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Splicing abnormality resulting from somatic mutations in key splicing factor genes
(SFG) has been detected in various cancers. Hence, an in-depth study of splicing
factor genes mutations’ impact on pan-cancer is meaningful. This study investigated
associations of splicing factor genes mutations with clinical features, tumor
progression phenotypes, genomic integrity, anti-tumor immune responses, and
immunotherapy response in 12 common cancer types from the TCGA database.
Compared to SFG-wildtype cancers, SFG-mutated cancers displayed worse survival
prognosis, higher tumormutation burden and aneuploidy levels, higher expression of
immunosuppressive signatures, and higher levels of tumor stemness, proliferation
potential, and intratumor heterogeneity (ITH). However, splicing factor genes-
mutated cancers showed higher response rates to immune checkpoint inhibitors
than splicing factor genes-wildtype cancers in six cancer cohorts. Single-cell data
analysis confirmed that splicing factor genes mutations were associated with
increased tumor stemness, proliferation capacity, PD-L1 expression, intratumor
heterogeneity, and aneuploidy levels. Our data suggest that the mutation in key
splicing factor genes correlates with unfavorable clinical outcomes and disease
progression, genomic instability, anti-tumor immunosuppression, and increased
immunotherapy response in pan-cancer. Thus, the splicing factor genes mutation
is an adverse prognostic factor and a positive marker for immunotherapy response in
cancer.
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Introduction

RNA splicing is a dynamic process in which pre-mRNA exon-intron borders are
identified, and the intervening intronic sequences are removed, leaving coding exons
ligated to form mature mRNA (Witten and Ule, 2011). Alternative pre-mRNA splicing is a
major cause of transcript diversity in mammalian cells, which is orchestrated by the

OPEN ACCESS

EDITED BY

Yong Teng,
Emory University, United States

REVIEWED BY

Nisargbhai Shah,
Memorial Sloan Kettering Cancer Center,
United States
Hauke Thomsen,
ProtaGene CGT GmbH, Germany

*CORRESPONDENCE

Zhixian Liu,
liuzhixian@njmu.edu.cn

Xiaosheng Wang,
xiaosheng.wang@cpu.edu.cn

SPECIALTY SECTION

This article was submitted to Cell Adhesion
and Migration,
a section of the journal
Frontiers in Cell and Developmental
Biology

RECEIVED 15 September 2022
ACCEPTED 21 December 2022
PUBLISHED 06 January 2023

CITATION

Luo J, Chen C, Liu Z and Wang X (2023),
The mutation in splicing factor genes
correlates with unfavorable prognosis,
genomic instability, anti-tumor
immunosuppression and increased
immunotherapy response in pan-cancer.
Front. Cell Dev. Biol. 10:1045130.
doi: 10.3389/fcell.2022.1045130

COPYRIGHT

© 2023 Luo, Chen, Liu andWang. This is an
open-access article distributed under the
terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Cell and Developmental Biology frontiersin.org01

TYPE Original Research
PUBLISHED 06 January 2023
DOI 10.3389/fcell.2022.1045130

https://www.frontiersin.org/articles/10.3389/fcell.2022.1045130/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.1045130/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.1045130/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.1045130/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.1045130/full
https://www.frontiersin.org/articles/10.3389/fcell.2022.1045130/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fcell.2022.1045130&domain=pdf&date_stamp=2023-01-06
mailto:liuzhixian@njmu.edu.cn
mailto:liuzhixian@njmu.edu.cn
mailto:xiaosheng.wang@cpu.edu.cn
mailto:xiaosheng.wang@cpu.edu.cn
https://doi.org/10.3389/fcell.2022.1045130
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cell-and-developmental-biology
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://www.frontiersin.org/journals/cell-and-developmental-biology#editorial-board
https://doi.org/10.3389/fcell.2022.1045130


spliceosome, a megadalton complex to generate tissue- and
species-specific differentiation patterns (Papasaikas and
Valcarcel, 2016). The spliceosome comprises five small nuclear
ribonucleoproteins (snRNPs) and numerous auxiliary proteins
(Matera and Wang, 2014). There are two classes of introns: U2-
type and U12-type. The U2-type accounts for > 99.5% of introns,
while the U12-type is responsible for < .5% of introns and resides
in around 700–800 genes. The introns are spliced by U2-type- and
U12-type-dependent spliceosomes, also known as “major” and
“minor” spliceosomes, respectively (Akinyi and Frilander, 2021).
Although the functional roles of most isoforms generated by
alternative splicing remain unclear, specific isoforms are
selected in cancer to promote neoplastic transformation, cancer
progression, and drug resistance (David and Manley, 2010; Zhang
and Manley, 2013). In some cases, recurrent somatic point
mutations near splice sites may contribute to specific splicing
changes that promote cancer development by inducing mis-
splicing of tumor suppressor genes (Supek et al., 2014; Jung
et al., 2015).

Hotspot mutations in splicing factor genes (SFG) have been
recently reported to have a high frequency in hematological
malignancies and solid tumors (Patnaik et al., 2013; Landau
et al., 2015). It suggests the importance of RNA splicing in
cancer. Recurrent somatic mutations of the SFG, such as
SF3B1, SRSF2, U2AF1, and ZRSR2, have been uncovered in
myelodysplastic syndrome (MDS) (Yoshida et al., 2011),
chronic lymphocytic leukemia (Mansouri et al., 2013), acute
myeloid leukemia (Cancer Genome Atlas Research et al., 2013),
breast cancer (McCullough, 2013), lung adenocarcinoma
(Imielinski et al., 2012), and uveal melanoma (Harbour et al.,
2013). Given the crucial roles of specific alternatively spliced
isoforms in cancer development and the increased sensitivity of
cancer cells to global perturbation of splicing efficiency versus
normal cells, the pharmacological intervention of splicing may
represent an important therapeutic strategy (Hubert et al., 2013;
Hsu et al., 2015). Because increased tumor mutation burden
(TMB) may generate neoepitopes to render a specific
subpopulation of cancer patients sensitive to immunotherapies
(Chan et al., 2015; Rizvi et al., 2015), abnormal mRNAs generated
by mutations in spliceosomal genes can result in neoepitope
production in cancers. Seiler et al. (Seiler et al., 2018) have
reported that 119 SFGs have putative driver mutations in
33 TCGA cancer types. They found that the most common
mutations were mutually exclusive and were associated with
lineage-independent altered splicing. Furthermore, tumors with
these mutations were deregulated in cell-autonomous pathways
and immune infiltration (Seiler et al., 2018).

Nevertheless, an in-depth study of SFG mutations’ impact on
pan-cancer remains insufficient. With the recent development of
next-generation sequencing and single-cell sequencing
technologies, many cancer-specific multi-omics data have been
generated, which provides a unique opportunity to interrogate
splicing deregulation due to somatic mutations across human
cancers. Here we performed a systematic analysis of the
association between SFG mutations and alterations of molecular
and clinical features in 12 TCGA cancer types, including those
most common human cancer types, such as breast, lung, colon,
stomach, and prostate cancers. We also validated our findings in
tumors by analyzing single-cell transcriptomes.

Methods

Datasets

We downloaded transcriptome (RNA-Seq, RSEM normalized),
somatic mutations, somatic copy number alterations (SCNAs),
protein expression profiling, and clinical data for 12 TCGA
cancer types from the genomic data commons (GDC) data portal
(https://portal.gdc.cancer.gov/). The 12 cancer types included
adrenocortical carcinoma (ACC), bladder urothelial carcinoma
(BLCA), breast invasive carcinoma (BRCA), colon
adenocarcinoma (COAD), head and neck squamous cell
carcinoma (HNSC), kidney renal clear cell carcinoma (KIRC),
lung adenocarcinoma (LUAD), lung squamous cell carcinoma
(LUSC), prostate adenocarcinoma (PRAD), skin cutaneous
melanoma (SKCM), stomach adenocarcinoma (STAD), and
uterine corpus endometrial carcinoma (UCEC). We obtained
119 key splicing factor genes from the publication by Seiler et al.
(Seiler et al., 2018). Moreover, we obtained the datasets for six cancer
cohorts treated with ICIs, which involved somatic mutation profiles
and immunotherapy response data in cancer patients. These datasets
included Hugo (melanoma) (Hugo et al., 2016), Riaz (melanoma)
(Riaz et al., 2017), Hellmann (non-small cell lung cancer) (Hellmann
et al., 2018), Liu (metastatic melanoma) (Liu et al., 2019), Rizvi (non-
small cell lung cancer) (Rizvi et al., 2015), and Lauss (melanoma)
(Lauss et al., 2017) cohorts. We defined a tumor as SFG-mutated if at
least one of the 119 key splicing factor genes mutated in the tumor;
otherwise, the tumor was defined as SFG-wildtype. In addition, we
obtained six single-cell RNA sequencing (scRNA-seq)
transcriptomic datasets for six cancer cohorts from the NCBI
gene expression omnibus (GEO) (https://www.ncbi.nlm.nih.gov/
geo/). These cancer cohorts included BRCA (Qian et al., 2020),
COAD (Qian et al., 2020), SKCM (Jerby-Arnon et al., 2018), PRAD
(Chen et al., 2021), LUAD (Maynard et al., 2020), and HNSC (Puram
et al., 2017). Prior to subsequent analyses, we normalized all gene
expression values by log2 (RSEM or TPM + 1). A summary of these
datasets is shown in Supplementary Table S1.

Gene-set enrichment analysis

We used the single-sample gene-set enrichment analysis (ssGSEA)
(Hänzelmann and Guinney, 2013) to score the enrichment of
pathways, immune signatures, proliferation, and stemness
signatures based on the expression profiles of their pathway or
marker genes. The pathway genes were obtained from KEGG
(Kanehisa et al., 2017), and the marker genes of immune,
proliferation and stemness signatures were obtained from several
publications, including CD8+ T cells (Li et al., 2020a), proliferation
(Li et al., 2020a), and tumor stemness (Miranda et al., 2019).

Calculation of the ratio of two immune
signatures

The ratio of two immune signatures in a tumor is the log2-
transformed value of the geometric mean expression level of all
marker genes in an immune signature over that in another
immune signature.
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Evaluation of TMB, homologous
recombination deficiency (HRD) and SCNAs

We defined a tumor’s TMB as the total number of somatic
mutations detected in the tumor. From the publication by
Knijnenburg et al. (2018), we obtained HRD scores (aneuploidy
levels) of TCGA cancers. Knijnenburg et al. defined HRD scores in
9,125 TCGA cancer samples based on HRD loss of heterozygosity,
large-scale state transitions, and the number of telomeric allelic
imbalances. We utilized GISTIC2 (Mermel et al., 2011) to calculate
G-scores of SFG-mutated and SFG-wildtype tumors with the input of
“SNP6” files, representing the amplitude and frequency of SCNAs
across a group of samples.

Logistic regression analysis

We predicted the ratios of two immune signatures (high
(>median) versus low (<median)) by the logistic regression model
with three predictors (SFG mutation, HRD score, and TMB). The SFG
mutation was a discrete variable, and the HRD score and TMB were
continuous variables. In the logistic regression analysis, we first
normalized all values by z-score and then fitted the binary model
with the “glm ()” R function. In the function, the parameter “family”
was specified as “binomial” and other parameters as default.

Survival analysis

We utilized Kaplan–Meier curves to display the survival time
differences between different groups of cancer patients. A total of three
survival endpoints were analyzed, including overall survival (OS),
progression-free interval (PFI), and disease-specific survival (DSS).
The log-rank test was used to assess the significance of survival time
differences.

Single-cell data pre-process and visualization

We utilized the R package “Seurat” (v3.2.1) (Butler et al., 2018) to
pre-process the scRNA-seq data before subsequent analyses. We first
filtered out the genes expressed in less than three tumor cells and
deleted the cells expressing less than 200 genes. Next, we normalized
the gene expression matrix using the function “NormalizeData” with
the default parameters. Furthermore, we identified the genes whose
expression had high variations across single cells by the function
“FindVariableFeatures” with the default “vst” method in “Seurat.”
Based on these genes, we performed the principal component analysis
of the gene expression matrix.With the first ten principal components,
we built a shared nearest neighbor graph to cluster cells using the
“FindClusters” function. Finally, we employed the uniform manifold
approximation and projection (UMAP) (Becht et al., 2018) method
(the “RunUMAP” R function) to visualize cells in low dimensions.

Inference of SFG mutations in single cells

We identified subpopulations of cancer single cells with a certain
phenotype, such as SFG mutations, using the Scissor algorithm

FIGURE 1
SFG mutations correlate with unfavorable clinical outcomes in cancer.
(A) Kaplan-Meier curves displaying that SFG-mutated tumors have worse
survival prognosis than SFG-wildtype tumors in multiple cancer types. The
log-rank test p values are shown. (B) Advanced (late-stage or high-
grade) tumors include a significantly higher proportion of SFG-mutated
tumors thannon-advanced (early-stageor low-grade) tumors in pan-cancer
and in multiple cancer types. The Fisher’s exact test p values are shown. (C)
The tumor progression phenotypes (stemness, proliferation, intratumor
heterogeneity (ITH), and cell cycle activity) have significantly higher scores in
SFG-mutated than in SFG-wildtype tumors in pan-cancer and in multiple
cancer types. The one-tailed Mann-Whitney U test p values are shown.
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(Sun et al., 2022). Scissor defines phenotype-associated
subpopulations of single cells by integrating bulk transcriptomes
with phenotypic features and single-cell transcriptomes based on
the similarity between single cell and bulk tumor expression profiles.

Inference of DNA copy number variations
(CNVs) in single cells

We utilized inferCNV (Patel et al., 2014) to infer CNVs in cancer
cells relative to normal cells. We converted all CNV values inferred by
inferCNV to 0, 1, or 2, where “0” indicates neutral, “1” loss or gain of
one copy, and “2” loss or gain of two copies. The re-standardized CNV
score of each cell was the sum of the CNV value for each gene.

Clustering single cells

We used the single-cell consensus clustering (SC3) algorithm
(Kiselev et al., 2017) to perform unsupervised clustering of single
cells.

Statistical analysis

In comparisons of two classes of samples, we used the Student’s
t-test if they followed normal distributions; otherwise, we used the
Mann–Whitney U test. We employed the Fisher’s exact test to
examine the correlation between two categorical variables and the
Z-test to compare the population proportions between two groups.
We performed all statistical analyses in the R programming
environment (version 3.6.1).

Results

Mutations of SFG are associated with
unfavorable clinical outcomes in cancer

We found that in six cancer types (BLCA, BRCA, LUSC, SKCM,
STAD, and UCEC), mutations of SFG were correlated with worse
OS, DSS, and/or PFI (log-rank test, p ≤ .05) (Figure 1A).
Furthermore, we found that late-stage (stage III-IV) tumors
harbored a significantly higher proportion of SFG-mutated
tumors compared with early-stage (stage I-II) tumors in pan-
cancer (Fisher’s exact test, p < .001) and in three individual
cancer types (ACC, HNSC, and STAD) (p < .05) (Figure 1B).
Tumor grade represents the growth speed and spread extent of a
tumor on the basis of the abnormality degree of tumor cells relative
to normal cells. We found that SFG-mutated tumors constituted a
higher proportion in high-grade (G3-4) than in low-grade (G1-2)
tumors in pan-cancer (p = .004) (Figure 1B).

We further compared several phenotypes indicating tumor
progression or unfavorable prognosis, including tumor stemness,
proliferation, and intratumor heterogeneity (ITH). Notably, all

FIGURE 2
SFG mutations correlate with genomic instability in cancer. (A)
SFG-mutated tumors have significantly higher tumor mutation burden
(TMB) and neoantigens than SFG-wildtype tumors in pan-cancer and in
most individual cancer types. (B) SFG-mutated tumors have
significantly higher homologous recombination deficiency (HRD) scores
than SFG-wildtype tumors in pan-cancer and in seven individual cancer
types. (C) SFG-mutated tumors harbor a significantly higher proportion
of MSI tumors than SFG-wildtype tumors in the cancer types with a high
prevalence of MSI tumors. (D) SFG-mutated tumors have higher
enrichment of DNA repair pathways than SFG-wildtype tumors. (E) SFG-
mutated tumors have higher levels of copy number alteration (G-scores)
than SFG-wildtype tumors in pan-cancer, and heatmap shows that SFG-
mutated tumors have higher amplitudes of copy number amplification
and deletion across chromosomes than SFG-wildtype tumors. The one-
tailed Mann-Whitney U test p values are shown in (A,B,D), and the
Fisher’s exact test p values are shown in (C). *p < .05, **p < .01, ***p <
.001, ns not significant.
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these phenotypes showed significantly higher scores in SFG-mutated
than in SFG-wildtype tumors in pan-cancer (one-tailed Mann-
Whitney U test, p < .001) (Figure 1C). Moreover, in 6, 8, and

6 individual cancer types, SFG-mutated tumors displayed
significantly higher scores of stemness, proliferation, and ITH than
SFG-wildtype tumors, respectively (Figure 1C). In addition, SFG-

FIGURE 3
SFG mutations correlate with reduced anti-tumor immune responses and increased immunotherapy response in cancer. SFG-mutated tumors have
higher expression levels of PD-L1 (A) and the ratios of immune-stimulatory to immune-inhibitory signatures (CD8+ T cells/PD-1) (B) than SFG-wildtype tumors
in pan-cancer and in seven cancer types. The Student’s t test p values are shown in (A,B). (C) SFG-mutated tumors have higher response rates to immune
checkpoint inhibitors (ICIs) than SFG-wildtype tumors in six cancer cohorts.
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mutated tumors showed significantly higher enrichment scores of the
cell cycle pathway than SFG-wildtype tumors in pan-cancer and in
nine individual cancer types (Figure 1C).

Taken together, these results support that SFG mutations
are associated with unfavorable clinical outcomes in various
cancers.

Mutations of SFG are associated with
genomic instability in cancer

Genomic instability often results in increased TMB and CNAs
(Li et al., 2020b). Notably, SFG-mutated tumors had significantly
higher TMB than SFG-wildtype tumors in pan-cancer and all the
12 cancer types (one-tailed Mann-Whitney U test, p < .001)
(Figure 2A). As expected, SFG-mutated tumors harbored far
more neoantigens (Rooney et al., 2015) than SFG-wildtype
tumors in pan-cancer and in 10 individual cancer types (p <
.05) (Figure 2A). HRD may lead to large-scale genomic
instability, namely aneuploidy (Matera and Wang, 2014). We
found that SFG-mutated tumors had significantly higher HRD
scores (i.e., aneuploidy levels) than SFG-wildtype tumors in pan-
cancer and in eight individual cancer types (one-tailed Mann-
Whitney U test, p < .05) (Figure 2B). DNA mismatch repair

deficiency (dMMR) or microsatellite instability (MSI) is a
prevalent pattern of genomic instability in certain cancer types,
such as endometrial, colorectal, and gastric cancers. We found that
SFG-mutated tumors harbored a significantly higher proportion of
MSI tumors than SFG-wildtype tumors in UCEC, COAD, and
STAD (Fisher’s exact test, p < .001) (Figure 2C). In addition, we
found many DNA repair pathways showing higher enrichment in
SFG-mutated than in SFG-wildtype tumors in at least a half of the
12 cancer types. These pathways included DNA replication, base
excision repair, nucleotide excision repair, non-homologous end-
joining, Fanconi anemia, homologous recombination, and
mismatch repair (Figure 2D). Furthermore, the amplitude and
frequency of SCNAs, including copy number amplifications and
deletions, were higher in SFG-mutated than in SFG-wildtype
tumors in pan-cancer across the chromosome (Figure 2E).
These results collectively suggest a significant association
between SFG mutations and increased genomic instability in
diverse cancers.

Interestingly, we found smoking to have a significant positive
correlation with SFG mutations, as evidenced by the fact that smokers
had a significantly higher proportion of SFG mutations than non-
smokers in pan-cancer (75.09% versus 55.52%; Z-test, p = 5.8 × 10–13).
The reason explaining this result could be that smoking can incite
mutations of tumor cells to enhance TMB (Yoshida et al., 2020).

FIGURE 4
Comparisons ofmutation rates of SFG between different cancer subtypes. (A) The tumorswithmutations in TP53, EGFR, orBRAF have significantly higher
mutation rates of SFG than the tumors without such mutations in pan-cancer and in multiple cancer types. (B) Comparisons of mutation rates of SFG among
the breast cancer subtypes. (C) High-grade tumors (Gleason score > 7) have a significantly higher mutation rate of SFG than low-grade tumors (Gleason
score < 7). *p < .05, **p < .01, ***p < .001, ns not significant. The Z-test p values are shown in (A,B,C).
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Mutations of SFG are associated with reduced
anti-tumor immune responses and increased
immunotherapy response

We found that SFG-mutated tumors had significantly higher
expression levels of PD-L1 in pan-cancer and in seven individual
cancer types (Student’s t-test, p < .05; FC > 1.5) (Figure 3A).
Furthermore, in pan-cancer and in seven individual cancer types,
the ratios of immune-stimulatory to immune-inhibitory
signatures (CD8+ T cells/PD-1) were significantly lower in SFG-
mutated than in SFG-wildtype tumors (p < .05) (Figure 3B).
Because both TMB and tumor aneuploidy have significant
associations with anti-tumor immune responses (Davoli et al.,
2017) and meanwhile the SFG mutation has significant
associations with TMB and tumor aneuploidy, the significant
correlation between the SFG mutation and anti-tumor immune
responses could be mediated by TMB and tumor aneuploidy. To
clarify this speculation, we performed logistic regression to predict
high versus low ratios of CD8+ T cells/PD-1 in pan-cancer using
three predictors: SFG mutation, HRD score, and TMB. This
analysis demonstrated that the SFG mutation was a significant,
negative predictor of ratios of CD8+ T cells/PD-1 (p = 4.2 × 10–8;
β = -.33). Taken together, these results suggest a significant
association between SFG mutations and reduced anti-tumor
immune responses in diverse cancers.

Because both PD-L1 expression (Patel and Kurzrock, 2015) and
TMB (Goodman et al., 2017) are positive predictors of the response
to immune checkpoint inhibitors (ICIs) and SFG mutations have
heightened PD-L1 expression and TMB in cancer, we anticipated
that SFG-mutated tumors would respond better to ICIs than SFG-

wildtype tumors. As expected, in six cancer cohorts receiving ICI
treatments, SFG-mutated tumors displayed higher response rates
to ICIs than SFG-wildtype tumors (Figure 3C). These cohorts
included Hugo (melanoma) (Hugo et al., 2016), Riaz
(melanoma) (Riaz et al., 2017), Hellmann (non-small cell lung
cancer) (Hellmann et al., 2018), Liu (metastatic melanoma) (Liu
et al., 2019), Rizvi (non-small cell lung cancer) (Rizvi et al., 2015),
Lauss (melanoma) (Lauss et al., 2017) cohorts, in which the
response rates to ICIs in SFG-mutated versus SFG-wildtype
tumors were 58.1% versus 42.9%, 25.0% versus 17.9%, 33.3%
versus 22.2%, 39.6% versus 34.2%, 50% versus 0%, 50% versus
25%, respectively.

Different cancer subtypes have significantly
different mutation rates of SFG

The mutations in certain tumor suppressor genes or oncogenes
occur frequently in cancer, and their mutations are associated with
cancer onset and development, such as TP53, EGFR, KRAS, and BRAF
mutations. Notably, these genes-mutated tumors exhibited
significantly higher mutation rates of SFG than these genes-
wildtype tumors in pan-cancer and in multiple individual cancer
types (Z-test, p < .05) (Figure 4A). For example, in pan-cancer and
in six individual cancer types (ACC, BLCA, BRCA, LUAD, LUSC, and
SKCM), the TP53-mutated subtype had higher mutation rates of SFG
than the TP53-wildtype subtype. The EGFR-mutated subtype
displayed higher mutation rates of SFG than the EGFR-wildtype
subtype in pan-cancer and in six individual cancer types (ACC,
COAD, LUSC, SKCM, STAD, and UCEC). SFG showed

FIGURE 5
15 proteins showing significantly higher expression levels in SFG-mutated than in SFG-wildtype tumors in at least five cancer types. The two-tailed
Student’s t test p values are shown.
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significantly higher mutation rates in BRAF-mutated than in BRAF-
wildtype tumors in pan-cancer and in four individual cancer types
(BRCA, COAD, STAD, and UCEC).

We further compared mutation rates of SFG among the breast
cancer subtypes: luminal A&B, HER2-enriched, and basal-like,
which were determined by the PAM50 assay (Parker et al., 2009).
Notably, both HER2-enriched and basal-like displayed
significantly higher mutation rates of SFG than luminal A&B
(p < .01), while the SFG mutation rates showed no significant
difference between HER2-enriched and basal-like (p = .07)
(Figure 4B). Overall, these results indicate that the SFG
mutation is an adverse prognostic factor in breast cancer since
luminal A&B often has a better prognosis than HER2-enriched
and basal-like breast cancers (Howlader et al., 2018). In PRAD, the
Gleason score, ranging from 6 to 10, is the most common system to
grade prostate cancer. A higher Gleason score indicates a higher
grade of malignancy. We found that high-grade tumors (Gleason
score > 7) have a significantly higher mutation rate of SFG than
low-grade tumors (Gleason score ≤ 7) in PRAD (33.0% versus
18.7%; Z-test, p = .01) (Figure 4C).

Taken together, these results suggest that SFGwasmore frequently
mutated in aggressive than in unaggressive cancer subtypes.

Proteins upregulated in SFG-mutated cancers
are mainly associated with cell cycle
regulation and genomic instability

We compared protein expression profiles between SFG-
mutated and SFG-wildtype tumors in each of the 12 cancer
types. We found 15 proteins having significantly higher
expression levels in SFG-mutated than in SFG-wildtype tumors
in at least five cancer types (two-tailed Student’s t-test, FDR < .05)
(Figure 5). These proteins included Lck, PCNA, ASNS, 4E-BP1,
FASN, ACC_pS79, Cyclin_B1, Chk1_pS345, eEF2, eIF4E, FoxM1,
Rb_pS807_S811, p90RSK, Src_pY416, and TFRC. Notably, many
of these proteins are cell cycle regulators, such as Cyclin_B1,
Chk1_pS345, FoxM1, Rb_pS807_S811, and Src_pY416. In
addition, some proteins are involved in DNA damage repair,
such as PCNA. These results are concordant with the previous
analysis showing that SFG mutations are associated with cell cycle
activation and genomic instability.

Exploration of SFG mutations in cancer single
cells

Using the Scissor algorithm (Sun et al., 2022), we identified
subpopulations of cancer single cells with phenotypes of SFG
mutations and SFG wildtype in six single-cell transcriptomes from
BRCA (Qian et al., 2020), COAD (Qian et al., 2020), SKCM (Jerby-
Arnon et al., 2018), PRAD (Chen et al., 2021), LUAD (Maynard et al.,
2020), and HNSC (Puram et al., 2017), respectively (Figure 6A). In
4 and five cancer types, the SFG-mutated cell subpopulation showed
significantly higher scores of stemness and proliferation than the SFG-
wildtype cell subpopulation, respectively (p < .01) (Figure 6B). In five
cancer types, the SFG-mutated cell subpopulation tended to have
significantly higher PD-L1 expression levels compared to than the
SFG-wildtype cell subpopulation (p < .05) (Figure 6B). Overall, these

FIGURE 6
Exploration of SFG mutations in cancer single cells. (A) Identification of
subpopulations of cancer single cells with phenotypes of SFG mutations and
SFGwildtype in six single-cell transcriptomesby theScissoralgorithm (Sunet al.,
2022). (B) The SFG-mutated cancer cell subpopulation has significantly
higher scores of stemness and proliferation and higher PD-L1 expression levels
than the SFG-wildtype cancer cell subpopulation. (C)The single-cell consensus
clustering by SC3 (Kiselev et al., 2017) identifyingmore clusters in SFG-mutated
cell subpopulations than in SFG-wildtype cell subpopulations in two cancer
types. (D) The SFG-mutated cell subpopulation has significantly greater CNV
values than the SFG-wildtype cell subpopulation in five cancer types. The CNV
values were inferred by the inferCNV algorithm (Patel et al., 2014).
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results are consistent with those by analyzing tumor tissues.
Furthermore, we used the SC3 algorithm (Kiselev et al., 2017) to
cluster cancer cells in SFG-mutated and SFG-wildtype cell
subpopulations, respectively. Among two cancer types (COAD and
BRCA), SC3 uncovered significantly different numbers of cell clusters
between SFG-mutated and SFG-wildtype cell subpopulations
(Figure 6C). In COAD, the SFG-mutated cell subpopulation
involved 49 clusters versus 30 clusters in the SFG-wildtype cell
subpopulation. In BRCA, the SFG-mutated cell subpopulation
included 80 clusters versus 26 clusters in the SFG-wildtype cell
subpopulation. It suggests that SFG-mutated cell subpopulations
are more heterogeneous than SFG-wildtype cell subpopulations,
supporting the higher ITH of SFG-mutated versus SFG-wildtype
tumors. We employed the inferCNV algorithm (Patel et al., 2014)
to infer CNVs in cancer cells with reference to normal cells. Notably,
in five cancer types, the SFG-mutated cell subpopulation had
significantly greater CNV values than the SFG-wildtype cell
subpopulation (p < .02) (Figure 6D). These results confirmed that
SFG mutations had a significant association with genomic instability
at the single-cell level.

Discussion

Splicing abnormality caused by somatic mutations in SFG has
been detected in a wide variety of human cancers. In this study, we
comprehensively investigated associations of SFG mutations with
clinical features, genomic integrity, anti-tumor immune
responses, and immunotherapy response in 12 common cancer
types and their pan-cancer. Our analysis showed that SFG
mutations were associated with worse clinical outcomes, higher
genomic instability, and anti-tumor immunosuppression but
increased immunotherapy response in diverse cancer types. In
addition, SFG mutations were associated with tumor progression
or unfavorable phenotypes, such as high tumor stemness,
proliferation potential, and ITH. It is interesting to observe that
SFG mutations are correlated with a better response to ICIs in
multiple cancers, although SFG mutations have a significant
association with reduced anti-tumor immune responses.
Increased TMB (and thus neoantigens) and PD-L1 expression
in SFG-mutated cancers could explain why this subtype responds
better to ICIs than SFG-wildtype cancers since both TMB and PD-
L1 expression are positive predictors of immunotherapy response
(Patel and Kurzrock, 2015; Samstein et al., 2019). On the other
hand, high levels of genomic instability, i.e., SCNAs or aneuploidy,
may lead to reduced anti-tumor immune responses in cancers with
SFG mutations since tumor aneuploidy may promote anti-tumor
immune evasion (Davoli et al., 2017). Taken together, our results
indicate that the relationship between anti-tumor immune
responses and immunotherapy responses is not necessarily
positive but it even could be negative. Therefore, the
association between the tumor immune microenvironment
(TIME) and immunotherapy response is complex, although the
TIME has been recognized as a critical factor for responses to
immunotherapy (Binnewies et al., 2018). Overall, tumors can be
classified as “cold” (lack of immune infiltration) and “hot” (with
abundant immune infiltration) types in terms of their TIME
(Duan et al., 2020). It has formed a common sense that “hot”

tumors respond better to immunotherapy than “cold” tumors
(Galon and Bruni, 2019). However, our results do not appear to
support this conclusion. Thus, further investigations into the
association between the TIME and immunotherapy response
are warranted.

To date, the conventional treatment strategies for cancer,
including surgery, radiotherapy, chemotherapy, and targeted
therapies, remain the major therapeutic approaches for most
cancers. However, these strategies often achieve limited efficiency
for advanced or recurrent cancers. Immunotherapy, particularly
ICIs, has demonstrated success in treating various malignancies,
including metastatic cancers, as a recently emerging treatment
strategy. Nevertheless, the response rate of cancer patients to ICIs
is around 20% to date (Cristescu et al., 2018). Thus, discovering
predictive markers for immunotherapy response is significant. Several
such markers used in current clinical practice include PD-L1
expression (Patel and Kurzrock, 2015), high tumor mutation
burden (TMB) (Allgauer et al., 2018), and dMMR (Oliveira et al.,
2019). However, these markers are not perfect in predicting
immunotherapy response (Sun et al., 2020). For example, more
than 50% of cancer patients with high expression of PD-L1 may
not respond to ICIs (Reck et al., 2016). Therefore, identifying novel
predictive markers for immunotherapy response is urgently needed.
Our analysis suggests that the SFG mutation could be a positive
predictor for immunotherapy response.

Among the proteins upregulated in SFG-mutated cancers,
ACC (acetyl-CoA carboxylase) is a lipogenic enzyme to
promote the synthesis of saturated fatty acids to meet the
increasing demands of new membrane phospholipids in cancer
cells (Igal, 2010). Thus, ACC is upregulated in various cancers,
including breast, prostate, and liver cancers, and plays a critical
role in cancer development (Wang C et al., 2010; Fang et al., 2014).
It is justified that ACC is more abundant in SFG-mutated than in
SFG-wildtype tumors since SFG mutations are associated with
unfavorable clinical outcomes in various cancers. The
lymphocyte-specific protein tyrosine kinase (Lck) is a member
of the Src family of protein tyrosine kinases, whose upregulation
may promote the development of diverse cancers, such as breast,
colon, liver, and lung cancers (Sugihara et al., 2018; Bommhardt
et al., 2019). Again, the positive association between SFG
mutations and Lck expression conforms to the fact that the
SFG mutation is an adverse prognostic factor in diverse cancers.

This study has several limitations. First, our results were
obtained by the bioinformatics analysis. As a result, the
associations between SFG mutations and various clinical and
molecular characteristics in cancer are a correlation relationship
but not a causal relationship. To demonstrate the causal relationship,
further experimental and clinical studies are must. Second, in
defining the phenotype of SFG mutations, we took the 119 key
splicing factor genes as a whole but ignored the difference among the
impact of different splicing factor genes’ mutations on splicing
deregulation. Finally, in the single-cell data analysis, we defined
the phenotype of SFG mutations based on the computational
inference but not DNA sequencing, although such inference
might result in inaccurate results.

In conclusion, the mutation in key splicing factor genes correlates
with unfavorable clinical outcomes and disease progression, genomic
instability, anti-tumor immunosuppression, and increased
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immunotherapy response in pan-cancer. Thus, the SFGmutation is an
adverse prognostic factor and a positive marker for immunotherapy
response in cancer.
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