S., et al.
(2012). Mapping cis-and trans-regulatory effects across multiple tissues in twins. Nat.
Genet. 44 (10), 1084–1089. doi:10.1038/ng.2394

Guo, H., An, J., and Yu, Z. (2020). Identifying shared risk genes for asthma, hay fever,
and eczema by multi-trait and multiomic association analyses. Front. Genet. 11, 270.
doi:10.3389/fgene.2020.00270

Kalback, W., Esh, C., Castaño, E. M., Rahman, A., Kokjohn, T., Luehrs, D. C., et al.
(2004). Atherosclerosis, vascular amyloidosis and brain hypoperfusion in the pathogenesis
of sporadic Alzheimer’s disease. Neurological Res. 26 (5), 525–539. doi:10.1179/
016164104225017668

Khawaja, A. P., Bailey, J. N. C., Wareham, N. J., Scott, R. A., Simcoe, M., Igo, R. P., et al.
(2018). Genome-wide analyses identify 68 new loci associated with intraocular pressure
and improve risk prediction for primary open-angle glaucoma. Nat. Genet. 50 (6),
778–782. doi:10.1038/s41588-018-0126-8

Kundaje, A., Meuleman, W., Ernst, J., Bilenky, M., Yen, A., Heravi-Moussavi, A., et al.
(2015). Integrative analysis of 111 reference human epigenomes. Nature 518 (7539),
317–330. doi:10.1038/nature14248

Li, J., Zhang, Y., Jilg, A. L., Wolk, D. M., Khara, H. S., Kolinovsky, A., et al. (2021).
Variants at the mhc region associate with susceptibility to clostridioides difficile infection:
A genome-wide association study using comprehensive electronic health records. Front.
Immunol. 12, 638913. doi:10.3389/fimmu.2021.638913

Lloyd, C. M., and Hessel, E. M. (2010). Functions of T cells in asthma: More than just TH
2 cells. Nat. Rev. Immunol. 10 (12), 838–848. doi:10.1038/nri2870

Lord, C., Brugha, T. S., Charman, T., Cusack, J., Dumas, G., Frazier, T., et al. (2020).
Autism spectrum disorder. Nat. Rev. Dis. Prim. 6 (1), 5–23. doi:10.1038/s41572-019-
0138-4

Ma, L., Chen, Y.-H., Chen, H., Liu, Y.-Y., and Wang, Y.-X. (2011). The function of
hypothalamus–pituitary–adrenal axis in children with ADHD. Brain Res. 1368, 159–162.
doi:10.1016/j.brainres.2010.10.045

Manolio, T. A., Collins, F. S., Cox, N. J., Goldstein, D. B., Hindorff, L. A., Hunter, D. J.,
et al. (2009). Finding the missing heritability of complex diseases. Nature 461 (7265),
747–753. doi:10.1038/nature08494

Mohler, J., Bahnson, R. R., Boston, B., Busby, J. E., D’Amico, A., Eastham, J. A., et al.
(2010). NCCN clinical practice guidelines in oncology: Prostate cancer. J. Natl. Compr.
Cancer Netw. 8 (2), 162–200. doi:10.6004/jnccn.2010.0012

Morley, M., Molony, C. M., Weber, T. M., Devlin, J. L., Ewens, K. G., Spielman, R. S.,
et al. (2004). Genetic analysis of genome-wide variation in human gene expression. Nature
430 (7001), 743–747. doi:10.1038/nature02797

Muller, A., Cornford, E., and Toghill, P. (1993). Splenic function in inflammatory bowel
disease: Assessment by differential interference microscopy and splenic ultrasound. QJM
Int. J. Med. 86 (5), 333–340.

Nho, K., Kueider-Paisley, A., Ahmad, S., MahmoudianDehkordi, S., Arnold, M.,
Risacher, S. L., et al. (2019). Association of altered liver enzymes with Alzheimer
disease diagnosis, cognition, neuroimaging measures, and cerebrospinal fluid
biomarkers. JAMA Netw. open 2 (7), e197978. doi:10.1001/jamanetworkopen.2019.7978

Nicolae, D. L., Gamazon, E., Zhang, W., Duan, S., Dolan, M. E., and Cox, N. J. (2010).
Trait-associated SNPs are more likely to be eQTLs: Annotation to enhance discovery from
GWAS. PLoS Genet. 6 (4), e1000888. doi:10.1371/journal.pgen.1000888

Nyholt, D. R. (2004). A simple correction for multiple testing for single-nucleotide
polymorphisms in linkage disequilibrium with each other. Am. J. Hum. Genet. 74 (4),
765–769. doi:10.1086/383251

Ouellette, J., Toussay, X., Comin, C. H., Costa, L. d. F., Ho, M., Lacalle-Aurioles, M., et al.
(2020). Vascular contributions to 16p11. 2 deletion autism syndrome modeled in mice.
Nat. Neurosci. 23 (9), 1090–1101. doi:10.1038/s41593-020-0663-1

Ozougwu, J., Obimba, K., Belonwu, C., and Unakalamba, C. (2013). The pathogenesis
and pathophysiology of type 1 and type 2 diabetes mellitus. J. Physiol. Pathophysiol. 4 (4),
46–57. doi:10.5897/jpap2013.0001

Pei, G., Dai, Y., Zhao, Z., and Jia, P. (2019). deTS: tissue-specific enrichment analysis to
decode tissue specificity. Bioinformatics 35 (19), 3842–3845. doi:10.1093/bioinformatics/
btz138

Peterson, B. S., Zargarian, A., Peterson, J. B., Goh, S., Sawardekar, S., Williams, S.
C., et al. (2019). Hyperperfusion of frontal white and subcortical gray matter in
autism spectrum disorder. Biol. psychiatry 85 (7), 584–595. doi:10.1016/j.biopsych.
2018.11.026

Poole, W., Gibbs, D. L., Shmulevich, I., Bernard, B., and Knijnenburg, T. A. (2016).
Combining dependent P-values with an empirical adaptation of Brown’s method.
Bioinformatics 32 (17), i430–i436. doi:10.1093/bioinformatics/btw438

Raz, S., and Leykin, D. (2015). Psychological and cortisol reactivity to experimentally
induced stress in adults with ADHD. Psychoneuroendocrinology 60, 7–17. doi:10.1016/j.
psyneuen.2015.05.008

Reale, M., and Sanchez-Ramon, S. (2017). Lipids at the cross-road of autoimmunity in
multiple sclerosis. Curr. Med. Chem. 24 (2), 176–192. doi:10.2174/
0929867324666161123093606

Frontiers in Genetics frontiersin.org15

Ghaffar and Nyholt 10.3389/fgene.2022.1008511

https://doi.org/10.1007/s10803-015-2672-6
https://doi.org/10.1186/s13059-020-02252-4
https://doi.org/10.1038/s41467-018-03621-1
https://doi.org/10.1038/s41467-018-03621-1
https://doi.org/10.3233/JAD-190848
https://doi.org/10.1016/j.cell.2018.03.053
https://doi.org/10.1093/jnci/djq239
https://doi.org/10.1016/j.cell.2017.05.038
https://doi.org/10.1016/j.ajhg.2017.09.009
https://doi.org/10.1038/s42003-021-02356-y
https://doi.org/10.1038/s42003-021-02356-y
https://doi.org/10.4081/cp.2017.987
https://doi.org/10.4081/cp.2017.987
https://doi.org/10.1016/s0300-5089(21)00600-3
https://doi.org/10.1002/ajhb.10165
https://doi.org/10.1093/comjnl/20.4.364
https://doi.org/10.1038/nn.3922
https://doi.org/10.1126/science.1105136
https://doi.org/10.1016/j.jacc.2018.06.046
https://doi.org/10.1038/s41588-018-0081-4
https://doi.org/10.1371/journal.pgen.1009719
https://doi.org/10.1007/s12017-012-8202-1
https://doi.org/10.3390/ijms21176275
https://doi.org/10.1038/s41588-018-0154-4
https://doi.org/10.1038/s41588-018-0154-4
https://doi.org/10.1038/ng.3367
https://doi.org/10.1038/ng.3598
https://doi.org/10.1038/ng.2394
https://doi.org/10.3389/fgene.2020.00270
https://doi.org/10.1179/016164104225017668
https://doi.org/10.1179/016164104225017668
https://doi.org/10.1038/s41588-018-0126-8
https://doi.org/10.1038/nature14248
https://doi.org/10.3389/fimmu.2021.638913
https://doi.org/10.1038/nri2870
https://doi.org/10.1038/s41572-019-0138-4
https://doi.org/10.1038/s41572-019-0138-4
https://doi.org/10.1016/j.brainres.2010.10.045
https://doi.org/10.1038/nature08494
https://doi.org/10.6004/jnccn.2010.0012
https://doi.org/10.1038/nature02797
https://doi.org/10.1001/jamanetworkopen.2019.7978
https://doi.org/10.1371/journal.pgen.1000888
https://doi.org/10.1086/383251
https://doi.org/10.1038/s41593-020-0663-1
https://doi.org/10.5897/jpap2013.0001
https://doi.org/10.1093/bioinformatics/btz138
https://doi.org/10.1093/bioinformatics/btz138
https://doi.org/10.1016/j.biopsych.2018.11.026
https://doi.org/10.1016/j.biopsych.2018.11.026
https://doi.org/10.1093/bioinformatics/btw438
https://doi.org/10.1016/j.psyneuen.2015.05.008
https://doi.org/10.1016/j.psyneuen.2015.05.008
https://doi.org/10.2174/0929867324666161123093606
https://doi.org/10.2174/0929867324666161123093606
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1008511


Rheinbay, E., Nielsen, M. M., Abascal, F., Tiao, G., Hornshøj, H., Hess, J. M., et al.
(2017). Discovery and characterization of coding and non-coding driver mutations in
more than 2, 500 whole cancer genomes. BioRxiv, 237313.

Roher, A. E., Esh, C., Rahman, A., Kokjohn, T. A., and Beach, T. G. (2004).
Atherosclerosis of cerebral arteries in Alzheimer disease. Stroke 35 (11), 2623–2627.
doi:10.1161/01.STR.0000143317.70478.b3

Ryan, F., Smart, R., Holdsworth, C., and Preston, F. (1978). Hyposplenism in
inflammatory bowel disease. Gut 19 (1), 50–55. doi:10.1136/gut.19.1.50

Sakornsakolpat, P., Morrow, J. D., Castaldi, P. J., Hersh, C. P., Silverman, E. K.,
Manichaikul, A., et al. (2017). “Integrative analysis of genomics and transcriptomics
identifies association of Psma4 with emphysema,” in Proceeding of the B34. GENETICS
AND GENOMICS OF LUNG DISEASE (American Thoracic Society), A7614.

Sanchez-Roige, S., Palmer, A. A., Fontanillas, P., Elson, S. L., Adams, M. J., Howard, D.
M., et al. (2019). Genome-wide association study meta-analysis of the Alcohol Use
Disorders Identification Test (AUDIT) in two population-based cohorts. Am.
J. Psychiatry 176 (2), 107–118. doi:10.1176/appi.ajp.2018.18040369

Stranger, B. E., Nica, A. C., Forrest, M. S., Dimas, A., Bird, C. P., Beazley, C., et al. (2007).
Population genomics of human gene expression. Nat. Genet. 39 (10), 1217–1224. doi:10.
1038/ng2142

Tamaki, K., and Nakamura, K. (2001). The role of lymphocytes in healthy and
eczematous skin. Curr. Opin. allergy Clin. Immunol. 1 (5), 455–460. doi:10.1097/01.all.
0000011060.57502.81

Torres, J. M., Barbeira, A. N., Bonazzola, R., Morris, A. P., Shah, K. P., Wheeler, H. E.,
et al. (2017). Integrative cross tissue analysis of gene expression identifies novel type
2 diabetes genes. BioRxiv, 045260.

Ward, L. D., and Kellis, M. (2012). Interpreting noncoding genetic variation in
complex traits and human disease. Nat. Biotechnol. 30 (11), 1095–1106. doi:10.1038/
nbt.2422

Ward, L. D., Kheradpour, P., Iriarte, B., and Kamvysselis, M. (2015). The Genotype-
Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans, Science
348 (6235), 648, doi:10.1126/science.1262110

Westra, H.-J., Peters, M. J., Esko, T., Yaghootkar, H., Schurmann, C., Kettunen, J., et al.
(2013). Systematic identification of trans eQTLs as putative drivers of known disease
associations. Nat. Genet. 45 (10), 1238–1243. doi:10.1038/ng.2756

Wood, A. R., Esko, T., Yang, J., Vedantam, S., Pers, T. H., Gustafsson, S., et al. (2014).
Defining the role of common variation in the genomic and biological architecture of adult
human height. Nat. Genet. 46 (11), 1173–1186. doi:10.1038/ng.3097

Xiong, J., Chen, S., Pang, N., Deng, X., Yang, L., He, F., et al. (2019). Neurological
diseases with autism spectrum disorder: Role of ASD risk genes. Front. Neurosci. 13, 349.
doi:10.3389/fnins.2019.00349

Xu, K., Li, B., McGinnis, K. A., Vickers-Smith, R., Dao, C., Sun, N., et al. (2020).
Genome-wide association study of smoking trajectory andmeta-analysis of smoking status
in 842, 000 individuals. Nat. Commun. 11 (1), 5302–5311. doi:10.1038/s41467-020-
18489-3

Frontiers in Genetics frontiersin.org16

Ghaffar and Nyholt 10.3389/fgene.2022.1008511

https://doi.org/10.1161/01.STR.0000143317.70478.b3
https://doi.org/10.1136/gut.19.1.50
https://doi.org/10.1176/appi.ajp.2018.18040369
https://doi.org/10.1038/ng2142
https://doi.org/10.1038/ng2142
https://doi.org/10.1097/01.all.0000011060.57502.81
https://doi.org/10.1097/01.all.0000011060.57502.81
https://doi.org/10.1038/nbt.2422
https://doi.org/10.1038/nbt.2422
https://doi.org/10.1126/science.1262110
https://doi.org/10.1038/ng.2756
https://doi.org/10.1038/ng.3097
https://doi.org/10.3389/fnins.2019.00349
https://doi.org/10.1038/s41467-020-18489-3
https://doi.org/10.1038/s41467-020-18489-3
https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1008511

	Genome-wide imputed differential expression enrichment analysis identifies trait-relevant tissues
	1 Introduction
	2 Materials and methods
	2.1 Datasets
	2.1.1 GWAS summary statistics datasets
	2.1.2 Gene expression dataset

	2.2 Gene-trait association (MetaXcan)
	2.3 Enrichment analysis
	2.3.1 Differential expression z-score adjusted for GTEx sample size
	2.3.2 Combining dependent p-values (Brown’s method) adjusted for GTEx sample size
	2.3.3 Binomial tests for the effective number of independent genes with two thresholds (Bonferroni and FDR)

	2.4 Rank and average of the rank of enrichment methods
	2.4.1 Ranking of enrichment methods
	2.4.2 Average of different combinations of enrichment methods followed by ranking of all combinations


	3 Results
	3.1 Analysis of training datasets across 49 GTEx tissues
	3.2 Analysis of test datasets

	4 Discussion
	URLs
	Data availability statement
	Author contributions
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


