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Non-alcoholic fatty liver disease (NAFLD) is one of the most common causes

of chronic liver disease and its global incidence is estimated to be 24%.

Beer, wine, and Chinese baijiu have been consumed worldwide including

by the NAFLD population. A better understanding of the effects of these

alcoholic beverages on NAFLD would potentially improve management of

patients with NAFLD and reduce the risks for progression to fibrosis, cirrhosis,

and hepatocellular carcinoma. There is evidence suggesting some positive

effects, such as the antioxidative effects of bioactive flavor compounds in

beer, wine, and baijiu. These effects could potentially counteract the oxidative

stress caused by the metabolism of ethanol contained in the beverages. In the

current review, the aim is to evaluate and discuss the current human-based

and laboratory-based study evidence of effects on hepatic lipid metabolism

and NAFLD from ingested ethanol, the polyphenols in beer and wine, and

the bioactive flavor compounds in baijiu, and their potential mechanism. It

is concluded that for the potential beneficial effects of wine and beer on

NAFLD, inconsistence and contrasting data exist suggesting the need for

further studies. There is insufficient baijiu specific human-based study for the

effects on NAFLD. Although laboratory-based studies on baijiu showed the

antioxidative effects of the bioactive flavor compounds on the liver, it remains

elusive whether the antioxidative effect from the relatively low abundance

of the bioactivate compounds could outweigh the oxidative stress and toxic

effects from the ethanol component of the beverages.
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1. Introduction

Alcoholic beverages not only have been consumed for
thousands of years for social, ceremonial, behavioral, and ritual
purposes but also are widely consumed. Around 43% of adults
(aged 15 years or older) reported consuming alcohol globally
in 2016 (1). The average global alcohol consumption was
equivalent to approximately 6.43 L of pure ethanol per capita
of the adult population in 2015 (2). In 2016, 46% of the total
alcohol consumption was beers (34.3%) and wines (11.7%), and
44.8% was spirits (1). South-east Asia region consumed 87.9% of
the total spirit globally (1). The major spirit consumed in China
(one of the most populated areas of South-east Asia region)
is baijiu. Despite its popularity, alcohol consumption ranks as
the third most important preventable cause of the disease (3),
the fifth-leading risk factor for premature death and disability
globally (4), and accounted for 5.1% of the global burden of
disease expressed in DALYs (disability-adjusted life years) (1).
Excessive alcohol consumption, referring to daily consumption
of greater than three drinks (one drink is equivalent to 14 g
of pure ethanol), is associated with increased risk of various
diseases (5–9), cancers (10–12), and all-cause mortality (13).

On the other hand, however, there are studies demonstrating
that low alcohol consumption is not associated with an increased
risk of some cancers (14–17). Moreover, some studies from
recent years have indicated that low to moderate alcohol
consumption, typically 2–3 drinks (approximately 28–42 g of
ethanol) per day for men and 1–2 drinks (approximately 14–28 g
of ethanol) per day for women, is associated with some beneficial
health effects, such as lower risks for cardiovascular disease,
dementia, and insulin resistance (18–21). Moderate alcohol
consumption is also associated with reduced all-cause mortality
(6, 10, 13), and the association is often formed a J-shape
relationship (10, 13). Furthermore, some flavor compounds
in alcoholic beverages, such as phenolic acids (in beers and
wines), organic acids, esters, and terpenoids (22) (in baijiu),
may also have additional impacts on health. For instance, the
Copenhagen prospective population studies (23) have shown
that wine intake is associated with better beneficial effects on all-
cause mortality than those from purely alcohol consumption. It
was hypothesized that the additional beneficial effects may have
come from numerous phenolic compounds present in wine,
such as phenolic acids, flavan-3-ols, and anthocyanins.

Non-alcoholic fatty liver disease (NAFLD), one of the most
common causes of chronic liver disease worldwide, is clinically
diagnosed with the presence of liver fat accumulation ≥5%,
determined by radiological imaging techniques, in absence
of other known causes (e.g., alcohol, drugs, and virus) (24).
The prevalence of NAFLD is increasing constantly, and the
current global incidence of NAFLD is estimated to be 24%,
with Asia (27%) USA (24%), and Europe (23%) (25). Its
prevalence is increasing at a fast pace. In the US alone,
for instance, it was projected that the number of patients

with NAFLD will increase from 83.1 million (in 2015) to
around 100.9 million in 2030 (26). In addition, NAFLD is
associated with metabolic syndrome, especially type 2 diabetes
and enhances the comorbidities (24, 27). Furthermore, NAFLD,
if left unmanaged/poorly managed, can progress to non-
alcoholic steatohepatitis (NASH). Approximately 40–50% of the
patients with NASH may further progress to hepatic fibrosis,
with increased risks of cirrhosis and hepatocellular carcinoma
(24). Thus, NAFLD is a growing burden for global healthcare
systems. Having good strategies to manage and treat NAFLD,
therefore, has become important. The diagnosis of NAFLD
reveals NAFLD population consisted of either abstainers or low
to moderate alcoholic beverage drinkers. A good understanding
of the effects of common alcoholic beverage intake on NAFLD
could improve daily NAFLD management and improve the
condition of comorbidities.

In this review, the aim is to critically evaluate and discuss the
current evidence of effects on liver and NAFLD from human-
based and laboratory-based studies on beer, wine, and Chinese
baijiu, with a focus on the effects and potential mechanism of
ethanol in the beverages, the polyphenols in beer and wine, and
the bioactive flavor compounds in baijiu.

2. The effects of ethanol on NAFLD

2.1. Evidence from studies

The consumption of equivalent to 50 g of ethanol per
day has an estimated excess risk of 46% for liver cancer, the
end stage of NAFLD progression, and the consumption of
100 g of ethanol per day has an excess risk of 66%. A meta-
analysis of prospective studies by Turati et al. (12) has shown
a positive association between heavy alcohol drinking and liver
cancers. Moreover, excessive alcohol consumption is linked to
an increased incidence of liver diseases (7). Consumption of
alcohol equivalent to 30–50 g of ethanol/day for 5–10 years
or longer is associated with an increased risk of alcoholic liver
disease (ALD) (5). However, in NAFLD populations, alcohol
consumption is either none or low to moderate. The effects of
low to moderate alcohol consumption on NAFLD from studies
are controversial. On the one side, Bagnardi et al. (28) found
daily alcohol consumption no greater than 12.5 g showed no
association with liver cancers. In addition, moderate alcohol
drinking is associated with a reduced risk for NAFLD and
NASH (29, 30). Some studies found low to moderate alcohol
consumption could improve serum lipid profiles (31, 32), and
alcohol consumption equal to or less than 25 g/day could
significantly reduce cardiovascular risk in patients with diabetes
(33). Animal studies showed a moderate baijiu (a type of spirit)
consumption may potentially improve serum lipid profiles while
having no significant damage to the liver (31). On the other side,
however, there is evidence suggesting alcohol consumption has
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no safe limit for NAFLD, even low alcohol consumption could
still increase the risk of disease progression to advanced stages
(34, 35). The putative mechanism of ethanol’s effects on NAFLD,
although not entirely clear, involves the impact of decreased
NAD+/NADH ratio, oxidation stress, and acetaldehyde on
hepatic lipid metabolism. All three factors are the outcome of
ethanol’s metabolism in the liver (Figure 1; 36–38).

2.2. The mechanisms

After ingestion, approximately 94–98% of the ethanol is
removed by two enzyme systems: alcohol dehydrogenase (ADH)
(39, 40) and microsomal ethanol-oxidizing system (MEOS)
(36, 41). Although ADH is expressed in the cytosol of both
gastric mucosa and hepatocytes, the majority is presented in
the liver. MEOS is presented predominantly in the endoplasmic
reticulum of hepatocytes; it is also expressed in the intestinal
mucosa. ADH is metabolizing the majority of the ingested
ethanol, especially when consuming no more than three drinks.
MEOS, however, plays an important role in removing ethanol
after excessive alcohol consumption (such as binge drinking). It
is because, in the presence of high blood alcohol concentration
(BAC), the activity of MEOS is induced and increased.

After alcohol consumption, gastric ADH eliminates a small
fraction of ingested ethanol before it is absorbed and delivered
to the liver through the portal vein. The rate of ethanol
elimination by Gastric ADH is affected by gender and age,
polymorphisms between ethnic groups, rate of drink, and
fed or fasted state. This may contribute to the variation and
discrepancy of the results in studies. The majority of ingested
ethanol is absorbed by the intestinal mucosa and transported
to the liver for clearance. The ethanol oxidization catalyzed
by ADH also reduces the coenzyme nicotinamide adenine
dinucleotide (NAD+) to NADH. After heavy drinking, ethanol
oxidation by ADH decreases the ratio of NAD+/NADH, which
could enhance the synthesis of triglyceride and the accumulation
of lipids in the liver. For patients with NAFLD, this may
potential enhance disease progression. Moreover, the decrease in
NAD+/NADH ratio also inhibits the oxidation of acetaldehyde,
the accumulation of which impairs mitochondria. Mitochondria
impairment may lead to lipid accumulation in the liver.

MEOS (42) is predominantly found in the liver, whose
main component is cytochrome P450 (CYP) isoform CYP2E1.
CYP2E1 oxidizes ethanol to form acetaldehyde and converts
nicotinamide adenine dinucleotide phosphate (NADPH) to
NADP+. MEOS has a higher Michaelis–Menten constant
(Km) for ethanol than ADH and activates with high BAC.
It normally accounts for 20–25% of all alcohol metabolism.
Ethanol metabolism facilitated by MEOS also results in
the production of various reactive oxygen species (ROS),
such as ethoxy radical CH3CH2O•, hydroxyethyl radical
CH3C(•)HOH, acetyl radical CH3CHO•, and singlet radical

1O2. After heavy alcohol consumption, the elevated level of
ROS generated undergoes covalent bonding to macromolecules
on the membrane, subcellular organelles, and subsequently
interferes with their biological function (43). In addition, the
oxidative stress caused by the ROS on the one hand damages the
mitochondria impairing fatty acid beta-oxidation and causing
lipid accumulation. On the other hand, oxidative stress on the
endoplasmic reticulum (ER) can activate its stress response and
enhance fatty acid synthesis.

Acetaldehyde, the direct metabolite of ethanol, is not only
IARC classified group 1 carcinogen but also toxic. It is oxidized
to acetate by hepatic acetaldehyde dehydrogenase (ALDH),
and acetate is further oxidized to CO2. The generation of the
elevated level of acetaldehyde and/or its slow removal is harmful.
The main ALDH isozyme that metabolizes acetaldehyde in
the liver is ALDH2. The polymorphism of ALDH2 results in
a low-activity enzyme, which has been presented among the
East Asian population (such as Han Chinese and Japanese).
This polymorphism of ALDH2 may be a potential factor that
causes study results discrepancy. Oxidation of acetaldehyde
by ALDH requires the reduction of NAD+ to NADH. Heavy
alcohol consumption increases NADH levels and decreases
the NAD+/NADH ratio, which could inhibit acetaldehyde
oxidation and cause its accumulation. Acetaldehyde can
form adducts with DNA, lipids, and proteins; therefore, its
accumulation could disrupt normal liver metabolism and may
impose a negative impact on the NAFLD population.

3. The effects of beer on NAFLD

3.1. Evidence from clinical,
epidemiological, and laboratory
studies

Beer is a type of popular fermented beverage, and
its consumption alone took 34.3% of total global alcohol
consumption in 2016 (1). Low to moderate beer consumption
has been shown to reduce the risk of cardiovascular disease
compared to abstainers and heavy drinkers, suggesting
the potential cardiovascular protection function of its
polyphenols. However, its association with liver function is
still inconclusive. The underline mechanism, although unclear,
is thought to involve but not limited to the antioxidation,
anti-inflammation, and lipid modulation properties of the
polyphenolic and bitter acids.

There are limited epidemiological studies investigating
beer consumption and liver health, and the outcome remains
inconclusive. On the one hand, a positive and significant
population-based association between beer consumption
and liver disease-led mortality was demonstrated in 221
municipalities in the State of Louisiana in the US (44). In a
Danish population–based study, 30,630 men and women with
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FIGURE 1

Schematic demonstration of alcohol metabolism.

more than five drinks/day of all three types of alcohol were
associated with an increased risk for liver cirrhosis compared
to abstainers or low alcohol drinkers. However, wine drinkers
showed lower risk than beer and spirits drinkers (45). On the
other hand, in an Eastern French population study, moderate
beer consumption was not associated with increased mortality
due to cirrhosis (46).

Various clinical studies and laboratory studies on human
subjects have been carried out investigating the beneficial
biological properties of polyphenols, bitter acids, and other non-
alcoholic components in beer and their potential impact on
health. In a randomized crossover trial involving 11 healthy
middle-aged non-smoking men, beer consumption (equivalent
to 40 g of ethanol per day) for 3 weeks did not increase the values
of liver enzymes: gamma-glutamyltransferase (GGT), aspartate
aminotransferase (AAT), and alanine aminotransferase (ALT)
(47). Similar results were obtained from another crossover trial
involving 60 healthy Spanish adults (31 men and 29 women),
in which the levels of hepatic enzymes (GGT, GOT, and GPT)
are unchanged after beer consumption (equivalent to 11 g/day
for women and 22 g/day for men) for 1 month (48). However,
in the crossover trial involving 10 middle-aged men and 10
post-menopausal women, the levels of both GGT and ALT
showed a slight increase (but still within the normal clinical
range) after beer consumption (equivalent to 40 g/day for
men and 30 g/day for women) for 3 weeks. But interestingly,
inflammation markers, C-reactive protein, and fibrinogen were
decreased significantly, indicating anti-inflammatory action,
after the 3-week beer consumption (49).

In a laboratory study, antioxidant melatonin was detected
and measured in 18 brands of beer with different alcohol
concentrations (50). In addition, serum samples from seven
healthy human subjects were analyzed before and after
beer consumption, which showed both melatonin and total
antioxidant status increased after beer consumption. This

suggests beer consumption may increase the antioxidative
capability of human serum attributed to melatonin and other
compounds beer contains. This coincides with the results
from other studies, which found increased plasma polyphenolic
contents and antioxidant capability (51, 52).

In vitro and in vivo studies also showed the beneficial
biological effects of polyphenols, bitter acids, and other non-
alcoholic components in beer. In a study using an aluminum-
induced neurotoxicity murine model, the beer treatment group
showed significant lower lipid peroxidation, higher expression
of antioxidant enzymes (at mRNA levels), and lower expression
(mRNA) of inflammation marker TNFα (53). The authors
speculated polyphenols (such as resveratrol) and antioxidants
(such as folic acid) in beer may have contributed a part to
the antioxidation and anti-inflammation properties of the beer.
These studies showed that beer-derived polyphenols may be
absorbed and reach the blood circulation to exert biological
functions. Two recent studies by Shafreen et al. and Tung
et al. further demonstrate that serum polyphenols (come from
beer) can bind and interact with serum proteins, such as
human serum albumin, plasma circulation fibrinogen, and
low-density lipoprotein to exert antioxidant functions (54,
55). In an in vitro study on peripheral blood mononuclear
cells by Winkler et al., beer components were shown to
increase neopterin production and tryptophan degradation and
reduce ROS generation by inhibiting the production of pro-
inflammatory cytokine interferon-γ (56).

3.2. The effects and putative
mechanisms of the main flavor
compounds in beer

Beer is fermented from cereals and hops (Humulus lupulus),
consisting of over 90% of water, carbohydrates, ethanol,
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(more than 50) polyphenolic compounds, bitter acids (e.g.,
humulones and lupulones), proteins, B-complex vitamins, and
trace amounts of minerals (57, 58). The alcohol concentration
of beer varied approximately from 3.5 to 10% (w/v) in different
kinds of beers. The main non-alcoholic flavor compounds of
beer thought to exert beneficial biological functions are (1)
polyphenolic compounds: xanthohumol (around 0.2 mg/L),
isoxanthohumol (around 0.6–3.4 mg/L), and phenolic acids
(25–29 mg/L); (2) bitter acids: humulones (approximately up
to 4 mg/L), lupulones (around 0.012–0.14 mg/L), and iso-
humulones (around 10–100 mg/L) (57).

Among the non-alcoholic compounds in beer, the hop-
derived phenolic compounds and bitter acids have been
shown to modulate hepatic lipid metabolism and process anti-
inflammatory, antioxidative, and anticarcinogenesis properties
(Table 1). Xanthohumol, of which beer is the main human diet
source, is a bioactive multifunctional prenylated flavonoid from
the female inflorescence of the hop plant (59, 60). It has been
shown with the capability to modulate hepatic lipid metabolism
(61, 62). In type 1 diabetic rodent model, insulin deprivation led
to down-regulation of fatty acid synthase (FAS), inactivation of
Acetyl-CoA Carboxylase (ACC), and inhibition of lipogenesis
(61). Xanthohumol was able to activate ACC, increase the
expression of FAS, and restore some proportion of lipogenesis,
through a mechanism not clearly understood. In mice fed with
a high-fat diet, xanthohumol was able to reduce triglycerides
and cholesterol content in the liver and skeletal muscle by
inhibiting lipogenesis and lipid uptake and promoting β-
oxidation (62). The putative mechanism involves xanthohumol
activation of AMP-activated protein kinase (AMPK), which
then inhibits the expression of sterol regulatory element-binding
protein 1c (SREBP-1c), downstream ACC and FAS, down-
regulation of the expression of lipid transporter CD36. In
addition, xanthohumol was shown to inhibit liver fibrosis in
type 1 diabetic rodent model (61). The mechanism, although
not clear, is speculated to involve anti-inflammation and
antioxidation actions as demonstrated in another study based
on the same type 1 diabetic rodent model (63). Furthermore,
xanthohumol was shown in a rodent model to protect the liver
and the colon from DNA damage, and preneoplastic lesion
caused by cooked food mutagen (64), indicating the capability
to prevent liver cancer development from more general
carcinogens, such as ethanol and acetaldehyde. Xanthohumol
can be converted to isoxanthohumol during the brewing process
and/or in the stomach. As one of the major flavonoids in
normal beers, isoxanthohumol may also involve in modulating
hepatic lipid metabolism, anti-inflammation, and antitumor
(57, 61). Isoxanthohumol can be further converted to 8-
prenylnaringenin by the microbiota in the intestine (57). 8-
Prenylnaringenin not only exerts hormonal function as the
strongest phytoestrogen but also involves modulating lipid
metabolism (62, 65). Landmann et al. showed that normal
beer (brewed with the hop) was able to attenuate hepatic

TABLE 1 Bioactive flavor compounds in beer and their
beneficial effects.

Compounds Demonstrated
beneficial effects

References

Xanthohumol Modulate lipid metabolism;
antioxidation;
anti-inflammation;
anticarcenogenesis

(59–64)

Isoxanthohumol Modulate lipid metabolism;
anti-inflammation;
antitumor

(57, 61)

8-Prenylnaringenin Hormonal function
(Phytoesrongen); modulate
lipid metabolism

(62, 65)

Bitter acids Antioxidation; modulate
lipid metabolism

(66, 67)

Other polyphenolic compounds Antioxidation;
anti-inflammation

(47–52)

lipid accumulation in a binge-drinking mouse model (66). The
putative mechanism is shown to be the inhibition of hepatic
iNOS induction and lipid peroxidation. The further study by the
same group showed that iNOS and lipid peroxidation inhibition
may be exerted by iso- α-acids (iso- humulones) from hop
(67). The authors speculated the protection effects may also
involve other compounds in the hop extracts, such as β-acids
(lupulones).

The putative mechanisms that beer flavor compounds
involved can be summarized as following three main areas
(refer to Figure 2). (1) Modulate hepatic lipid metabolism:
down-regulating hepatic lipogenesis, reducing hepatic lipid
uptake from circulation, and enhancing β-oxidation; (2)
antioxidation: as antioxidant removing ROS, increasing
quantity and activity of antioxidant enzymes, and inhibition
of lipid peroxidation; (3) anti-inflammation: preventing
hepatic inflammation (through JNK/NF-κ B) caused by
lipid accumulation induced endoplasmic reticulum stress in
hepatocyte and lipid peroxidation. The exact process and how
these are integrated remain elusive.

4. The effects of wine on NAFLD

4.1. Evidence from clinical and
epidemiological studies

Wine is a type of popular alcoholic beverage fermented from
grape vines. The term French paradox describes the observation
of a lower incidence of coronary heart disease in France than
in other Western countries, despite similar intake of high
levels of saturated fat (68). This was based on epidemiological
studies, which suggested the observation was attributed to the
beneficial effects of red wine consumption, on the data collected
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FIGURE 2

The putative mechanisms of flavor compounds on NAFLD. FFA, free fatty acids; CM, chylomicron remnants; ER, endoplasmic reticulum; HCC,
hepatocellular carcinoma.

from the MONICA project organized by WHO. Since then,
epidemiological studies and human trials have been carried out
investigating the potential health benefit of wine. Among them,
only limited studies directly investigated the effects of wine on
NAFLD prevalence and progression with promising outcomes;
however, more data are needed before any conclusion can be
drawn. Dunn et al. performed the first epidemiological study
investigating the association between modest consumption of
wine and NAFLD (69). The study showed a lower NAFLD
prevalence in participants who consumed up to four ounces
of wine daily when compared to abstainers and participants
whose daily consumption of up to 12 ounces of beer, 1 ounce of
liquor, or 1 drink of mixed alcoholic drinks. The wine drinkers
also demonstrated a lower prevalence of diabetics and other
metabolic syndrome features in the study. However, this study
did not demonstrate the safety of modest wine drinking in
patients with NAFLD. A single-center cohort study by Mitchell
et al. showed modest wine consumption (<70 g of ethanol
per week without binge consumption) was associated with a
significantly lower risk of advanced hepatic fibrosis compared
to abstinence among patients with NAFLD (70). Some studies
investigated the association between wine consumption and the
risk of liver cirrhosis, the effects of wine drinking on hepatic
lipid levels, functions, serum cholesterol profiles, and NAFLD
co-exist metabolic syndrome. The outcome of the studies was
inconsistent and inconclusive. In a prospective study in the
Copenhagen area, Becker et al. found an increase in the risk of
liver cirrhosis with increasing total alcohol intake for beer, wine,
and spirit, but wine consumption showed a lower risk (45). In
a large cohort prospective study including 1.3 million middle
age UK women, with a mean of 15 years of following up of

401,806 women, the authors found that the risk of liver cirrhosis
increased with the total amount of alcohol intake (event with
moderate consumption), the increase of risk, in a given weekly
intake of alcohol, was also associated with consumption without
a meal or daily consumption, regardless whether drinking
only wine or more than one type of alcoholic beverages
(71). A randomized crossover trial by Beulens et al. showed
4 weeks of red wine consumption (40 g of ethanol per day)
did not significantly increase liver fat compared to 4 weeks of
consumption of de-alcoholized red wine (72). An interventional
cohort study by Rajdl et al. showed, although there was an
increase in liver enzymes AST (within the normal reference
range) and ALT (slightly exceeded upper threshold), white wine
consumption is associated with an increase in antioxidative
effects (73). In a prospective randomized trial involving 44
healthy subjects (32 women and 12 men), Kechagias et al.
showed an increase in ALT and AST (within an upper reference
threshold), decrease in LDL cholesterol, and a trend of hepatic
triglyceride content increase for subjects with moderate red
wine consumption for 90 days (74). These changes in the
red wine consumption group were significantly different when
compared with the alcohol abstention group. Taborsky et al.
carried out the prospective, multi-center, randomized In Vino
Veritas study comparing the effects on healthy subjects between
red and white wine consumption (75). The results showed
that the changes in total cholesterol, HDL, LDL, triglyceride,
liver function, and other markers during the 12-month wine
consumption were not varied significantly between red and
white wine groups, regardless of the significant difference in
the polyphenolic compounds between the two wines. However,
when comparing the baseline within each group, both groups
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showed a significant reduction in LDL for time points at
6 months and 12 months, a significant total cholesterol
reduction at 6 months, the red wine group showed a significant
HDL reduction at 6 months and a significant total cholesterol
reduction at 12 months. Type 2 diabetes is one of the most
common metabolic syndromes that co-exist with NAFLD
(24). In a 2-year randomized intervention trial, Gepner et al.
demonstrated that red wine consumption significantly increased
HDL-C levels and decreased the total cholesterol/HDL-C ratio
(76). When compared to the non-drinking (water) group, the
overall value of metabolic syndrome components was further
significantly decreased in the red wine group.

4.2. The effects and putative
mechanisms of the phenolic
compounds in wine

Wine contains water, carbohydrates, organic acids, alcohol,
polyphenols, minerals, and B vitamins. The rich phenolic
compounds of wine (especially red wine) are thought to provide
potential health benefit effects (Table 2). The main phenolic
compounds in wine are stilbenes (resveratrol), phenolic acids,
and flavonoids (flavan-3-ols, Anthocyanins, quercetin) (77–80).
Although the mean level of resveratrol (a type of stilbenes)
is 7 mg/L in red wine, the total stilbenes level could be up
to 20 mg/L (80, 81). The levels of catechin and epicatechin,
as main flavan-3-ols, are approximately 100 and 75 mg/L,
respectively. The amount of anthocyanins and quercetin is up
to 500 mg/L and around 16 mg/L, respectively (80, 81). Various
mechanisms (concerning the polyphenolic compounds in wine)
have been proposed for the potential beneficial effects of wine,
especially red wine on liver metabolism and NAFLD. These
include the antioxidation effects, anti-inflammatory effects, and
modulation of lipid metabolism. Resveratrol, one of the most
important phenolic compounds in wine, demonstrated the
capability to ameliorate antioxidative stress and inflammation
and modulated hepatic lipid metabolism (82, 83). Resveratrol
is not only an antioxidant, scavenging ROS, HO, peroxyl
radicals, and chelating metal ions interacting with ROS (84–
86), but also capable of increasing the activity of hepatic
antioxidation enzymes, such as superoxide dismutase, catalase,
and glutathione peroxidase (87–90). Resveratrol has also been
shown to be able to modulate hepatic lipid metabolism by
activation of sirtuin 1 (SIRT 1)–AMPK signaling, which on the
one hand promotes the fatty acid beta-oxidation by activating
peroxisome proliferator-activated receptor α (PPARα), PPARγ

co-activator 1α (PGC1α), and their target genes, on the other
hand, down-regulates fatty acid synthesis through SREBP-1c
inhibition (91). Additionally, resveratrol was shown to reduce
intracellular lipid droplets possibly by promoting autophagy in
HepG2 cells (92). Resveratrol has also been shown in studies
to possess anti-inflammatory properties, such as inhibiting

TABLE 2 Bioactive flavor compounds in wine and their
beneficial effects.

Compounds Demonstrated
beneficial effects

References

Resveratrol Antioxidation;
anti-inflammation; reduce lipid
accumulation

(82–95)

Quercetin Antioxidation;
anti-inflammation;
antiapoptosis; hepatoprotective

(77, 78, 80)

Anthocyanins Antioxidation; anticancer (79, 80)

Total phenolic compounds Antioxidation;
anti-inflammation; modulate
lipid metabolism; antifibrosis;
improve serum lipid profile;
improve metabolic syndrome
condition

(68–76, 80)

infiltration of macrophage and recruitment of Kupffer cells,
reducing TNFα levels (93–95).

The putative mechanisms that phenolic compounds in
wine, such as resveratrol involved in can be summarized
in three main areas (refer to Figure 2). (1) Antioxidation:
as antioxidants scavenging ROS, HO, and peroxyl radicals,
increasing quantity and activity of antioxidant enzymes and
inhibition of lipid peroxidation; (2) modulating hepatic lipid
metabolism: activation of SIRT 1–AMPK signaling leading to
inhibition of hepatic lipogenesis and enhancing β-oxidation,
promoting lipid autophagy; (3) anti-inflammation: through
inhibition of NF-κ B pathways. The exact processing involved
is not entirely clear, more studies are needed.

5. The effects of baijiu on NAFLD

5.1. Evidence from laboratory studies

Among the alcoholic beverages consumed globally, 44.8%
are spirits. In China, alcohol consumption has been increasing
since the 1960s with total recorded consumption reaching
equivalent to 5.7 L of pure alcohol per capita in 2016
(Figure 3A). Spirits consumption is 67% of all alcoholic
beverages in 2016 (Figure 3B; 1). Baijiu, the main category of
spirits consumed in China, is produced by unique multi-strain
and solid-state fermentation techniques.

A study (96) based on the human liver cell line, Hep3B,
has shown a non-alcoholic residue of Maotai (a brand of
baijiu), is able to up-regulate GST A1, an antioxidant-responsive
element. This subsequently promotes antioxidative activity
through an ERKs- and p38 K-dependent pathway, which may
reduce oxidative stress caused by alcohol metabolism and
provide protection to the liver. Subsequent animal studies
(97, 98) on Maotai have shown that it has different effects
on the liver than that of the same amount of alcohol.
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FIGURE 3

Alcohol consumption in China. (A) Proportion of different alcoholic beverages consumed in 2016; (B) recorded alcohol consumption per capita
in adults (age > 15 years), 1961–2016. Adapted with permission from ref (1) under Creative Commons Attribution-Non-Commercial-ShareAlike
3.0 IGO license. (CC BY-NC SA 3.0 IGO; https://creativecommons.org/licenses/by-nc-sa/3.0/igo).

It significantly induced various antioxidation factors, heme
oxygenase-l, metallothionein, Nrf2, and GCLC. A tetrapeptide
from sesame flavor-type baijiu has been shown to promote
hepatic antioxidation factors through various mechanisms to
counteract the oxidative stress caused by alcohol metabolisms
(99). A recent animal study (100) compared the effects of daily
consumption of equivalent to approximately three drinks of
baijiu or an equivalent amount of pure alcohol solution. Results
showed that the baijiu treatment group has significantly less
liver injury and steatosis. Further study on approximately 1.5
drinks of baijiu or equivalent pure alcohol solution showed pure
alcohol solution treatment group induced significantly higher
plasma ALT and hepatic triglyceride levels. The non-alcoholic
flavor compounds in baijiu have been shown in an animal study,
to be able to attenuate liver damage caused by ethanol potentially
through differential impact on host gut microbiota (101).

Animal and in vitro studies have shown baijiu posts
less injury to the liver than an equivalent amount of pure
alcohol. This coincides with the speculation that the non-
alcoholic components, especially biologically active compounds
of baijiu may have additional effects on the liver that is
apart from alcohol. However, due to the limited evidence, this
hypothesis is still controversial. First, more laboratory studies
are needed to demonstrate what are the main compounds that
could convey these effects (either beneficial or harmful), the
mechanisms, and potential interactions between the compounds
and ethanol. Second, evidence is needed to show that the
amount of compounds in baijiu is sufficient to convey the
proposed effects. Moreover, the evidence from the epidemiology

and clinical studies is insufficient and inconclusive (102, 103).
Better controlled epidemiology and clinical studies, such as
randomized controlled trials, would be needed (104).

5.2. The effects and putative
mechanisms of the main flavor
compounds in baijiu

It is proposed that the non-alcoholic components, such
as polyphenols in alcoholic beverages, may have additional
beneficial effects (83, 105). Baijiu, a type of distilled spirit
produced through solid-state fermentation (106), has contained
more than 1,874 kinds of identified flavor compounds (22, 106).
Among these compounds, there are at least 138 kinds have been
shown to be bioactive (22). It is speculated that the biologically
active compounds in baijiu may have some protective effects on
the liver from the injury caused by ethanol metabolism when
baijiu consumption is low to moderate (Table 3; 22, 100).

The biological active volatile compounds include phenols,
organic acids, esters, terpenes, pyrazines, sulfur compounds,
and furan derivants. The non-volatile compounds include
polyols, peptides, amino acids, vitamins, and minerals. Various
phenols have been identified by techniques, such as GC-MS,
HPLC-MS, and GC-TOF-MS. Five of them are shown to have
beneficial effects. Ferulic acid, the main ingredient of several
Chinese herbals, has been shown to have antioxidation and
anti-inflammation effects and may be protective of the liver
against the oxidative stress caused by alcohol metabolism (81,
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TABLE 3 Bioactive flavor compounds in baijiu and their beneficial
effects.

Compounds Demonstrated
beneficial effects

References

Ferulic acid (phenolic acid) Antioxidation;
anti-inflammation; liver
protective;

(81, 107)

Acetic acid, butyric acid,
linoleic acid, alpha-linolenic
acid, lactic acid and L-Malic
acid (organic acids)

Antibacterial; serum
cholesterol and triglycerides
reduction;
anti-inflammation;
Antioxidation; antiapoptosis;
hepatoprotective

(110–114)

Tetramethylpyrazine
(pyrazines)

Hepatoprotective;
Antioxidation

(115, 116)

Ethyl linolenate and ethyl
linoleate (ethyl esters)

Improve serum lipid profile (119)

Terpenes Antioxidation; antibacterial;
potential hepatoprotective

(120)

5-hydroxymethyl furfural Anti-inflammation; serum
cholesterol reduction;
antitumor

(121–123)

Lichenysin; tripeptide
Pro-His-Pro

Antibacterial; antiviral;
Antioxidation

(125–127)

107). Baijiu contains 127 organic acids, which are important
to the baijiu flavor. In the sesame-aroma type of baijiu, there
are eight acids that have a quantity higher than 10 mg/L (108).
In baijiu, Luzhoulaojiao, the quantity of the acid reaches as
high as 300 mg/L (Table 4; 109). The acids may potentially
have beneficial effects. To date, 16 acids have been reported
to be health beneficial. Acetic acid, butyric acid, linoleic acid,
alpha-linolenic acid, lactic acid, tartaric acid, and L-Malic acid
are typical ones (110–114). The non-saturated acids, such as
linoleic and linolenic acids, may improve lipid profiles. The
acid may also help regulate liver lipid synthesis. SCFA, such as
butyric acid (around 80 mg/L in baijiu), are known to involve
in the regulation of energy homeostasis, obesity, immune
system, brain function, and colorectal cancer prevention (113).
Although the concentration of butyric acid in baijiu is low, it
may serve as a source of dietary intake of butyrate to maintain
its physiological concentration in the human body.

Pyrazines are a category of biologically active compounds
in baijiu and may have health benefits. A pyrazine and
its several derivants, such as tetramethylpyrazine, have been
detected in Maotai, Laobaigan, Yanghe River Daqu, and Fenjiu.
Tetramethylpyrazine is the main active ingredient of Rhizoma
Ligustici Chuanxiong, a Chinese herbal that has long been used
to treat liver disease and protect the liver from fibrosis (115,
116). It has antioxidation properties and enhances triglyceride
degradation. Esters are the major flavor compounds in baijiu.
To date, 510 esters have been identified in baijiu (117). For
instance, lactic acid ethyl ester is approximately 900 mg/L in
soy sauce aroma type baijiu (118). At least five of them have
been reported to have beneficial effects. Fatty acid esters, such
as ethyl linolenate and ethyl linoleate may have a regulatory

TABLE 4 Abundant and bioactive compound in Luzhoulaojiao.

Compounds Concentration (mg/L)

Ethyl hexanoate 2221± 12

Ethyl acetate 693± 8

Ethyl lactate 316± 4

Hexanoic acid 300± 111

Butanoic acid 109.7± 0.7

Ethyl butyrate 46.3± 0.8

Heptanoic acid 36± 1

Furfural 30.96± 0.05

Ethyl valerate 10.7± 0.1

Phenylethyl Alcohol 3.66± 0.03

Ethyl heptanoate 3.38± 0.04

1-Hexanol 2.76± 0.02

1-Butanol 1.784± 0.005

Adapted with permission from ref (109) under a Creative Commons Attribution 4.0
International License.

property on cholesterol synthesis (119). Alpha-angelica lactone,
an important ingredient of Chinese herbal Angelicae sinensis
radix and Rhizoma Ligustici Chuanxiong, has been detected
in Jiannanchun and Gujinggong. It is shown to protect and
regulate the immune system, especially speeding the immune
system recovery after chemotherapy. It may potentially regulate
liver immune response upon oxidative stress caused by alcohol
metabolism and prevent the progression of ALD. Terpenes are
a category of important compounds in baijiu. Fifty-two of the
seventy-six identified terpenes in baijiu have been reported to
be health beneficial (106). They process antioxidation, antiviral,
and antibacterial properties, which may potentially be liver
protective (120). Its concentration in baijiu can be as high
as 3,400–3,600 µg/L. Baijiu also contains sulfur compounds,
to date, 73 compounds have been identified. At least six of
the identified sulfur compounds have been reported to be
beneficial to health. One of their properties is antioxidation,
which protects cells from injury from oxidative stress. Furans
have also been identified in baijiu, which have antitumor
properties. In particular, 5-hydroxymethyl furfural has been
shown to inhibit tumor progression and anti-inflammation and
is capable to reduce the serum cholesterol level (121–123).
Among the non-volatile compounds, peptides are recently
identified as bioactive compounds in baijiu. Lichenysin is a
lipopeptide identified in Dongjiu (124) with a concentration
as high as 112 µg/L. One of its properties is antibacterial
activity and antiviral activity (125, 126). Based on structural
similarity to surfactin, it is speculated that lichenysin may
process antitumor properties through tumor cell G2/M arrest;
however, experimental confirmation is needed. A tripeptide Pro-
His-Pro (PHP) has been identified in the sesame-aroma type
of baijiu Gujinggong (127). An in vitro study on human liver
cell line HepG2 cells has demonstrated its ability to up-regulate
cellular antioxidation enzymes, such as superoxide dismutase,
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catalase, and glutathione peroxidase through Nrf2/antioxidant
response in the element signaling pathway. Therefore, PHP
pre-treatment was able to prevent HepG2 cells from oxidative
stress induced by 2,20-azobis (2-methylpropanimidamidine)
dihydrochloride.

The proposed mechanisms of the flavor compounds in
baijiu involved can be summarized as antioxidation, anti-
inflammation, and lipid metabolism modulation (refer to
Figure 2). For antioxidation mechanisms, the flavor compounds
can act as antioxidants to remove ROS and to up-regulate
cellular antioxidation enzyme quantity and activities. For
the anti-inflammatory effects, the flavor compounds may
alleviate hepatic inflammation by modulating NF-κB-regulated
pathways. They can also reduce the hepatic inflammation
induced by liver cell endoplasmic reticulum stress caused by
intracellular oxidation stress (through antioxidation pathways).
For hepatic lipid metabolism modulation, the flavor compounds
enhance lipid degradation and β-oxidation and at the same time
reduce lipogenesis.

Although the aforementioned compounds in baijiu
have potential biological effects, many of them are in low
concentrations. For moderate consumption of baijiu, therefore,
it is less likely that the intake of each of those low-concentration
compounds reaches a sufficient level to exert any effects.
Therefore, it is important to identify the main compounds
that possess the beneficial effects and potential combinational
effects they impose as a whole and elucidate the mechanism
underlining the combinational effects.

6. Discussion

It is commonly accepted that excessive alcohol consumption
or binge drinking (128) leads to ALD as well as advanced
stages of NAFLD. For low to moderate alcohol consumption,
controversial evidence exists on ethanol effects on NAFLD
from epidemiology and clinical studies, and the mechanism
is not entirely clear. The genetic variance of ADH and
ALDH among the study population could convey variation in
effects on the liver.

In addition, the findings from epidemiology and clinical
studies on the effect of the polyphenolic compounds from beer
and wine on NAFLD are inconsistent and inconclusive. For
epidemiological studies, for instance, there are variations in a
range of factors that contribute to the resulting inconsistency.
These factors include but are not limited to the drinking
patterns (frequency and amount, binge drinking or not,
with/without a meal, proportion of wine among total alcohol
consumed), variation of wine consumed, biological variation of
investigated subjects (ethnic, gender, age, health status, etc.),
study duration, and population. Hence, more well-controlled,
long-term, randomized trials are needed.

For baijiu, there are very limited epidemiology and clinical
studies available, most of the evidence is from laboratory based

in vitro and in vivo studies. Different from beer and wine,
baijiu contains a much higher concentration of alcohol. One
could speculate low to moderate baijiu consumption could
result in a much lower intake of bio-activate non-alcoholic
flavor compounds for any potential beneficial effects. However,
laboratory studies demonstrate the significant effects between
baijiu and pure ethanol (100, 102). More laboratory studies
are needed to first verify this difference and then elucidate the
reason/mechanisms behind it. In addition, more specifically
designed, baijiu based epidemiology, and clinical studies are
needed to further investigate the effects of baijiu on the liver
and the mechanism.

7. Conclusion

The non-alcoholic bioactive flavor compounds in beer, wine,
and baijiu have been shown beneficial to NAFLD. The underline
mechanism for the beneficial effects is proposed to involve
modulation of lipid metabolism, reduction of oxidative stress
and damages, and alleviation of inflammation. However, it is
inconclusive whether low to moderate consumption of these
three types of beverages is beneficial to NAFLD. For patients
with NAFLD, it is recommended to abstain, although a low
level of alcohol consumption may be alright. For normal people,
the recommendation is either abstaining or consuming low to
moderate alcohol without binge drinking.
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