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Combination therapy is necessary to treat tuberculosis to decrease the rate of

disease relapse and prevent the acquisition of drug resistance, and shorter

regimens are urgently needed. The adaptation of Mycobacterium tuberculosis

to various lesion microenvironments in infection induces various states of slow

replication and non-replication and subsequent antibiotic tolerance. This non-

heritable tolerance to treatment necessitates lengthy combination therapy.

Therefore, it is critical to develop combination therapies that specifically target

the different types of drug-tolerant cells in infection. As new tools to study drug

combinations earlier in the drug development pipeline are being actively

developed, we must consider how to best model the drug-tolerant cells to

use these tools to design the best antibiotic combinations that target those

cells and shorten tuberculosis therapy. In this review, we discuss the factors

underlying types of drug tolerance, how combination therapy targets these

populations of bacteria, and how drug tolerance is currently modeled for the

development of tuberculosis multidrug therapy. We highlight areas for future

studies to develop new tools that better model drug tolerance in tuberculosis

infection specifically for combination therapy testing to bring the best drug

regimens forward to the clinic.

KEYWORDS

tuberculosis, drug combinations, drug tolerance, dormancy, pharmacodynamics (PD),
pharmacokinetics (PK), drug interaction
Introduction

Tuberculosis (TB) remains notoriously difficult to treat and, until the COVID-19

pandemic, was the leading cause of death by a single infectious agent, Mycobacterium

tuberculosis (Mtb) (WHO, 2021). TB requires lengthy combination therapy to prevent the

acquisition of heritable drug resistance [addressed by others in this collection, including
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fcimb.2022.1085946/full
https://www.frontiersin.org/articles/10.3389/fcimb.2022.1085946/full
https://www.frontiersin.org/articles/10.3389/fcimb.2022.1085946/full
https://www.frontiersin.org/articles/10.3389/fcimb.2022.1085946/full
https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fcimb.2022.1085946&domain=pdf&date_stamp=2023-01-06
mailto:bree.aldridge@tufts.edu
https://doi.org/10.3389/fcimb.2022.1085946
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#editorial-board
https://doi.org/10.3389/fcimb.2022.1085946
https://www.frontiersin.org/journals/cellular-and-infection-microbiology


Greenstein and Aldridge 10.3389/fcimb.2022.1085946
(Bhagwat et al., 2022; Jones et al., 2022; Liebenberg et al., 2022)]

and to effectively target inherent heterogeneity in infection that

results in drug tolerance to prevent treatment failure and

subsequent disease relapse (Fox et al., 1999; Kerantzas and

Jacobs, 2017). Genotypic resistance is defined by the heritable

ability to grow in the presence of high concentrations of

antibiotics beyond the minimum inhibitory concentration

(MIC) (Balaban et al., 2019). Antibiotic tolerance is defined as

the non-heritable ability of bacteria to survive transient exposure

to drugs at concentrations that would otherwise be lethal (Brauner

et al., 2016; Balaban et al., 2019). The current regimen for drug-

sensitive Mtb requires a 2-month intensive phase of rifampicin,

isoniazid, pyrazinamide, and ethambutol followed by a four or

seven-month continuation phase of rifampicin and isoniazid. The

phase III clinical trial (“Study 31”) for a four-month regimen with

rifapentine, moxifloxacin, isoniazid, and pyrazinamide recently

demonstrated non-inferiority to the six-month standard of care

and is now recommended for some patients with drug-sensitive

TB (Dorman et al., 2021; Carr et al., 2022). This progress

notwithstanding, shorter and more effective therapies are

urgently needed for both drug-sensitive and particularly for

drug-resistant TB.

A hallmark of TB pathogenesis is the formation of different

lesion types that have varied structures and provide different

microenvironmental conditions to resident Mtb (Figure 1). Mtb

readily adapts to these different niches to withstand

environmental stressors, often by slowing or halting replication

and metabolic activity. These adaptations enable Mtb to tolerate

drug treatment (Lenaerts et al., 2015; Sarathy and Dartois, 2020).

Because the bacteria occupy separate niches with different

environments, multiple states of drug tolerance exist together,

influencing potential drug activity (pharmacodynamics) (Cadena

et al., 2017). Furthermore, the physical structures of lesions vary,

and drug penetration and accumulation in each lesion are

dependent on the lesion structure and chemical properties of

each drug (pharmacokinetics) (Prideaux et al., 2015; Sarathy et al.,

2016) (Figure 1). Therefore, drug combinations with varied

pharmacokinetic and pharmacodynamic properties are

necessary to target the bacteria in all their locations.

More than twenty-five new TB drugs are at various stages

across the developmental pipeline (newtbdrugs.org). There are

2,300 possible three-way combinations for twenty-five drugs, far

too many to test in vivo. Single-drug responses may not be

indicative of drug combination activity and potential to reduce

relapse, and drugs may not behave in combination as they do alone

due to drug interactions such as synergies and antagonisms. For

example, pyrazinamide, a crucial member of the current standard of

care regimen, is inactive against Mtb in many in vitro growth

conditions and as a monotherapy in vivo (Steenken and Wolinsky,

1954; Cho et al., 2007; Lanoix et al., 2016). However, pyrazinamide

contributes significant sterilizing activity when used for the first two

months of treatment in combination with the other drugs in the

standard of care (Fox et al., 1999). On the other hand, pyrazinamide
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unexpectedly exhibited antagonism when combined with

rifampicin in a 14-day PET/CT clinical study (Xie et al., 2021).

This finding was consistent with the prior evidence that the

combination of rifampicin + pyrazinamide + isoniazid for the

continuation phase of treatment displayed slightly higher relapse

rates than rifampicin + isoniazid without pyrazinamide (East

African- British medical research councils, 1973). Because

combination therapy is necessary to treat TB and single-drug

responses are not informative of combination activity or

interactions, we need to be able to systematically screen and

optimize combination therapies. However, it is logistically

impossible to screen the entire drug combination space in animal

infection models. Therefore, it is critical to be able to perform

systematic combination screens using in vitro and computational

tools that translate to animal and clinical outcomes. There is an

urgent need for in vitro and computational tools that capture the

complex pharmacodynamics (due to drug tolerance) and

pharmacokinetics (due to lesion structure) in infection to design

drug combinations that successfully target the bacteria that are

hardest to access and kill.

Animal models have been a critical part of the preclinical

development of drug combinations. Multiple models are used in

the drug development pipeline to balance throughput, cost, and

information gained. Heterogeneity across animal models and

even within species complicates comparison across models.

Mouse models have been used for decades; the most

commonly used models until recently were the C57BL/6 and

BALB/c models. These mice are genetically resistant to TB

infection and make only cellular granulomas, thus presenting a

major limitation in their ability to recapitulate human disease.

The C3HeB/FeJ model has recently grown in popularity and use;

this model is genetically susceptible to TB and makes both

cellular and caseous granulomas, more similar to human

disease (Driver et al., 2012). Larger animals (i.e., the New

Zealand White rabbit, marmosets, cynomolgus and rhesus

macaques) recapitulate human disease more closely than

smaller animals but are logistically prohibitive for

comprehensive early screens (Lenaerts et al., 2015). Given the

massive combination landscape and logistical limitation of

screening every combination in animal models, many in vitro

models have been developed to mimic the different stressors

encountered in lesions. The utility of these models in predicting

animal and clinical outcomes is not always clear. Standard

minimum inhibitory concentration assays using glucose-based

media optimized for Mtb growth were the gold standard for a

long time. However, it is well-established that glucose is not the

primary carbon source for Mtb in vivo, and Pethe et al.

demonstrated the importance of making measurements of

drug response in more in vivo-like conditions when they

identified a class of drugs with glycerol-specific activity against

Mtb that was inactive in vivo (Pethe et al., 2010). This study also

highlighted the importance of validating the predictive power of

in vitro measurements of in vivo outcomes.
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In this review, we will discuss how heterogeneous lesion

microenvironments give rise to non-replication and subsequent

drug tolerance, why this tolerance requires combination therapy

for effective TB treatment, and the implications for screening assay

design. We review the current state of in vitro and computational

tools for drug screens and speculate on areas of improvement as

they relate to drug tolerance and non-replication. New tools have
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been developed to allow for systematic study of higher-order drug

combinations, including the DiaMOND methodology to reduce

the number of measurements required in the higher-order

combination screening space, a mathematical “dose” model to

predict higher-order combination activity from drug pairs, and

chemo-genomic and regulatory network models to predict drug

interactions from single-drug transcriptomics (Peterson et al.,
B

C

A

FIGURE 1

Representation of complex lesion pharmacokinetics and pharmacodynamics and how combination therapy must be optimized to reach
different populations of drug-tolerant bacteria. (A) Drug pharmacodynamics are dependent on the bacterial state. Rifampicin (RIF) and
moxifloxacin (MOX) exhibit different potencies against non-replicating intracaseum bacilli, non-replicating bacilli (e.g., induced by the Wayne
hypoxia model), and replicating bacilli (e.g., in standard culture media). (B) Drug pharmacokinetics are lesion-dependent. Rifampicin (red) and
moxifloxacin (blue) exhibit different levels of access to caseous lesions due to their drug-specific pharmacokinetic profiles. Inner concentric
circles represent the acellular rim of caseous lesions. Drug combinations (e.g., RIF + MOX, purple) can overcome the pharmacokinetic
limitations of single drugs. (C) Mtb that evade treatment and cause relapse are mainly found in the acellular rim (black) of caseum and in
caseum. Drug combinations should be chosen to capitalize on pharmacokinetic and pharmacodynamic properties such that they access all the
bacteria and kill the different types of drug-tolerant bacteria induced by the microenvironments in those locations.
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2016; Zimmer et al., 2016; Cokol et al., 2017; Ma et al., 2019).

Beyond drug interactions, additional tools have been developed to

consider single-drug and drug combination potency (Wooten

et al., 2021; Li et al., 2022). Computational models have

advanced to incorporate complex pharmacokinetics and

pharmacodynamics to predict drug response outcomes

informed by animal data and clinical data (Pienaar et al., 2017;

Savic et al., 2017; Lyons, 2022). With all these developments, we

have the opportunity to consider how to best utilize all these tools

in the context of drug tolerance for the rational development of

drug combinations that will be most effective in treating TB.
Lesion microenvironments give rise
to non-replication and subsequent
drug tolerance

To identify drugs and combinations that will best target the

bacteria that are most tolerant to treatment, it is critical to

understand the underlying causes of the drug tolerance that is

most difficult to treat, how we currently model environments

that induce drug tolerance, and to fill the knowledge and

technical gaps that will improve our current models.

Heterogeneous lesions are the hallmark of TB infection, and

these lesions present a variety of microenvironments to which

Mtb adapts. TB granulomas are classically categorized as fibrotic,

cellular/non-necrotic, caseous/necrotizing, or cavitating, each

with distinct characteristics (Lenaerts et al., 2015). However,

the reality of infection is more of a spectrum than discrete

classes, and the microenvironmental components are not

homogenous even within one lesion type (Barry et al., 2009).

Mtb adaptation to these environments results in varied drug

tolerance that requires combination therapy to treat effectively.

A critical effect of many of the environmental components that

the bacteria experience is slowing or halting replication. Non-

replication is associated with extreme drug tolerance (Sarathy

et al., 2018). In this section, we detail how different

environments slow and halt Mtb growth, their influence on

drug tolerance, and how they are modeled.
Lipids

Lipids provide a crucial carbon source to Mtb in infection.

Mtb has a remarkable capacity to metabolize different carbon

sources (Wilburn et al., 2018). TB lesions are lipid-rich

environments with varied lipid composition. Mtb induces the

differentiation of infected macrophages into lipid-loaded foamy

macrophages. These infected foam cells contain an abundance of

triglycerides (TAG), cholesterol esters, and free cholesterol, and

the composition is highly conserved across species (Guerrini

et al., 2018). Fatty acid metabolism is required for Mtb to
Frontiers in Cellular and Infection Microbiology 04
establish and maintain infection in vivo and cholesterol

metabolism is required for Mtb persistence (Pandey and

Sassetti, 2008; Marrero et al., 2010). Mtb co-metabolize both;

they incorporate propionyl-CoA (an otherwise toxic byproduct

of cholesterol metabolism) into their cell wall virulence lipids

(e.g., PDIM) by utilizing host-derived long-chain fatty acids

(LCFAs) to provide primers for their synthesis. Quinonez et al.

showed that the accumulation of intermediates from the

methylcitrate cycle, the pathway by which propionyl-CoA is

formed, was associated with drug tolerance (Quinonez et al.,

2022). It should be noted that though Mtb can co-metabolize

cholesterol and many LCFAs, some LCFAs contribute to the

slowing or arrest of Mtb growth (Lee et al., 2013; Rodriguez et al.,

2014). Mtb resides in foamy macrophages in a non-replicating

state (Peyron et al., 2008). As foamy macrophages become

necrotic, they release the bacilli and their lipid-rich content,

which accumulates to form lipid-rich caseum (Russell et al.,

2009). Mtb is generally slowly replicating or non-replicating in

caseum (Sarathy and Dartois, 2020). Mtb in lipid-rich conditions

accumulate intracellular lipid inclusions (ILIs), which are

associated with a dormant state and tolerance to rifampicin

and isoniazid (Deb et al., 2009; Daniel et al., 2011). Intracaseum

Mtb are remarkably tolerant to drugs; many antibiotics that are

bactericidal in standard replicating conditions fail to sterilize

caseum Mtb, and the concentrations of drugs required to kill

Mtb are markedly higher (Sarathy et al., 2018).

Several in vitro models of Mtb lipid metabolism and

drug response in lipid-rich conditions have been developed

and utilized. As the importance of lipids in triggering

Mtb “dormancy” (non-replication) has become more apparent,

there has also been an increase in studies of Mtb transcriptome

in lipid-rich conditions. These experiments have helped

illuminate which lipids drive certain transcriptional and

physiological responses (Rodriguez et al., 2014; Soto-Ramirez

et al., 2017). For example, one study demonstrated that Mtb

adaptation to a lipid-rich (LCFA-based) environment resulted in

the overexpression of five genes in the DosR (dormancy)

regulon. The transcriptional signature of Mtb adapted to

LCFA was also compared against the signatures under hypoxia

and starvation, and it was noted that the LCFA-adapted Mtb had

more genes from the DosR regulon in common with Mtb under

hypoxia than starvation (Rodriguez et al., 2014). These studies

provide insight for choosing lipids to model Mtb adaptation to

stressors encountered in vivo. A few high-throughput single-

lipid models for drug screens have been developed, either short-

chain fatty acid-based or cholesterol-based (Gold et al., 2015;

Early et al., 2016; Larkins-Ford et al., 2021). One study identified

anti-tubercular compounds with butyrate-specific activity that

were not active against Mtb when cultured with glucose (Early

et al., 2016). The caveat of single-lipid studies is that Mtb do not

experience one lipid at a time, and it is plausible that outcomes

from single-lipid studies might not translate across different

lipids. Single-lipid models are typically growth models, but
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intracaseum Mtb, which experience a combination of many

lipids, are slow or non-replicating. A combination of lipids,

with or without additional stressors, might be more reflective of

the environment(s) that Mtb experience in vivo and therefore

provide a better model of lipid-driven dormancy and drug

tolerance for drug combination studies. A notable such model

is ex vivo rabbit caseum, where intracaseum Mtb from ex vivo

rabbit caseum are treated with drugs. These bacilli were

demonstrated to be non-replicating, but unlike simpler non-

replicating models, the drug tolerance observed in these bacilli

was more similar to that observed in vivo, making this a highly

valuable tool for drug screens (Sarathy et al., 2018). High-

throughput multi-stress models that achieve similar results to

ex vivo caseum could therefore be an excellent tool for

combination drug screens.
pH

The pH in different lesions (and even within lesions) varies

widely, from as low as 4.5 in the phagosomal compartment of the

macrophages to 8 in caseum. The pH in caseum varies across

animal models and from patient-to-patient, ranging from acidic

to mildly basic (Lanoix et al., 2016; Kempker et al., 2017; Sarathy

and Dartois, 2020). Recently, it was demonstrated that even

within one lesion, the pH varies; a pH/Cl- reporter strain was

used to show that Mtb in infected C3HeB/FeJ mice experience

more acidic pH at the lesion cuff than in the caseous core, and

this correlated with reduced bacterial replication and increased

antibiotic tolerance at the lesion cuff (Lavin and Tan, 2022). Mtb

adaptation to acidic pH results in altered drug susceptibility

(Baker et al., 2019). Mtb is viable at acidic pH but slows its

growth with increasing acidity and halts growth entirely at pH

5.0 (Piddington et al., 2000; Baker et al., 2014). Notably, growth

arrest at low pH is carbon source-specific; Mtb halts replication

at pH 5.7 with glucose, glycerol, and TCA cycle intermediates

but grows at pH 5.7 with host-associated carbon sources that

function at the intersection of glycolysis and the TCA cycle

(Baker et al., 2014). Mtb under acidic growth arrest are

metabolically active (Baker and Abramovitch, 2018).

Therefore, these cells are non-replicating but not necessarily

“dormant” by the classical definition and may be metabolically

or transcriptionally distinct from other populations of non-

replicating Mtb induced by other microenvironments.

Though caseum is acidic in some lesions, the observation of

neutral caseum in some lesions suggests that acidity is not the

primary driving factor of non-replication and drug tolerance in

caseum. A few in vitro models of Mtb adaptation to acidic pH

have been developed for drug screens (Gold et al., 2015; de

Miranda Silva et al., 2019; Early et al., 2019b; Larkins-Ford et al.,

2021). One such model uses pH 4.5 to induce a non-replicating

state and luminescent activity or a fluorescent reporter to

measure viable bacteria (Early et al., 2019a; Early et al.,
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2019b). This assay was used to identify compounds with

specific activity against non-replicating bacteria. Compounds

with pH-dependent activity were also identified (Early et al.,

2019a). A caveat of this model is that the acidic medium is low-

nutrient. Therefore, it cannot be stated with certainty if the

acidic pH was the primary driver of this particular non-

replicating model, as starvation independently induces non-

replication (Betts et al., 2002; Grant et al., 2013). A recent

study demonstrated that LCFAs palmitic acid, oleic acid, and

arachidonic acid enabled growth at pH 5.5, and supplementation

of cholesterol to palmitic acid or oleic acid further enhanced this

growth. Repeated supplementation of oleic acid permitted

growth at pH as low as 4.5, albeit with decreasing growth rate

(Gouzy et al., 2021). Therefore, in a low pH, low-nutrient model,

the lack of nutrients potentially influences the bacterial ability to

adapt to acidic pH and induces non-replication. A comparison

of the transcriptome of different models of acid-adapted Mtb

and other non-replication models may provide insight into the

driving component of Mtb’s response in those models.

Understanding the driving components of non-replication

may be valuable in predicting drug tolerance profiles (e.g., how

tolerant the bacteria are to a set of drugs). For example, if each

non-replicative state induced by different conditions is

transcriptionally distinct, will they exhibit unique drug

tolerance profiles? Furthermore, is there a primary driver in

multi-stress-induced non-replication that results in a similar

transcriptome and drug tolerance profile for the multi-stress to

that of the primary driver, or are multi-stress models of non-

replication transcriptionally distinct from the single-stress

models? This information could be used to predict the drug

tolerance profile of bacteria in specific locations of a lesion based

on the type of non-replication induced by the local

environmental components.
Ion and metal availability

Macrophage response to infection includes changes in ion

flux, and Mtb has a variety of mechanisms to adapt to these

responses (Neyrolles et al., 2015). Mtb responds to high chloride

in a linked transcriptional response to acidic pH during

phagosomal maturation, and Mtb potassium uptake is shown

to play a role in host colonization (Tan et al., 2013; MacGilvary

et al., 2019). Zinc-limited Mtb display decreased sensitivity to

oxidative stress and some antibiotics (Dow et al., 2021). Zinc

limitation signals Mtb to build alternative ribosomes (Prisic

et al., 2015). These alternative ribosomes were shown to be

essential for M. smegmatis growth in an iron-depleted

environment (Chen et al., 2020). Mtb upregulate virulence

factors in response to iron limitation (Rodriguez et al., 2022);

in turn, iron starvation leads to the transition of Mtb to a non-

replicative state and subsequent drug tolerance (Kurthkoti et al.,

2017). Intracellular (macrophage) Mtb exhibit a similar
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transcriptional response to Mtb cultured in low-iron media,

indicating Mtb experience a low-iron environment in the

phagosome (Schnappinger et al., 2003). These different states

may therefore represent a critical component of the host

response to infection that should be considered in in

vitro models.

Ion perturbation models are largely overlooked for drug

screens; ion studies tend to be mechanistic or study effects on

host colonization rather than drug susceptibility. However, a

recent macrophage infection drug screen demonstrated that one

of the hit compounds limited Mtb’s access to iron by acting as an

iron chelator. Mtb also has a greater dependency on iron when

cultured with cholesterol as the sole carbon source, linking iron

uptake and cholesterol metabolism (Theriault et al., 2022).

Another recent study demonstrated that iron levels play a role

in modulating transcriptional responses to growth arrest when

Mtb transition from exponential growth to stationary phase

(Alebouyeh et al., 2022). Iron uptake’s role in non-replication

and the influence of iron availability on drug tolerance

warrant further investigation and incorporation into drug

response screens.
Oxygenation

Hypoxia has been recognized as an important feature within

some granulomas. Caseous necrotic granulomas in guinea pigs,

rabbits, and non-human primates were all demonstrated to be

hypoxic (Via et al., 2008). C57BL/6 and BALB/c mice only

develop cellular lesions, which are not hypoxic, but C3HeB/FeJ

mice develop hypoxic caseous necrotic lesions (Harper et al.,

2012). Mtb exposure to hypoxia induces expression of the Mtb

dormancy survival regulator dosR. Hypoxia induces dormancy

by the more classical definition of non-replication and decreased

cellular functions, including DNA and protein synthesis

(Sherman et al., 2001; Rao et al., 2008). Mtb is markedly more

tolerant to drugs in an anaerobic environment relative to aerobic

(Cho et al., 2007).

One of the first major models of Mtb survival in hypoxia is

the Wayne model, in which Mtb descend into a hypoxic

environment in a controlled, gradual manner. They describe

two distinct states of non-replicating persistence, NRP1 and

NRP2, each with distinct drug-dependent drug tolerance profiles

(Wayne and Hayes, 1996). While both are non-replicating, they

have distinct transcriptional profiles (Muttucumaru et al., 2004).

Though this model is not amenable to high-throughput screens,

it highlights how Mtb survives using transcriptionally distinct

states of non-replication and how this translates to different

types of drug tolerance. Abramovitch and colleagues utilize

another model of gradual descent into hypoxia in which Mtb

grows in multi-well plates for six days, resulting in oxygen

consumption and promoting hypoxic conditions at the

bottom of the wells (Zheng et al., 2017). The low-oxygen-
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recovery assay (LORA) is a drug screen assay where drug-

treated autoluminescent bacteria are placed under anaerobic

conditions for ten days and recovered with oxygen for 28 hours,

after which luminescence is measured (Cho et al., 2007). The

LORA can be used to identify drugs with activity against non-

replicating bacteria. This assay does not specifically distinguish

between NRP1 and NRP2; based on the timescale of the assay, it

is a model of NRP1. A caveat of the model is that there could be

drug carryover during the recovery phase. Given the evidence

that non-replicating bacteria are more drug-tolerant than

replicating, drug carryover into the recovery phase could

potentially confound the results. This might explain the noted

discrepancies between luminescence assay-based minimum

inhibitory concentrations (MICs) and colony-forming unit

(CFU)-based MICs (Cho et al., 2007).

It is unlikely that Mtb experience sudden anaerobiosis in

vivo; rather, access to oxygen likely decreases gradually. Sudden

anaerobiosis is lethal to Mtb cultures. The Wayne and LORA

models both create anaerobic conditions gradually, allowing Mtb

to adapt and halt replication. Mtb can respire nitrate in the

absence of oxygen and nitrate enhances Mtb survival under

anaerobiosis (Sohaskey, 2008). Therefore, some hypoxic models

use sodium nitrate as an alternate electron acceptor for Mtb.

Gold et al. developed a multi-stress model that includes a lipid

carbon source (butyrate), hypoxia, sodium nitrate, and acidic pH

(5.5). This combination of stressors induces non-replication.

The multi-stress model is unique in that three of the media

components are independent drivers of dormancy (hypoxia,

reactive nitrogen intermediates, and acidic pH without

starvation). The assay compares replicating and non-

replicating bacteria and distinguishes bacteriostatic and

bactericidal compounds. In lieu of plating and counting

colony-forming units to quantify drug effect, which is too

resource-intensive, this model was paired with the charcoal

agar resazurin assay (CARA), wherein the drug-treated

bacteria are transferred to agar with activated charcoal in

multi-well format for outgrowth for seven days, and then

fluorescence is measured. The activated charcoal serves to

inactivate any carryover drug (Gold et al., 2015). The CARA is

a useful method for measuring drug activity against non-

replicating bacteria in a high throughput manner. The multi-

stress model developed by Gold et al. was recently modified to

use sodium nitrate and hypoxia in a lipid-rich environment to

induce dormancy for drug combination screening (Larkins-Ford

et al., 2022).

Many interesting questions remain unanswered: is there a

distinction between combination-stressor-induced dormancy

versus single-component-induced dormancy as they relate to

drug tolerance? If one stressor (i.e., hypoxia) can induce multiple

states of non-replicating drug tolerance (i.e., NRP1 and NRP2),

then it is plausible that multiple stressors could, as well.

Understanding the different transcriptomic and drug response

profiles of different dormancy/non-replication states is key to
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identifying which are most important to model for drug

combination screens. Mtb can survive in a dormant state for a

remarkably long time; one study demonstrated that after one

year of dormancy, Mtb’s proteome remained similar to the

proteome of 4-month dormant bacteria (Trutneva et al., 2020).

Though many different models of non-replication have been

developed, the time of bacterial exposure to the conditions is

typically short (<= seven days), and an in-depth analysis of the

relationship between time spent in a non-replicating or dormant

state and drug tolerance is lacking. Furthermore, does the

method of induction of non-replication influence the rate at

which Mtb can resume replication from a non-replicating state?

Soto-Ramirez et al. have shown differential gene expression and

different rates of change in gene expression upon re-oxygenation

from NRP1 and NRP2 states dependent on lipid carbon source,

indicating that the growth environment may play a role in when

and how Mtb exits a non-replicative state (Soto-Ramirez et al.,

2017). When caseous lesions cavitate, the bacteria rapidly switch

from a hypoxic environment to high oxygenation, allowing them

to exit dormancy and resume replication. Mtb’s ability to rapidly

recover from non-replication therefore influences its survival.

Combination therapy is key to
preventing relapse: The connection
to drug tolerance

Combination therapy’s superiority over monotherapy in

bactericidal activity and preventing relapse is well-established;

however, drug screens and animal and clinical studies

typically focus on outcomes and rarely investigate and

understand the relationship between this superiority and

targeting drug tolerance. Early studies in the development of

the current standard of care (isoniazid + rifampicin +

pyrazinamide + ethambutol, or HRZE) found that the

addition of rifampicin or pyrazinamide to the treatment

regimen with streptomycin and isoniazid reduced disease

relapse and including both allowed for shorter treatment

duration (Fox et al., 1999). Though it was initially thought

that this success was due to drug synergy (East African- British

medical research councils, 1974), it was ultimately attributed

to activity against semi-dormant bacteria (Dickinson and

Mitchison, 1981). This was demonstrated using in vitro

studies of isoniazid- or rifampicin-treated Mtb whose

growth rate was sta l led by decreas ing incubat ion

temperature or culture in acidic conditions. Short exposure

to optimal growth conditions resulted in short recovery bursts,

during which rifampicin had greater bactericidal activity than

isoniazid, suggesting that rifampicin is better at killing these

bacilli that are semi-dormant, that is, dormant much of the

time with occasional metabolic bursts. Pyrazinamide has also

been demonstrated specifically to target dormant (non-

replicating) bacilli and loses its sterilizing activity when
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metabolic activity resumes (Hu et al., 2006). Therefore,

using multiple drugs in combination may reduce the

incidence of relapse by targeting multiple bacterial states in

infection. In support of this, Mitchison and colleagues used a

guinea pig model and showed that the addition of rifampicin

to isoniazid or isoniazid + ethambutol did not increase the

bactericidal activity of the combination but reduced relapse,

suggesting that the success of the combination was not in

additional killing, but in killing particular cells that would

have otherwise caused relapse (Dickinson and Mitchison,

1976). Walter et al. proposed a ribosomal RNA synthesis

ratio as a metric to distinguish sterilizing and non-sterilizing

drugs and drug combinations and demonstrated its utility

both in vitro and in the relapsing mouse model (Walter et al.,

2021). This method could be used to provide molecular insight

into how sterilizing combinations modulate cellular processes

in subpopulations of drug-tolerant Mtb. Furthermore, the

combination of the ribosomal RNA synthesis ratio with CFU

measurement in the mouse model was recently found to be

more informative of treatment-shortening potential than

either metric alone (Dide-Agossou et al. , 2022). A

combination of pharmacodynamic markers could enhance

our understanding of how combination therapy targets

drug-tolerant cells both in vitro and in vivo.

Successful treatment of TB requires killing the bacteria that

would otherwise remain to cause relapse. These cells may reside

in different lesions and therefore exhibit different types of drug

tolerance due to adaptation to different microenvironments.

Combination therapy with multiple modes of action offers

greater potential over monotherapy to kill multiple types of

drug tolerance, and the best combinations will be those that

successfully target different types of drug tolerance. Though this

has not been demonstrated systematically, empirical evidence

supports this concept: bedaquiline and pretomanid, which have

performed remarkably well in both animal and clinical studies

and have been approved in combination with linezolid for

MDR-TB (NiX-TB) (Conradie et al., 2020), target both

replicating and non-replicating bacteria, and have been shown

to be particularly potent against non-replicating bacteria

induced by different microenvironmental conditions (Cho

et al., 2007; Koul et al., 2008; Tasneen et al., 2011; Gold et al.,

2015). Their superior sterilizing performance could be attributed

to their ability to target multiple types of drug tolerance.

Recently, a four-month regimen with rifapentine and

moxifloxacin was found to be non-inferior to the standard of

care (“Study 31”) (Dorman et al., 2021). In preclinical studies,

moxifloxacin exhibited potent early bactericidal activity in

treatment (Nuermberger et al., 2004). Moxifloxacin’s potent

activity against both replicating and non-replicating Mtb may

contribute to this more rapid clearance. Taken together, the

evidence suggests that combination therapy is required to reduce

relapse, and the most effective regimens will include drugs that

target multiple types of drug tolerance.
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Lesion structure influences drug
access: Consideration in
drug screens

Heterogeneous lesions also result in varied drug access,

absorption, and metabolism (i.e. , pharmacokinetics)

dependent on lesion structure, which drives the necessity of

combination therapy to ensure that one or more of the drugs

can access all the different locations and be effective in those

locations (Figure 1). MALDI mass spectrometry imaging

(MSI) has been used to show how different drugs penetrate

caseum in vivo (Sarathy et al., 2016). Pyrazinamide and

isoniazid penetrate fairly evenly, but bedaquiline, which is

highly lipophilic, binds intracellular lipids and caseum

macromolecules and penetrates caseum very poorly (Sarathy

et al., 2016; Greenwood et al., 2019). Clofazimine, which is

highly effective against Mtb in BALB/c mice (which make

exclusively cellular lesions), is relatively ineffective against

Mtb in C3HeB/FeJ mice (which develop caseous necrotic

lesions) (Irwin et al., 2014). Pharmacokinetic modeling

demonstrated that clofazimine accumulates in cellular layers

and does not diffuse into necrotic foci, explaining the lack of

efficacy in the C3HeB/FeJ mice (Prideaux et al., 2015).

Therefore, modeling lesion drug access to ensure that

sufficient drug(s) reach the different types of drug tolerance

in all their locations is important for the design of

effective combinations.

Pharmacokinetics are also important when considering drug

interactions; if an antagonistic combination of drugs do not act

in the same location, the antagonism may not be realized.

Lesion-specific and caseum-specific pharmacokinetics are

studied using a combination of MSI in vivo, ex vivo rabbit

caseum, and in vitro caseum surrogate derived from foamy

THP-1 macrophages (Sarathy et al . , 2016). Lesion

pharmacokinetics are also modeled using computational

models, typically informed by in vivo data (Kjellsson et al.,

2012; Prideaux et al., 2015). Most pharmacokinetic/dynamic

(PK/PD) models do not consider drug interactions. Recently

INDIGO-MTB, a computational tool to predict drug

interactions using transcriptomics, was integrated with

GranSim, a multi-scale model of tuberculosis granuloma

formation. GranSim incorporates host immunity, Mtb growth

dynamics, and drug PK/PD into one computational framework

that describes interactions between these entities through space

and time in granuloma evolution (Cicchese et al., 2021).

Expanding this and other models to consider drug

combinations, drug interactions, varied drug tolerance, and

lesion-specific pharmacokinetics could provide invaluable

information for the development and improvement of effective

drug combinations.
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Computational modeling to link in
vitro models with animal
and clinical outcomes

Though many lesion microenvironmental components are

thought to affect drug susceptibility in some capacity, it may be

that we do not need to model every single one to capture the

drug tolerance that causes disease relapse, i.e., the bacteria that

are hardest to treat. Instead, we should identify which of these

environmental niches and resultant bacterial states represent the

bacteria that are most difficult to treat. Using a guinea pig model,

Lenaerts and colleagues showed that the bacteria that remained

after treatment were extracellular, primarily in the hypoxic

acellular rim of caseous necrosis (Lenaerts et al., 2007). A

marmoset study showed that the difference between sterilizing

and non-sterilizing regimens was rapid clearance of cavitating

lesions by the sterilizing regimen, indicating that drug

combinations must target the cavitating lesion for a better

outcome (Via et al., 2015). Given the complexity of the

tuberculosis heterogeneity, computational models are a critical

tool to link in vitro drug responses to such treatment outcomes

in animals and the clinic. Recently Larkins-Ford et al. used a

machine learning approach to predict relapse outcomes in the

BALB/c mouse model from a suite of drug combination potency

and interaction measures made in a variety of growth conditions

to model the different environments in TB lesions (Larkins-Ford

et al., 2021). This study demonstrated that in vitro

measurements of response to drug combinations made in a

subset of growth conditions (as a “sum of parts”) could be

predictive of in vivo outcomes. Some sets of conditions were

more predictive of in vivo response than others, thereby

identifying validated sets of in vitro models as suitable for

drug combination screening. We have yet to understand

whether or not measurement in more complex growth

conditions that combine these “parts” into one condition (i.e.,

a multi-stress model) will be more predictive than the sum of

parts approach. Improving in vitro models to capture the

environments that result in drug tolerance that enables the

bacteria to survive beyond treatment and correlating response

in these models to in vivo outcomes is a clear next step.

Computational and mathematical modeling offer the

advantage that they are inherently optimal for iterative

learning and can leverage in vivo outcome data.

To get the best prediction from computational models, the

input from in vitro models must be optimized and streamlined.

Several tools have been developed to improve the quality and

utility of metrics from in vitro models of drug combination

activity (summarized in Table 1). Diagonal measurement of n-

way drug interactions (DiaMOND) is a method to measure drug

interactions using only a fraction of the drug-dose combination
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matrix (“checkerboard”), which is logistically prohibitive to

measure for higher-order of systematic studies (Cokol et al.,

2017). DiaMOND measures dose response curves, enabling the

collection of additional metrics beyond drug interaction,

including combination potency metrics. MuSyC is another

framework that calculates drug interactions and distinguishes

between different types of combination effects (whether we

consider dose or efficacy to evaluate drug synergy) to

overcome conflicting assumptions of the widely used Loewe

Additivity and Bliss Independence principles and to account for

drug interactions and combination potencies (Wooten et al.,

2021). This widening of combination effects from only

measuring traditional synergy may be important in our ability

to develop predictive models of in vivo outcomes from in vitro

data. Larkins-Ford et al. recently demonstrated that combination

potency metrics were important to accurately predict treatment

outcomes in mouse models (Larkins-Ford et al., 2021; Larkins-

Ford et al., 2022). Additional modeling techniques utilize

pairwise drug response measurements to predict high-order

drug interactions (Zimmer et al., 2016; Katzir et al., 2019) and

in vivo treatment outcomes (Larkins-Ford et al., 2022) as a path

to reduce the number of measurements required to study the

increasingly large drug combination space and still obtain

informative metrics beyond traditional drug interactions.

Other new computational tools incorporate pathway-specific

effects of drug action to predict drug interactions (Peterson

et al., 2016). INDIGO (inferring drug interactions using chemo-

genomics and orthology), for example, uses transcriptomic data

from single-drug responses to predict drug interactions

(Chandrasekaran et al., 2016; Ma et al., 2019). These

integrated molecular approaches may help us understand the

pathways underlying drug tolerance and combination

drug response.

More complex, mechanistic computational models integrate

host-pathogen interactions, pharmacodynamics, and

pharmacokinetics (summarized in Table 1) (Ernest et al.,

2021). GranSim is a multi-scale, agent-based model that

captures the temporal and spatial dynamics of immune cell

activity, bacterial growth, and bacterial killing by drugs in

different lesion types, informed by pharmacokinetic and

pharmacodynamic data from non-human primates and

rabbits. These dynamics are captured at the molecular, scale,

and whole lesion scales. As new in vivo data are acquired, the

model may be updated. GranSim has demonstrated how changes

in cytokines influence early infection and lesion formation

(Fallahi-Sichani et al., 2011; Wong et al., 2020). GranSim can

also be integrated with other computational frameworks,

including INDIGO-MTB and a constraint-based model (CBM)

that predicts Mtb metabolism and growth. GranSim-CBM is

used to predict how environmental influence on Mtb

metabolism and growth influences granuloma development

and outcomes (Pienaar et al., 2016). The hollow fiber system

model of tuberculosis is an in vitro drug development tool to
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optimize drug regimens and dose selection to maximize drug or

combination efficacy and minimize the emergence of genotypic

resistance. The in vitro system has a pharmacodynamic

compartment that houses the bacteria and a pharmacokinetic

compartment with semipermeable hollow fibers that allow drugs

to diffuse to the pharmacodynamic compartment in a manner

that mimics the appropriate concentration-time profile for the

drugs. The results of the in vitro experiments are used in Monte

Carlo simulations to predict outcomes in clinical populations

(Gumbo et al., 2004; Gumbo et al., 2015). Another PK/PDmodel

incorporates human clinical data to simulate the outcome of

various multi-drug regimen scenarios (available at http://www.

saviclab.org/systems-tb/) (Fors et al., 2020). Savic and colleagues

have developed population PK/PD models that were used to

determine the optimal dose of rifapentine with the most

potential to shorten the duration of treatment based on

outcomes from phase II clinical trials (Savic et al., 2017). This

information was used to inform the dosing strategy for the phase

III clinical trial for Study 31, which was found noninferior to the

6-month standard of care (Dorman et al., 2021). Incorporating

validated in vitro model data that capture the drug tolerance in

vivo in PK/PD models offers the potential to predict treatment

outcomes at the granuloma level and to fine-tune and optimize

regimens to target the bacteria that would otherwise withstand

treatment either due to drug tolerance or poor drug access and

cause relapse.

Though the field of computational models and mathematical

frameworks for measuring combination drug response has seen

tremendous progress and innovation, gaps remain. Tools like

INDIGO-MTB and the dose model enable the prediction of

higher-order interactions from single-drug transcriptomics or

pairwise drug interactions and raise the question of the necessity

of higher-order combination screens. Recently Larkins-Ford

et al. demonstrated that synergy and potency metrics derived

from pairwise combination measurements could be used to build

successful higher-order combinations (Larkins-Ford et al.,

2022). Streamlining predictive metrics of treatment outcomes

(both animal and clinical) and the definition of “systematic” (is

pairwise sufficient or is higher-order necessary)? is important to

improve the in vitro data that will be used in modeling. There is

also a need for a system to report failed regimens to improve

computational models. Understanding why regimens failed will

help inform model parameters to identify other combinations

that might also fail.
Looking forward: The future of TB
combination therapy and models of
drug tolerance

The development of improved, streamlined in vitro models

that inform computational models is not the end of the line.
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Additional considerations that may improve models include

single-cell heterogeneity and strain-to-strain differences. For

example, innate growth and metabolic differences among

closely related bacilli create subpopulations that are

differentially susceptible to drug treatment (Aldridge et al.,

2012; Manina et al., 2015; Rego et al., 2017; Shee et al., 2022).

Antibiotic-stressed, replicating mycobacteria display drug

tolerance at the single-cell level; antibiotic-induced tolerance

and tolerance in replicating Mtb warrant further study

(Wakamoto et al., 2013; Zhu et al., 2018). It is unknown if and

how much single-cell heterogeneity contributes to the

subpopulations of bacteria in humans that survive beyond

treatment to cause relapse. Once we have improved and

validated in vitro models of non-replicating Mtb that survive

beyond treatment, single-cell studies can be used to determine if
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certain cells exhibit identifiable transcriptomic or morphological

markers that pre-dispose them to greater drug tolerance. We

might also consider the effects of resistance mutations on drug

combination activity. Schrader et al. showed that mutations that

arise due to exposure to one antibiotic can cause multiform

antibiotic resistance, i.e., different types of drug tolerance that

may not be heritable (Schrader et al., 2021).

Effective targeting of drug-tolerant Mtb will also require that

we understand how Mtb lineage contributes to different

manifestations of tolerance. Different Mtb strains exhibit

differences in virulence, adaptation to environmental stressors,

and drug tolerance (De Groote et al., 2012; Tizzano et al., 2021).

Using genome-wide association studies (GWAS), Hicks et al.

identified SNPs in clinical strains of the Beijing lineage

associated with propionate metabolism that conferred drug
TABLE 1 Summary of mathematical frameworks and computational tools used to study drug combinations and PK/PD in TB.

Method Application Advantage to pipeline Limitations

Dose model (Zimmer
et al., 2016; Katzir et al.,
2019)

Mathematical model to predict higher-
order in vitro drug combination response
from pairwise data

★ Reduces the number of combination
measurements needed by predicting higher-
order measurements above pairwise

• Predicts in vitro values (not in vivo)
•Not compatible with drugs that cannot achieve complete
inhibition or killing

INDIGO (Chandrasekaran
et al., 2016; Ma et al.,
2019; Cicchese et al., 2021)

Machine learning model to predict drug
interactions using single-drug
transcriptomic data

★ Reduces the number of combination
measurements needed
⧠ Provides molecular insights
❖ predicted interactions shown to correlate
with clinical efficacy
❖ Used with GranSim to predict influence of
drug interaction on bacterial killing rate in
granulomas and correlate to clinical efficacy

• Does not account for dose response or pharmacokinetics
• Predicts only drug interaction metrics
• Merger of gene expression data from different sources may
require batch normalization

DiaMOND (Cokol et al.,
2017; Larkins-Ford et al.,
2021)

Methodology to reduce the number of in
vitro measurements necessary to capture
the drug combination checkerboard space

★ Increased efficiency in in vitro
measurements enables more combinations
and conditions to be screened
⧠ Combination dose response offers multiple
usable and interpretable metrics for
prediction of in vivo/clinical outcomes
❖ Used in machine learning models to
predict treatment outcomes of large numbers
of combinations in preclinical models

• Ideal approximation of synergy requires equally potent
concentrations of drug in combination; deviation from
equipotency compromises accuracy
• Equally potent concentrations of drugs in combination do
not reflect pharmacokinetics
• This geometric approximation will not be accurate for very
asymmetric drug interaction

Hollow fiber model
(Gumbo et al., 2004;
Gumbo et al., 2015)

In vitro tool to model and measure PK/PD
combined with computational modeling

⧠ Experimental approach incorporates PK in
vitro, allowing for in vitro regimen design
❖ Used in Monte Carlo simulations to
predict optimal doses of drugs
❖ Used to predict outcome in clinical
patients from in vitro data

• Low-medium throughput
• Does not model components of the immune response

GranSim (Fallahi-Sichani
et al., 2011; Pienaar et al.,
2017; Cicchese et al., 2021)

Multi-scale spatial-temporal model of Mtb-
immune cell dynamics in granuloma
formation and resolution with drug
treatment

★ Parameters easily changed for new
simulations (e.g., to modulate specific
cytokine production)
❖ Outcome combines granuloma immune
contribution with drug response
❖ Used to predict granuloma outcomes in
response to drug treatment (e.g., bacterial
burden, time to sterilization)
❖ Tool to design and optimize regimens for
preclinical models

• Running agent-based models is computationally intensive
• Low-medium throughput

PK/PD modeling (Savic
et al., 2017; Strydom et al.,
2019; Fors et al., 2020)

Model to analyze drug exposure-response
relationship in clinical population

❖ Provides clinical dosing strategy based on
treatment-shortening potential (used for this
purpose for Study 31)
❖ Outcome combines host immune
contribution with drug response
❖ Predicts clinical population and individual
outcomes
❖ Tool to design and optimize regimens for
preclinical models and clinical trials

• PK/PD models use animal data inputs to set model
parameters, therefore relying on assumptions that scaling
between species and host immune response across species are
equivalent
• Low-medium throughput

Symbols under “Advantage to pipeline” represent advantage class:⧠ novel combination effects (i.e., metrics)★ increases efficiency of combination measurement ❖ capable of or used
for prediction of in vivo or clinical outcomes.
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tolerance to certain drugs (Hicks et al., 2018). Recently Li et al.

utilized CRISPRi technology to quantify the expression of Mtb

genes and bacterial fitness in the presence of different drugs and

discovered genetic mechanisms of intrinsic drug tolerance. Upon

comparing this data against genomics of Mtb clinical isolates,

strain-dependent mutations were discovered that conferred

specific drug susceptibility (Li et al., 2022). These studies offer

the possibility to tailor drug combinations toMtb lineage based on

genetic differences across lineages. Another recent study showed

that the resR transcriptional regulator is a frequent target of

positive selection for mutations and that strains with these

mutations exhibit antibiotic “resilience,” which describes the

potential for antibiotic tolerance and genetic resistance. The

bacilli harboring these mutations exhibited more rapid post-

antibiotic recovery than wild-type cells (Liu et al., 2022). This

new finding demonstrates that we must better understand the

various strategies Mtb uses to recover from drug treatment

beyond standard definitions of non-replication and dormancy
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so that we can design combination therapies that target these

subpopulations. To ensure that drug combinations adequately

target tolerance across lineages and resilient subpopulations,

multiple (clinical and laboratory) strains could be used in in

vitro models for combination drug screens. We propose an

iterative learning process (Figure 2) to develop improved drug

combinations where in vitro models of non-replicating-induced

drug tolerance are used to screen drug combinations. Streamlined

drug interaction and potency metrics would be used as input for

computational models of complex PK/PD to identify better drug

combinations to target drug-tolerant Mtb. Computational models

should then identify potential populations that could cause relapse

and then loop back to the in vitro models to redesign the

combinations to better target those populations. Multiple strains

could then be tested and used as additional input in the

computational model so that the best regimens that target drug

tolerance across lesions and strains are carried forward to test in

animals and the clinic.
FIGURE 2

Paradigm for iterative modeling of drug combinations using in vitro and computational tools to reduce the drug combination space for in vivo
testing and clinical trials. Each iterative step of drug combination design should reduce the number of combinations or regimens to test in the
next step (represented with funnels). The tools in the in vitro exploration space (blue) allow for exhaustive combination screens while requiring
fewer measurements. Specialized tools like the hollow fiber system allow for in vitro PK/PD exploration. The output of in vitro models is input
into computational models (purple) for empirical prediction of in vivo efficacy and used with in vivo PK study data in mechanistic predictions of
in vivo PK/PD outcomes. The best combinations from model predictions can then go back to the in vitro space (blue) for expanded testing (e.g.,
with different Mtb strains, different culture conditions), and the prioritized combinations from expanded in vitro testing would be input again
through computational models (gray arrows). The best regimens from model predictions are tested in preclinical models (green), and the best
regimens from preclinical models can go back to in vitro exploration and computational models for further refinement of the models and
experimental design (gray arrows). Iterative improvement of regimens allows for optimized combinations to go to clinical trials.
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Concluding remarks

TB requires lengthy multidrug treatment due to populations of

drug-tolerant bacteria that arise from the heterogeneity of

infection. Complex lesion structure and microenvironments

induce multiple types of non-replicating bacterial populations

with differential drug susceptibility and variable drug access.

Combination therapy is required to target these populations in

all their locations, and better tools for in vitro screens are urgently

needed. The ability to screen combinations systematically will

enable us to consider the best combinations that will target drug-

tolerant cells in a data-driven manner. Incorporating these data in

lesion-scale PK/PD models that simulate which bacteria evade kill

will also help inform which niches in the lesions induce the drug

tolerance that results in relapse. Understanding which bacterial

subpopulations remain will inform better choices of compounds to

target those types of tolerance. Those drugs can then be included in

systematic combination screens to design optimized combinations

that target the types of drug-tolerant bacteria that evade kill. To

achieve this goal, we must fill the knowledge gaps delineated in this

review about the drug-tolerant non-replicating populations,

streamline measurements from combinations screens, and

optimize computational models of PK/PD to account for drug

combinations and multiple types of drug tolerance.
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