
Computing
DOI 10.1007/s00607-014-0405-x

Managing the complex data center environment:
an Integrated Energy-aware Framework

Alexandre Mello Ferreira · Barbara Pernici

Received: 31 August 2013 / Accepted: 23 April 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract The problem of Information Technology energy consumption has gained
much attention due to the always increasing use of IT both for business and for per-
sonal reasons. In particular, data centers are now playing a much more important role
in the modern society, where the information is available all the time and everywhere.
In this context, the aim of this paper is to study energy efficiency issues within data
centers from the Information System perspective. The proposed approach integrates
the application and infrastructure capabilities, in which the enactment of adaptation
mechanisms is aligned with the business process. Based on both energy and qual-
ity dimensions of service-based applications, a model-based approach supports the
formulation of new constrained optimization problem that takes into consideration
over-constrained solutions where the goal is to obtain the better trade-off between
energy and quality requirements. These ideas are combined within a framework where
time-based analysis allow the identification of potential system threats and drive the
selection of adaptation actions improving overall energy and quality requirements,
represented by indicators satisfaction. In addition, the framework includes an evolu-
tion mechanism that is able to evaluate past decisions feedback in order to adjust the
model according to the current underlying environment. Finally, the benefits of the
approach are analyzed in an experimental setting.

Keywords Complex information systems · Green information systems ·
Adaptive services · Green performance indicators · Green IT ·
Goal-based model · Identification of system threats ·
Computational intelligence for IS evolution

A. M. Ferreira (B) · B. Pernici
Dipartimento di Elettronica e Informazione, Politecnico di Milano, Milan, Italy
e-mail: melloferreira@gmail.com

B. Pernici
e-mail: pernici@elet.polimi.it

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/55247971?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A. M. Ferreira, B. Pernici

Mathematics Subject Classification 68U01 · 68U35 · 68T05

1 Introduction

The pervasive usage of Information and Communication Technology (ICT) in the mod-
ern society is emerging as one of the critical environmental challenges to be dealt with.
Despite the many facets of the problem, like devices manufacturing and disposal, in this
paper we focus on energy aspects. Energy consumption and energy efficiency of ICT
centers gained priority due to high computing demand and new environmental regula-
tions. Cloud computing paradigm has been an important contributor for increasing data
centers importance, where users are always connected through different devices. The
Greenpeace 2012 year report [1] states that “data centers are the factories of the 21st
century Information age” which can consume as much electricity as 180,000 homes.

In order to drop the electricity load of ICT equipment, Green IT [2] (Information
Technology) in its first wave provided solutions to save energy from hardware (such
as processors able to scale up and down their computational capacity) and software
(like virtualization) layers. In the second wave, which is called as Green ICT/IS (Infor-
mation System), the solutions are extended to the entire equipment life-cycle, such
as eco-friendly procurement and recycling. To cope with these emerging challenges,
data centers have adopted Service Oriented Architectures (SOA) [3], in which the
available computing resources are shared by several different users or companies. In
such systems, the software is accessed as-a-service [4] and computational capacity is
provided on demand to many customers who share the same pool of IT resources.

The data center facility is composed by many components that are interconnected at
different levels. One of them is the IT Infrastructure, which is composed by servers, net-
work, and storage devices. Techniques such as virtualization, data deduplication, and
energy-efficient Ethernet devices have been adopted to improve infrastructure energy
efficiency. Server-specific efforts have concentrated on processor dynamic voltage and
frequency scaling and server virtualization. The first technique adapts the CPU power
when it is not running during critical periods, saving significant amount of energy with
little performance reduction [5]. Due to the high computational capacity of modern
servers and to the fact that servers typical utilization rates remain between 10 and
50 % [6], virtualization increases data center computational capacity (by hosting mul-
tiple virtual servers) without increasing, at least not proportionally, energy demands
and floor space.

The main contribution of the present approach is to demonstrate how we can com-
bine some of these actions together with the application characteristics, where the
impact of actions enactment throughout the system is evaluated. It provides an inte-
grated mechanism that is able to identify all system elements relationships and to
evaluate positive and negative impact propagation throughout them. We argue that the
selection of adaptation actions shall be made with caution since they involve many
energy and quality parameters. Moreover, the action’s enactment need to be moni-
tored in order to analyze expected results to reinforce selected actions or to suggest a
different adaptation path.

The adaptation action enactment starts with the proper identification of the problem
to be solved. In general, this is made by triggering mechanisms based on predefined

123

Managing the complex data center environment

rules. However, we provide a deeper analysis over these mechanisms with respect to
the identification of undesired situations, in which options are considered based on the
underlying environment running characteristics. These characteristics are composed
by analyzing monitored data of high complex environments such as data centers.

The representation of these characteristics is made using sets of indicators, which
are defined in terms of quality and energy parameters. Looking at the indicators values
and their defined thresholds, system events are evaluated in order to enable system
threats recognition. The classification of these threats guides the adaptation selection
phase. With this regard, a goal-based model drives the indicators, threats and adaptation
actions relationships representation.

As data centers are highly dynamic environments, the approach contains evolution-
ary mechanisms that are able to capture the executed adaptation results and to modify
future adaptation selection or impact propagation relationships. These modifications
are driven by confronting the current environment situation, historical data and context
changes. All these issues are integrated within an Integrated Energy-aware Framework
(IEF) which puts all these components in a coordinated manner.

This paper is organized as follows: Sect. 2 details how energy and quality require-
ments are represented by indicators thresholds and their satisfaction levels, Sect. 3
explains how goal-based models are used to support system threats identification,
Sect. 4 introduces the integrated framework, which combines different modules in
order to support adaptation action selection, Sect. 5 demonstrates the approach using
experimental data, and finally Sect. 6 describes some of the most significant research
work in this direction.

2 Indicators

IT equipment is the data center’s core and it is composed basically by servers, net-
work equipment, and storage devices that are available for service-based applications
(SBAs) in a loosely coupled manner. As we concentrate on how these applications
make use of this environment, we adopt a 3-layers architecture, which is composed
of: infrastructure, middleware, and application layers.

The infrastructure layer includes all physical energy-hungry equipment. Focusing
on SBAs, we consider the CPU as the main energy consumer component, which is pas-
sive of runtime adaptation like frequency change. As higher frequencies consume more
power than low frequencies, modern processors are able to dynamically scale their
operating frequencies through defined P-states. The middleware layer manages virtual
resources reservation, workload distribution, and resource monitoring. It includes the
virtual environment (i.e., VMs and virtual disks) and the application container, where
concrete services are deployed. The application layer involves the concrete services,
abstract tasks and business processes. Concrete services (usually represented by web-
services) implement small operations that, when coordinated, perform the activity
described by one or more abstract tasks. Finally, abstract tasks represent the business
process objectives described as actions.

By monitoring these layers through selected indicators is possible to identify unde-
sired situations such as energy inefficiencies, which are represented by underachieved

123

A. M. Ferreira, B. Pernici

Fig. 1 Indicators meta-model

levels of satisfaction of defined requirements goals. In order to avoid or to recover from
these situations, the system shall be able to trigger adaptation actions that improve
one or more indicators levels of satisfaction. In this section we introduce indicators in
detail and how they can be used to identify system undesired situations, called system
threats. To do so we adopt a goal-based model, which is able to represent the diverse
relationships between the indicators and the IS.

Figure 1 depicts the indicator meta-model, where the abstract class Indicator defines
both quality and energy indicators identified by the attribute type. The attribute impor-
tance reflects the user’s preferences and dictates the indicator priority in case of mul-
tiple thresholds violations.

The indicator threshold violation is defined by Threshold class which is composed
by two lower-bounds, minAlarm (amin) and minWarning (wmin), and two higher-
bounds, maxAlarm (amax) and maxWarning (wmax) such that amax ≥ wmax ≥
wmin ≥ amin . Alarming thresholds represent critical boundaries that should not be
violated in order to keep the system soundness. On the other hand, warning thresholds
are less critical as their violation can be accepted (although not desired). Thus, warning
thresholds can be seem as the system elasticity, which are used to keep the majority
of the indicators outside the alarming ranges. An indicator is not violated, i.e., green,
when its current value is within both warning and alarming boundaries. Otherwise,
we can have warning (yellow) or alarming (red) violation. Alarming indicators have
priority to be solved with respect warning ones as they can cause higher damage to
the system. The current indicator situation (green, yellow or red) is represented by the
attribute status.

The indicator last attribute, Acceptance, defines the accepted interval in which an
indicator can stay in a violated state without requiring adaptation. This attribute is
important in order to avoid unnecessary adaptation enactment, where the violation
is temporary and might not require adaptation. For instance, let us suppose that the
action VM migration may violate the indicator availability of an application. In this

123

Managing the complex data center environment

case, the acceptance attribute shall dictate the maximum time interval allowed by the
indicator availability to stay in a violated state without triggering a new adaptation
action, i.e., the maximum amount of time the VM migration action can take without
causing any new side-effect.

In our previous work [7] we argue that adaptation actions enacted at runtime should
be aligned with the design characteristics. To do so, an energy-aware controller is
responsible to determine the most convenient adaptation strategies, composed by sets
of adaptation actions. The selection of the more suitable strategy is based on the
definition of a set of adaptation rules that link the violation of an indicator with the set of
associated adaptation strategies. However in this paper we provide a more sophisticate
method, in which actions are not simply linked to indicators violation, but we consider
different threats levels that these violations may represent to the system.

The indicator architectural layer represents where the indicator is placed within our
3-layers architecture. The indicator value is obtained through the indicator formula
calculation, that uses the information provided by the monitoring system represented
by MonitoringMetric class. Indicators are divided in basic and composed. An indicator
is called as basic (BasicIndicator class) when its calculation formula is either a direct
measure from the monitoring system variable or a combination of several monitoring
variables within one formula. Instead, composed indicators (CompositionMetric class)
formulae use other indicators as input.

2.1 Green performance indicators (GPIs)

Focusing on the design of SBAs, energy consumption can be constantly monitored
by specific indicators called GPIs [8,9]. The aim is to guarantee the satisfaction of
energy requirements, specified by GPIs, together with the more traditional functional
and non-functional requirements like QoS.

Despite the fact that there is a large number of quality and energy indicators in the
literature, most of them either measure the facility as a whole or specific characteristics
of one or few physical components. In our approach, an indicator is defined as a metric
that provides information about the status of the underlying system. Indicators can be
utilized at different levels of granularity. Power consumption, for instance, can be
measured from the entire facility to a single software component. In this paper, we
focus on indicators that support SBA requirements satisfaction from both energy and
quality aspects.

3 System threats identification

Once indicators are defined and their value calculated, the system shall be able to
recognize which ones represent system threats, i.e., which ones can harm the system.
In this way, an isolated indicator violation does not represent necessarily a system
threat. The identification of such system threats introduces new complexity boundaries
to the approach, which need to be selective in mining the monitored data in order to
identify relevant data to support the decision making mechanisms.

123

A. M. Ferreira, B. Pernici

Fig. 2 Timed scenarios

These threats are identified through timed event occurrences, which can appear
within four different scenarios depicted in Fig. 2. In these scenarios, an event occur-
rence is associated with the execution of adaptation actions or indicators violations.
Let us assume that an event occurrence ec1,1 is created at time window 6. In order
to diminish the event impact, which we assume to be negative in this case, adapta-
tion action a1 is enacted (astart

1). In the meanwhile the event occurrence continues to
appear since a1 is not yet concluded (aend

1). Up to window 8, the event occurrences
e1,2, e1,3, e1,4, e1,5 are expected since a1 is not finished. However, occurrences of event
e1 should not appear from window 9. This situation is represented in scenario IV and
it does not mean that an event occurrence ec1, j will never appear again. However,
three other scenarios are also feasible to happen.

In scenario I, a1 is not effective and a new occurrence of e1 is created, i.e., e1,6 and
a1 does not solve the problem. Depending on the next event occurrence window, it is
possible to determine if action a1 was partially or fully failed. Scenario II represents
the non-effectiveness of a1, in which the action solves the problem temporally and
e1,6 appears during the action approval period. This means that a1 was not suitable to
eliminate the threat of event e1 and a different action should be enacted next time. In
scenario III, the action a1 fully solves e1, but generates a side-effect (expected or not)
represented by e2,1, i.e., event e2 was raised. The identification of a raised event as a
side-effect of an action enacted to solve another event (ex − az − ey) is determined by
two factors: (i) the second event ey appears within the action az approval period and
(ii) both events ex and ey share at least one monitored variable with action az .

In order to make clear the difference between the last three scenarios, let us consider
a flat tire example. After the identification of the problem, one possible action to solve
the problem is filling the tire with air. If the reason of the problem is a tire hole, this
action is not effective since the tire will be flat again in few minutes or hours. This
situation is represented in scenario II. Instead, if another action is chosen, such as
replace the tire, different events can be raised due to the enactment of the action. In

123

Managing the complex data center environment

the example, the events car unstable (due to inadequate spare tire) or drive not safe
(due to the lack of available spare tire within the car) can be raised. This situation is
represented in scenario III. Even if the tire replacement effectively solves the problem,
it does not prevent that a new hole appears in the future (scenario IV).

3.1 Goal-based modeling

The adaptive behavior aims to support the capability of reacting in a (semi) automatic
way in case of unexpected situations, which are identified as system threats. Consid-
ering that indicators (KPIs and GPIs) represent system objectives, we argue that the
adaptation selection phase should take a higher level of abstraction, in which effects
and trade-offs of different adaptation options are passive of evaluation. A suitable way
to define these goals is using goal-based models presented in Requirements Engi-
neering (RE). These models allow the designers to specify goals of the system and
their relationships. Some of the most well-known approaches include Tropos [10],
i* [11], and KAOS [12]. In order to support the selection of adaptation actions such
that side-effects are minimal, we adopted the goal-based risk model proposed by [13].
The model links system goals (represented by indicators thresholds) to events that
might either positively or negatively affect them. The approach also includes the set
of actions that can be enacted to intensify or diminish the effects of these events.

As the model and its elements (goals, events and actions) are proposed at design-
time, they are based on assumptions that can be verified at runtime. Thus, we believe
the model has to support three main features: (i) events occurrences that represent
a threat towards the system goals fulfillment, (ii) feedback aware adaptation action
selection that analyzes previous executed actions in order to select new ones, and (iii)
relationships evolution according to a systematic comparison between the expected
and the obtained outcome after the action enactment.

The approach aims to facilitate quality and energy trade-offs such that relationships
and their impacts are easily identified while hidden ones are discovered. The initial
version of the model was created based on GAMES1 knowledge base [14], where rel-
evant indicators are identified in the project assessment phase. The project monitoring
system was used to provide the required input data for the proposed approach.

Indicators violation might or might not ask for adaptation, but if so, what adaptation
should be enacted? Questions similar to that are not easy to answer and, usually,
there are many alternative paths to follow. In order to properly represent the impact
of an indicator violation within the system and to analyze what are the most suitable
adaptation actions within specific contexts, we model the system according to the goal-
based modeling approach proposed by [13]. The model is divided in three layers named
as asset, event and treatment. Traditionally, the asset layer represents stakeholders’
business goals which are taken from the application requirements model. In the present
approach however, goals represent indicators targets levels with respect to application
non-functional requirements and involve both performance and energy consumption,
i.e., KPIs and GPIs thresholds. Differently from the original model, we focus only on

1 http://www.green-datacenters.eu.

123

http://www.green-datacenters.eu

A. M. Ferreira, B. Pernici

Table 1 Goals evidence
calculation according indicator
status

Indicator ih .status SAT (gp) DEN (gp) Fulfillment

Green F/P N H

Yellow F P Mh

F F M

P P M

P F Ml

Red N F/P/N L

non-functional requirements (soft-goals) and, for simplicity reasons, we call soft-goals
simply goals.

The model nodes are divided into three different types, that are goals G (strategic
indicators to be satisfied), events E (circumstances that impact over the achievement
of goals), and adaptation actions A (actions used to support the achievement of goals).
Thus:

Goals. Goals G are expressed as indicators fulfillment, in which one goal gp ∈ G is
related to one indicator ih ∈ I and I can be a single indicator or an aggregated through
a Green Index Function [8]. The goal fulfillment depends on the indicator value with
respect to its thresholds. We defined five different levels of goal fulfillment: (H)igh,
(M)edium-(h)igh, (M)edium, (M)edium-(l)ow, and (L)ow, where H > Mh > M >

Ml > L . Based on that, the evidences of satisfaction/denied (SAT/DEN) and the
fulfillment of a goal gp/gp � ih are calculated according the rules based on Table 1.

Events. Events E represent unexpected situations that impact positively or negatively
over goals. Although they are defined by the users, events are defined in terms of indi-
cators formula variables. They are expressed by two attributes: status and likelihood.
The event likelihood (λ) is calculated according event evidences that support (SAT) or
prevents (DEN) an event occurrence, such that λ(ei)← S AT (ei)∧DE N (ei)/ei ∈ E ,
where high SAT and low DEN values imply in high event likelihood [13]. However,
in order to properly manage the event occurrences we added the attribute status. This
attribute is responsible to identify the current event with respect to its occurrences
and can assume the following values: ready, new, work in progress (wip), done,
and renew. The parameter ready states that incoming event occurrences have no
relation with past ones. The parameter new identifies a new event occurrence that was
not yet managed by an adaptation action. The parameters wipmeans that one or more
adaptation actions were selected as candidate actions to reduce the event likelihood but
not yet executed or are currently under execution. If the executed set of actions reduced
the event likelihood, the parameter done is assumed. This parameter has an expiration
time, which represents the actions approval period. The approval period aims to val-
idate the action effectiveness and identify possible solutions that are only temporary.
Thus, if a new event occurrence of the same type shows up during this period, the
event status is defined as renew and a different set of actions should be executed.
Otherwise, the event status is returned to ready at the end of the approval period.

Adaptation actions. Adaptation actions A are required when a goal fulfillment is Low,
i.e., there is an indicator alarming violation. An adaptation action represents a single

123

Managing the complex data center environment

mechanism able to change one or more monitoring variables such that it supports
goals fulfillment by avoiding indicators thresholds violation. This change can be at the
infrastructure level (e.g., change the CPU frequency), middleware (e.g., allocate more
memory for a VM) or application (e.g., skip the execution of an abstract task within
the BP). The proposed approach focuses on design-time adaptation actions, which are
divided into two groups: design-time actions and mixed (design-time and runtime)
actions. The design-time actions include actions that are selected and executed at
design-time, such as initial SLA negotiation. On the other hand, mixed actions are
enabled at design-time and executed at runtime, such as skip an abstract task of the
BP.

An adaptation action av ∈ A aims to eliminate or diminish a negative event
occurrence through an alleviation relation. As described above, this type of rela-

tion is used to reduce negative event likelihood (A
{−S,−−S}−−−−−−→
alleviation

E) or severity

(A
{−,−−}−−−−−−→

alleviation
[E {−,−−}−−−−→

impact
G]), which is based on the event occurrence context

rules.

4 Integrated Energy-aware Framework

Following the architecture described in the previous section, indicators violation may
represent system threats that have to be eliminated for the system soundness. The threat
elimination is represented by the enactment of combined adaptation actions that bring
positive and negative impact to the overall system. In order to identify these system
threats and to select the best set of adaptation actions to be executed, we based our
analysis on the goal-based model. In this section we detail all the elements that are
responsible for identifying and eliminating system threats within a framework.

Figure 3 shows the main elements of the framework. First, the monitoring
system provides raw data about the underlying environment. This information is used
to calculate the defined indicators by the indicator calculationmodule. The
event identification is responsible to verify both monitored variables and
indicators values to recognize possible situations that represent a threat to the system.
This is done according to the system goal-based model defined in the assessment
phase. If a threat is identified, the module creates several event occurrences that are
analyzed by the event analysis module in order to separate the different types
of events and, in particular, the ones that require the enactment of adaptation actions
(meaningful events).

The adaptation selection module is responsible to select the adaptation
actions that eliminate the system threat without creating new ones. Thus, single actions
are aggregated as adaptation actions and sent to the adaptation parameterize
module. In this module the system manager, who is the user responsible for the sys-
tem environment, shall approve or disapprove the adaptation actions and, if approved,
he should provide some necessary actions parameters values. In parallel with the
adaptation selection, the history-based analysis module tries to
identify possible misleading relationships within the goal-based model that do not

123

A. M. Ferreira, B. Pernici

Fig. 3 IEF overview

provide effective adaptation actions. The output of this module implies a new adap-
tation attempt, a model modification or both. The model modification comprehends:
(i) relationships impact labels update, and (ii) revelation of unexpected and not yet
modeled relationships. The identified model changes are verified by the system man-
ager in the evolution verification module in order to ensure the goal-based
model soundness.

4.1 Event identification

The goal-based model described in the previous section supports the identification
of different adaptation actions that could be taken in order to mitigate the risk of an
indicator violation. However, it does not specify what are the underlying circumstances
that may restrict the enactment of an action (or a set of actions). These circumstances
are represented by sensible changes in the monitored variables values, which might
raise events at the model event layer. We argue that, depending on the gathered context
information about the environment, the impact of these raised events towards the
asset layer can be negative, positive or null. The identification of possible threats
towards goals fulfillment is performed by the event identification module
from Fig. 3.

Based on the monitored data and the indicator calculated values, the proposed
approach recognizes three different levels of threat, which might or might not result

123

Managing the complex data center environment

in the creation of an event occurrence. An event occurrence represents that an event
is currently harming one or more goals fulfillment and, therefore, adaptation actions
shall be enacted in order to restore desired indicators fulfillment levels. The creation
of an event occurrence is based the underlying environment, which is represented by
the instantiation of the defined set of context rules.

4.1.1 Event context instantiation

In environments such as data centers, the monitoring system variables are likely to
vary according to (i) the customer functional and non-functional new requirements;
(ii) the outcome of past actions enactment; and (iii) the middleware and hardware
environment changes. For this reason, the model should be able to support the identi-
fication of different situations, represented by the aggregation of monitored variable
values. For instance, the event server power consumption can have a posi-
tive or negative impact over the goal energy. Knowing that energy represents power
in time, the increased power consumption may result in application execution time
reduction, which makes the server free to be powered-off or used for other users. On
the other hand, if the reduction of execution time is not significant, i.e., the gains
in performance do not represent gains in execution time, higher power consumption
directly implies a higher energy consumption. Thus, it represents a negative impact.
This simple example clarifies the event impact polarity (positive or negative), which
depends on other monitored variables.

Due to the spread usage of the word ‘context’ and to avoid misunderstandings, we
adopt the context definition provided by [15]: “context is a partial state of the world
that is relevant to an actor’s goals”, where world is the underling environment captured
by the monitoring system and actor is the system itself. In fact, all defined goals are
towards the system soundness and effectiveness. However, instead of using statements
and facts to represent the context, we define several context rules that are represented as
IF-THEN statements where the IF clause is composed by a set of monitored variables
aggregated as AND/OR-decomposition. On the other hand, the THEN clause describes
the significance and severity parameters of which the IF clause represents with respect
to the asset layer. At the event layer, these IF-THEN statements represent positive and
negative effects of an event-goal impact relation. In the Event Context Model (EC M)
meta-model depicted in Fig. 4, the attribute CondRule represents the positive or
negative effect of the IF clause and SigVal and SevVal represents significance and
severity of the THEN clause, respectively.

4.1.2 Identifying system threats

Monitored data, from application, middleware and infrastructure layers, is continu-
ously produced by the monitoring system. All this information has to be analyzed so
that threats are identified and properly treated. In this module, we create three threat
levels sub-modules, which are responsible to recognize situations that might threaten
the indicators fulfillment. In order to deal with such a huge bunch of data rapidly, we
adopt Stream Reasoning techniques proposed by [16] where streams generated by the

123

A. M. Ferreira, B. Pernici

Fig. 4 Event context meta-model

monitoring system are represented as materialized views of RDF2 triples. These views
are based on deductive rules and each triple is associated with an expiration time. Data
streams are defined as unbounded sequences of time-varying data elements [18] and
the proposed solution manages to inspect “continuous” data streams.

Differently from other types of data, streams are consumed by queries registered
into a stream processor, that continuously produce answers. A common and impor-
tant simplification applied by stream engines is that they process information within
windows, defined as periods of time slots in which the flowing information should
be considered. Such windows are continuously evolving due to the arrival of new
data in the stream, whereas data falling outside the windows is lost, in other words,
it expires. The window size defines the stream expiration time which represents the
triple arrival timestamp plus the window size, assuming the window size to be con-
stant (time-invariant). We also assume time as a discrete and linear ordered variable
parameter. Therefore, if the window is defined as three time slots long and a time slot
is 5 s long, a triple entering at time τ will expire at time τ + 15 s. The expiration
time of derived triples depends on the minimum expiration time of the triples it was
derived from. In our approach, derived triples represent different levels of threats that
may raise an event.

Considering the current materialized predicates window, represented by W , the
event identificationmodule derives different levels of threat in order to raise
an event based on a set of rules. A threat is identified if one or more indicators are
violated with respect to their warning and alarming thresholds. An indicator violation
represents the first level of a threat, which might or might not raise an event based on
the indicator alarming violation duration. This means that, a single indicator violation
might not represent an ongoing system problem that requires an adaptation action.
For example, during the VM migration action, the application availability indicator
may be violated. However, if the migration action is executed normally, i.e., the VM

2 Resource Description Framework (RDF) is a W3C recommendation for resource description [17].

123

Managing the complex data center environment

is successfully migrated without errors, the application availability violation does not
require an adaptation action and, therefore, an event occurrence should not be created.

The identification of an indicator violation is represented by the creation of the
following entailment:

ih .status = ‘yellow’←→ ih .value ∈ Yh/Yh =
T⋃

t=1

([amin
h , amax

h](t)\[wmin
h , wmax

h](t))

ih .status = ‘red’←→ ih .value ∈ Rh/Rh = Uh\
T⋃

t=1

[amin
h , amax

h](t) (1)

where vh is the calculated value of indicator ih and Uh is the set of all possible values
the indicator can assume and, therefore, vh ∈ Uh . The set of values that do violate
the indicator’s warning thresholds (max or min) is defined as Yh . In the same manner,
Rh represents the set of values that violates alarming (max or min) thresholds, in
which (Yh ∪ Rh) ⊆ Uh . Finally, T represents thresholds sets of ih where t defines the
thresholds dimensions {amin

h , wmin
h , vh, wmax

h , amax
h }.

The second level of a threat tries to identify indicators warning violation (yellow)
that are likely to become alarming (red). We represent these indicators as orange ones.
The identification of an orange indicator is similar to the identification of yellow ones,
but narrowing alarming thresholds. Considering that Wh represents the set of triples
of ih such that warning threshold (min or max) is violated. The alarming thresholds
are narrowed based on Wh standard deviation σ (R′h). The calculation of σ(Wh) is√

1
N

∑N
n=1(xn − μ)2 where N is the number of triples in Wh . As we aim only the

triples that violate the narrowed alarming thresholds, but do not violate the alarming
thresholds, we have R′h ∩ Yh . Thus, an indicator status is defined as orange according
to the following:

ih .status = ‘orange’←→ ih .value ∈ R′h ∩ Yh/R′h

= Uh\
T⋃

t=1

[amin
h + σ(Wh), amax

h − σ(Wh)](t) (2)

Finally, the third level of threat actually raises an event after we have identified
indicators with red or orange. However, differently from the first level of threat, the
violation lasts more than it is accepted by the system. As described in the previous sec-
tion, the indicator alarming violation is linked with a acceptance value acph , measured
in number of monitored time slots, in which the indicator can stay violated without the
enactment of adaptation action. For instance, if the acceptance of an indicator is three
time slots, an alarming violation is considered as first level threat until its appearance in
the fourth consecutive slot. As each triple is associated with a timestamp, the calcula-
tion of the violation duration is obtained by subtracting the timestamp of the last triple
by the first one. Considering that Vh is the set of indicators with either red or orange sta-
tus, we calculated the violation duration by MaxT ime(Vh)− MinT ime(Vh), where
MaxT ime() returns the last violated triple window and MinT ime() returns the first

123

A. M. Ferreira, B. Pernici

violated triple window. Thus, an event occurrence is created when the following expres-
sion hold:

MaxT ime(Vh)− MinT ime(Vh) > acph/∀v ∈ Vh : v.status =‘red’ ∨ v.status =‘orange’

(3)

4.1.3 Creation of event occurrences

An event is described by attributes and a set of occurrences that represents raised
events over time. Hence, the creation of a new event occurrence eci, j ∈ ECi means
that event ei ∈ E is raised, where ECi is the set of occurrences of event ei . Event
occurrences are created by the event occurrence module. They are defined by
the following attributes: 〈timetsamp, value, window, direction, significance, severity〉,
where:

– Timestamp: it is the timestamp of the RDF triple that triggers eci, j creation.
– Value: it is the monitored variable value of the RDF triple that triggers eci, j creation.
– Window: it represents the window in which the RDF triple that triggers eci, j is

placed.
– Direction: it dictates if the obtained value is increasing or decreasing based on

threshold violation, i.e., max or min. This information is important in order to
support the adaptation action selection phase.

– Significance: considering the event context model previously described and cur-
rent monitored variable values, the event occurrence significance is within the
range [0 . . . 1]. The calculation multiplies two variables: the significance of the
considered monitored variable with respect to other variables that may trigger an
event occurrence (defined by the user within the range [0 . . . 1]) and the normal-
ized variable value (within the range [0 . . . 1]). The normalization is calculated as
1− f unc(p1, p2, p3), in which funcNorm() is the scaling functions of [19] and the
set of parameters {p1, p2, p3} are the variable value, max and min limits. These
limits are the violated indicator threshold (alarming) and the variable maximum
(or minimum) existing values the variable can assume. The significance is impor-
tant (together with impact) to define which event occurrences have priority to be
eliminated by the adaptation actions.

– Severity: this attribute defines, in a qualitative manner, the severity level of event
occurrence eci, j over one or more goals. In this way, it considers not just the relation
between the violated indicator (which is represented in the model by a goal gp ∈ G)
and event ei , but all goals impact relationships that event ei has within the model.
The relation between the violated indicator and the event occurrence is negative (−
or −−), however the event can have positive (+ or ++) impact over other goals.
Thus we consider the set of goals that hold impact a impact relation with event ei ,
named as G ′ ⊆ G:

ei
[++,+,−,−−]−−−−−−−−→

impact
gp/gp ∈ G ′

123

Managing the complex data center environment

The creation of an event occurrence depends on both the set of RDF triples within
the current materialized window (W) and the EC M . Algorithm 1 details the process
of creating a new event occurrence eci, j . The algorithm input parameter is the RDF
triple tk that satisfies Eq. 3, i.e., an indicator alarming violation with longer duration
than it is accepted.

The first step is to find out the set of triples that represent a red or orange viola-
tion, according to Eq. 3. This is done by function getVtriples() (line 2), which
retrieves the set of triples W ′ = 〈ih ind:value vh〉. As described in the previous section,
goals (G) are defined as indicators thresholds and events (E) in terms of monitored
variables. If the calculation of an indicator value depends on more than one variable,
it means that one goal is impacted by more than one event. Thus, we need to identify
the event ei ∈ E ′, where E ′ ⊆ E represents the set of candidates events to be raised
due to ih violation. In order to create E ′ we need to identify the goal gp that represent
the violated indicator threshold ih through the function getGoal() (line 3). Based
on gp we select all events that hold impact relationship like ei → gp (line 4).

The identification of the right event that is triggering the indicator violation is based
on the event context-model and, therefore, we need the select the event context-models
with respect the event candidates E ′ (lines 5–6). An event context-model emci may
have several positive and negative effects context (line 7). Therefore, an event is raised
when negative conditional context rules hold (line 9–10), which are based on current
context variable values (line 8). Note that an indicator violation can raise more than
one event and each event can create one or more event occurrences, depending on the
defined event context conditional rules.

Algorithm 1 Creating new event occurrences
Require: tk
1: ih ← getInd(tk)
2: W ′ ← getVtriples(tk , ih)
3: gp ← getGoal(ih)

4: E ′ ← ∀ei ∈ E : ei
impact−−−−→ gp

5: for all ei ∈ E ′ do
6: emci ← σemci .event=ei (EC M)

7: for all neg_e f f ect j ∈ emci .negE f f ect do
8: ctx← getContextValues(neg_e f f ect j)
9: if checkCondRule(ctx,neg_e f f ect j) then
10: eci, j ← new EC(ei , ih , neg_e f f ect j)
11: end if
12: end for
13: end for

Whenever an event has to be raised, a new event occurrence is created. Algorithm 2
describes the event occurrence constructor, in which all event occurrence attributes
are properly filled. The function getTim_Val_Win() sets timestamp, value and
window respectively (line 1). The direction depends on which alarming threshold
is violated, i.e., amax or amin (lines 2–10). The indicator attributes MaxV al and
MinV al represent the maximum and minimum values the indicator can assume. On
the other hand, the variables lim Max and lim Min are the maximum and minimum

123

A. M. Ferreira, B. Pernici

limits used by the normalization function f uncNorm() to scale the indicators value.
This function is used as weight in order to define the event occurrence significance
(line 11). The severity attribute is obtained by event context conditional rule (line 12).
This value is defined by the user during the context creation. Finally, the function
updateEventStatus updates the status of the event according to the new event
occurrence.

Algorithm 2 Creating new event occurrences - EC constructor
Require: ei , ih , neg_e f f ect j
1: eci, j ← getTim_Val_Win(ei , ih)
2: if ih .amax = ‘violated’ then
3: eci, j .dir← ‘high’
4: limMin← ih .amax

5: limMax ← ih .MaxV al
6: else
7: eci, j .dir← ‘low’
8: limMin← ih .MinV al
9: limMax ← ih .amin

10: end if
11: eci, j .sig← get SigV al(neg_e f f ect j) ∗ funcNorm(

12: ih .V al, limMax, limMin)

13: eci, j .sev← get SevV al(neg_e f f ect j)

14: updateEventStatus(ei)

Algorithm 3 describes the normalization function used to weight the event occur-
rence significance. Depending on the event occurrence monotonic function (identified
by the attribute direction), the function scales the indicator value within the range
[0 . . . 1]. In this way, the bigger the value the higher the significance weight is, where
1 is the highest. This weight is multiplied by the indicator significance defined by
the user and, therefore, event occurrences with higher significance have priority to be
solved as they cause bigger damage to the system.

Algorithm 3 Creating new event occurrences - Significance normalization function
1: funcNorm (ih .V al, limMax, limMin){
2: if limMax − limMin �= 0 then
3: if eci, j .dir = ‘high’ then

4: return 1− lim Max−ih .V al
lim Max−lim Min

5: else
6: return 1− ih .V al−lim Min

lim Max−lim Min
7: end if
8: else
9: return 1
10: end if
11: }

123

Managing the complex data center environment

Fig. 5 Event status transition states

4.2 Event analysis

The existence of raised events through event occurrences indicates that adaptation
actions have to be enacted. However, we argue the approach should be able to identify
the different raised events in order to support the adaptation action instrumentation. The
event analysis module identifies the current event status attribute with respect
the event occurrences. The key idea is to map the existing relation between two events
such that the system is able to recognize when one event is caused by another through
the enactment of its related adaptation action (E → A→ E).

In order to represent the many event status transitions, Fig. 5 depicts the states that
the event attribute status can assume. The transition from one state to another is defined
through several rules, which are defined from 1 to 5. The state Ready indicates that
eci, j has no relation with past ones. The state New indicates an event occurrence that
was not yet managed by an adaptation action. The state WIP indicates that actions are
under execution and we shall wait for their results. This waiting time is defined by the
action attribute duration. When all actions are set as ‘Finished’, the eci, j assumes the
state Done. At this point, the event occurrence remains in this state until the action
approvalPeriod expires, which guarantees the action effectiveness. Thus, if a new
occurrence appears regarding to the same event during the approval period, it assumes
the state Renew and more actions should be executed. Otherwise, the state Ready is
assumed and new occurrences are not related to past executed adaptation actions.

The detailed description of the rules used in the state transitions depicted in Fig. 5
are expressed as follows:

“Adaptation Required ′′
r1a :W+(ei ev:status ‘New’) :- Wbe f ore(ei ev:status ‘Ready’),

W ins(ei ev:occur eci, j)

123

A. M. Ferreira, B. Pernici

“Ongoing Adaptation′′
r2a :W+(ei ev:status ‘WIP’) :- Wbe f ore(ei ev:status ‘New’),

W ins(ei ev:occur eci, j),

¬W(av aa:enact ‘Finished’)

r2b :W+(ei ev:status ‘WIP’) :- Wbe f ore(ei ev:status ‘WIP’),
W ins(ei ev:occur eci, j),

¬W(av aa:enact ‘Finished’)

r2c :W+(ei ev:status ‘WIP’) :- Wbe f ore(ei ev:status ‘Renew’),
W ins(ei ev:occur eci, j),

¬W(av aa:enact ‘Finished’)

“AdaptationCompleted ′′
r3a :W+(ei ev:status ‘Done’) :- Wbe f ore(ei ev:status ‘WIP’),

¬W ins(ei ev:occur eci, j),

W(av aa:enact ‘Finished’)
r3b :W+(ei ev:doneAt τ) :- W+(

(ei ev:status ‘Done’), ?τ
)

“AdaptationStill Required ′′
r4a :W+(ei ev:status ‘Renew’) :- Wbe f ore(ei ev:status ‘Done’),

W ins(ei ev:occur eci, j),

W(av aa:enact ‘Finished’)

“AdaptationE f f ective′′
r5a :W+(ei ev:status ‘Ready’) :- Wbe f ore(ei ev:status ‘Done’),

W(ei ev:doneAt ?doneT ime),
(ei ev:approval ?approval Period),

now()−?doneT ime >?approval Period

where ?t ime represents the current timestamp. In addition, the rules are based on
the following materialized windows: W is current materialized window, W+ con-
tains the derived triples to be added in W , Wbe f ore represents the previous materi-
alized window, and W in represents the new triples that are coming from the event
identification module, i.e., event occurrences or monitored variables values.
Adaptation actions are required only for raised events that hold either New or Renew
status.

4.3 Adaptation selection

When the event analysis module generates an event occurrence eci, j that
is related to an event ei identified as New or Renew by the attribute status, the
adaptation selection module process is triggered. The module selects the
most suitable adaptation actions in order toeliminate the event occurrence eci, j . A list

123

Managing the complex data center environment

Fig. 6 Adaptation action selection supported by action contexts

of adaptation actions used in this paper for the data center energy-aware framework is
shown in Appendix.

As depicted in Fig. 6, an adaptation action is described by the following attributes:
Type identifies if the action consequence is regarding functionality/quality reduction
or resource reallocation; ManagedBy identifies if the action is managed by the run-
time controller or by the designer at design-time;Duration is a time interval attribute
that specifies the expected time interval, in terms of maximum and minimum, that the
action takes to complete its execution; Cost is an interval attribute that represents
the expected cost of the action execution and might depend on the action parame-
ters defined by the system manager in the adaptation parameterization
module; ApprovalPeriod is the expected time interval defined to validate the
action effectiveness; AvailabilityCond represents the set of conditional rules
that should be satisfied in order to enable the action execution; TriggerCond also
represents a set of conditional rules, but it describes triggering conditions that can be
either reactive or proactive; Group identifies the action group from an energy per-
spective; and finally Action is the adaptation action implementation, i.e., what the
action should do.

Considering these attributes, the adaptation selectionmodule is responsi-
ble for selecting the most suitable set of adaptation actions, which are represented into
an adaptation strategy and aims to eliminate event occurrences that are causing one or
more indicators violation. Five steps are used to do so. The first step (Step 1) identifies
the incoming event occurrences that did not trigger adaptation yet. This identification
is based on the event status attribute. The next step (Step 2) aims to cut off the list
of existing adaptation actions in order to keep only the available and suitable ones.
In the first case, available actions, we use the action’s availability conditional rules.
These rules are connected to single BPs that were previously designed to execute the
action. For instance, the adaptation action skip task can be enacted if and only if
the task is defined as optional task, i.e., the task is not critical. In the second

123

A. M. Ferreira, B. Pernici

case, suitable actions, we use the actions triggering conditions attribute in order to rule
out actions from the list that were not designed to stop the incoming event occurrence.
Each adaptation action is associated with events (event-trigger) or indicators violation
(indicator-trigger) and, depending on the event occurrence, we keep only the actions
that are directly or indirectly related to each other through an indicator violation, which
is represented by contribution relations within the goal-based model.

Having the subset of actions provided by Step 2, the next step (Step 3) determines
the optimal set of actions that are supposed to stop the arrival of new event occurrence
with minimal side-effects. This step can be divided into four sub-steps, which are:

(i) An indicator violation may represent a violation of other indicators that compose
the first one. Thus, the aim of this sub-step is to find the indicators-base that have
been violated. This is done through and/or decomposition relationships
among indicators within the goal-based model.

(ii) Search for previous situations in which the current threat was identified and, most
important, what adaptation strategies were selected with their obtained results.
Looking at the goal-based model we can have one or more adaptation actions able
to mitigate a negative impact relation between one event and one goal. Search-
ing historical log tables we are able to recover the tuple EventID, ActionID,
EventLikelihood_1, EventLikelihood_2, Duration, in which we
can observe the event likelihood reduction after the execution of an adaptation
action, i.e., the effective result of an alleviation relation over an impact relation. A
list of adaptation actions that did not reduce the event likelihood is created.

(iii) At this point a verification process estimates each action effects, both positive and
negative. This is done through the Backward and Forward reasoning algorithms
proposed by [13], which the first generates the set of input evidence in order to
satisfy high level goals (top-down) and the second propagates the nodes input evi-
dence throughout the model (bottom-up). The actions that propagate more negative
effects than positive or do not satisfy minimal duration time or cost are ruled out
of the candidate set. After that we ensure that all quality and energy constraints
are satisfied (staying at green or warning levels) using the Constraint Satisfaction
Optimization Problem.

(iv) Finally, the selection of the adaptation actions and their coordination are per-
formed by the algorithm proposed in [7] performed by the Energy-aware
controller depicted in Fig. 6. The controller gathers the necessary context
information from all the 3-layers (application, middleware, and infrastructure) in
order to establish the actions parameters range according to the underlying hard-
ware and software specification. This is represented by the A-context class,
in which the attribute ParametersCond defines this range and the attribute
Dependencies states possible additional hardware or software limitations for
the adaptation strategy enactment.

Once the set of adaptation actions is created, these actions need to be properly
coordinated (when there is more than one action involved) in order to compose an
adaptation strategy. This is done in Step 4, in which input and output parameters of
each action are checked in order to identify immediate sequence and parallel patterns.
Based on that, the attributes TotalDuration and TotalCost can be calculated.

123

Managing the complex data center environment

Fig. 7 Meta-model describing the elements inter-relationships

The total duration time is particularly sensible to the adopted flow pattern, sequence
or parallel, for the actions execution. If the total duration time or cost exceed their
constraints, the process returns to the previous step. Otherwise, the next step (Step
5) sends the created adaptation action to the adaptation parameterization
module, in which the system manager shall validate the initially suggested actions
parameters.

The complete meta-model of the described approach is depicted in Fig. 7, in
which node generalizes goals, events, and adaptation actions. Thus, all nodes contain
SAT/DEN evidences that are associated with a context model. Goals are expressed
in terms of indicators thresholds, events in terms of event occurrences and actions
are aggregated into adaptation strategies. Note that alleviation relations are associated
with event occurrences once adaptation actions aim to avoid raised events, which are
represented as occurrences.

123

A. M. Ferreira, B. Pernici

4.4 History-based analysis

In parallel with the execution of the module adaptation selection, the
history based analysis module analyzes past executed actions and their
related events from time to time in order to recognize patterns. These patterns are
used to validate and to modify the current version of the goal-based model by creating
new impact and contribution relationships (positive or negative) or adjusting the exist-
ing relation propagation probabilities. The analysis also benefits the adaptation
selection and the event identification modules by adjusting (refining)
the expected duration time attribute of the adaptation actions.

When an adaptation strategy is created to eliminate an event occurrence, the impact
relations of each action, defined in the goal-based model, state their expected effects.
Sometimes it may happen that unexpected effects are observed and, therefore, we
need to know when these situations require model modification. As mentioned, we
deal with two types of modifications in our goal-based model: Add or remove impact
(event–goal) or contribution (action–event, event–event) relations; Modify SAT/DEN
probabilities of contribution relations.

4.4.1 Identification of action feedback

The first important issue to be solved is the identification of an action feedback, which
can be: partially/fully failed or successful. An action is fully failed when it has no
impact over the event while partially failed actions are characterized by a temporary
action success or creation of many side-effects. On the other hand, an action is identified
as successful when it avoids the arrival of new negative event occurrences, which
represent system threats. All these scenarios were discussed above through the timed
analysis over an incoming event occurrence. However, we also want to be able to
justify all the raised events caused by the action enactment. Therefore, we propose a
post-enactment rule.

The key point is to express the existing relation between two events such that the sys-
tem is able to recognize when one event is caused by another through the enactment of
its related adaptation action (event–action–event). Through the identification of shared
variables is possible to note that an action can have different effects on events, which
depend on the monotonicity of the common variable within the events. For example,
the events Server power consumption and CPU server utilization
share a dependency relation with the CPU clock speed frequency variable. In these
cases, the mitigation of one event may cause the intensification of the other and vice-
versa. This property is expressed by the following rule:

(ey , isCausedBy, (az , isEnactedBy, ex))←
((az , reducesLikelihoodOf, ex) ∧ (az , increasesLikelihoodOf, ey))∧
(T imestamp(ey .status = ‘new’) < T imestamp(ex .status = ‘done’)+ az .approval Period)

(4)

123

Managing the complex data center environment

4.4.2 Frequent Item set Mining (FIM) to find frequent patterns

Impact relations concern negative effects of one event over one or more goals. A
new impact relation event–goal (ex − gp) can be added when the appearance of an
incoming event occurrence coincides with a goal fulfillment change, like from yellow
to red. In some cases, it can be identified in a straightforward way looking at the
event and goal shared variables. In this case the rule proposed in Eq. 4 is able to
identify that. However, in other cases, it is not so explicit. For instance, let us consider
that the event server payload has a negative impact relation towards the goal
server cost. In this example, it is reasonable to suppose that higher payload
requests more power and power consumption represent cost. On the other hand, let us
consider that the runtime controller allows high payload only during certain periods
of the day when power costs are quite low. Thus, the negative impact may be not
true while this scenario holds and it would be better to remove or change the impact
relation.

Regarding contribution relations, we focus on action–event and event–event as
relations that are subject to change. The other contribution relations, i.e., action–
action and goal–goal, are considered static as they do not involve an event in the
relation. On the other hand, action–event and event–event relations can be added,
for instance, when we recognize the appearance of a new raised event ey just after
the execution of a certain adaptation strategy ASk , which is enacted to eliminate a
previous event ex . In this way we have a complex relation like ex − ASk − ey , which
means that ey appears due to the execution of ASk in order to eliminate ex . The most
problematic issues in this situation are: to correlate the new event occurrence with
the enactment of an adaptation strategy, to determine the single action(s) within the
adaptation strategy set and to determine which relations shall be added/removed or
modified, like az − ey/az ∈ ASk , ex − ey , or both. As mentioned above, the idea of
searching for indicators shared variables in order to identify relationships between two
indicators can be used here as well. However, it is not enough to identify unforeseen
contribution relations between model nodes when there is no shared variable, like the
action increase CPU P-states and the event payload.

Our objective is to evolve the model with respect to the relations discussed above.
In order to provide a proper evolution technique for our goal-based model we search
for patterns within historical data. To do so we use FIM, which aims to find groups of
items that co-occur frequently in a dataset. Such patterns are normally expressed as
association rules in the format: IF [situation 1] THEN [situation 2].

A FIM algorithm requires as input the item base B set, which is the set of all
items under consideration during the mining process, the set of transactions T , which
represent some monitored changes of the item in B over a given period of time, and
the minimal support σmin ∈ R, 0 < σmin ≤ 1, which represent the minimal frequency
pattern desired, i.e., how many times an item should appear in the transaction set to be
considered frequent. Thus, the expected output of the algorithm is the set of frequent
itemsets I that can be represented by the following equation:

ΦT (σmin) = {I ⊆ B/σT (I) ≥ σmin}

123

A. M. Ferreira, B. Pernici

Table 2 The rules used to create our transaction T sets

Relation Transaction T rule

T1 Event–goal (ex − gk) Changed Ful f illment (gp) ∧ (ex .status = ‘New’ ∨ ex .status = ‘WIP’)
T2 Action–event (az − ey) ey .status = ‘New’ ∧ ex .status �= ‘Ready’ ∧ az .enact = ‘Ended’

Event–event (ex − ey) ey .status = ‘New’ ∧ ex .status �= ‘Ready’ ∧ az .enact �= ‘Ended’

The item base B we consider involves our goal-based nodes, i.e., goals, events and
actions whereas the creation of the transaction T set is driven by the rules described
in Table 2. As we want to find patterns between raised events and goals that had
their fulfillment attribute changed (event–goal, first row), and raised events, enacted
actions and another raised events (event–action–event, rows two and three) we define
two transaction sets. Let us consider that T1 represents the impact relations in a given
period of time (represented as time slots) and T2 the set of event–action–event, where
T = (t1, . . . , tn) with ∀k, 1 ≤ k ≤ n : tk ⊆ B. Finally, σmin defines the thresholds
that makes this module asks for a model evolution and it is pre-defined by the miner
analyst.

There are many different algorithms proposed to mine frequent item sets, such as:
Apriori [20], which uses a candidate generation function that exploits the minimal
support property; FP-Growth [21], which adopts a divide-and-conquer strategy and
a frequent-pattern tree that eliminates the necessity of candidate generation; Tree-
Projection [22], which projects the transactions onto the frequent-pattern tree in order
to count the ones that have frequent itemsets; H-MINE [23], which dynamically adjusts
the links within the mining process.

In our approach we adopt the algorithm proposed by Borgelt [24] called Split and
Merge (SaM). The SaM algorithm is divided into two major steps, named SaM. The
Split step moves all transactions that start with the same item into a new array and
removes the common item. This step is recursively until it finds all itemsets the contain
a split item. Then, the Merge step join the created sub-arrays using the well-known
mergesort algorithm.

In order to analyze the model impact relations we consider only goals that have
changed their status, in particular the unfulfilled ones, and raised event that are clas-
sified as New or WIP by the status attribute. Although SaM is not among the fastest
approaches, due to the merge step, it uses quite simple data structures and process-
ing schemes. This advantage is important due to memory limitations as we shall
have many different mining processes, i.e., with different transaction sets, running in
parallel.

Let us consider the incoming event occurrences described by Listing 1.1, where
e2 Power Consumption increase has a negative impact over the goal g4 Energy

Consumption, represented by the relation e2
−D−→ g4 where the negative is due

to the comparison of e2 value e g4 thresholds. In order to stop the arrival of new
e2 event occurrences, action a2 Increase CPU P-state is enacted through the

alleviation relation a2
−→ (e2

−D−→ g4). However, during the action approval time, new
event occurrences regarding e3 Server Payload start to arrive.

123

Managing the complex data center environment

Listing 1.1 Sample of incoming event occurrences of 30 time slots

1 e[2].status=‘Ready’
2 e[3].status=‘Ready’

3

.

.

.

4 e[2,1]=<07.22.2012 16:02:54,435.00,0006,‘I’,0.4,‘-’>
5 e[2].status=‘New’
6 a[2].action.start()

7

.

.

.

8 e[2].status=‘WIP’
9 e[2,2]=<07.22.2012 16:04:24,454.00,0007,‘I’,0.4,‘-’>

10 e[2,3]=<07.22.2012 16:06:24,427.00,0007,‘I’,0.4,‘-’>
11 e[2,4]=<07.22.2012 16:07:54,485.00,0008,‘I’,0.5,‘-’>
12 e[2,5]=<07.22.2012 16:09:54,455.00,0008,‘I’,0.4,‘-’>

13

.

.

.

14 a[2].action.end()
15 e[2].status=‘Done’
16 e[3,1]=<07.22.2012 16:15:24,99.00,0010,‘I’,0.6,‘-’>
17 e[3].status=‘New’
18 e[2].status=‘Ready’

Considering that the situation above have occurred many times, the mining process
applies the rules described in Table 2 in order to find new matching patterns. If the
value of ‘many’ is greater than our minimal frequent pattern defined by the variable
σmin = 0.5, rule T2 identifies a new relation between the enactment of action a2 and
the new event occurrences of e3. At this point the approach is able to ensure that a2
reduced the likelihood of e2 (probability of event occurrences arrival), but also a2
increased the likelihood of e3.

In order to recognize this relation, which is not presented in the model, Eq. 4 is
applied to ensure that event occurrences of e3 were caused by the execution of action
a2. The Eq. 5 shows the new contribution relation action–event, which propagates {+}
evidence, i.e., the completion of a2 will increase the likelihood of the arrival of e3
event occurrences.

(e3, isCausedBy, (a2, isEnactedBy, e2))←
((a2, reducesLikelihoodOf, e2) ∧ (a2, increasesLikelihoodOf, e3))∧
(T imestamp(e3.status = ‘new’) < T imestamp(e2.status = ‘done’)+ a2.approval Period)

(5)

4.4.3 Evolution verification

When modifications in the current version of the goal-based model are identified,
either through shared variables or mining techniques, the information is sent to the
evolution verification module. The aim of this module is to show these
modifications to the system manager in a GUI way. In this stage of the model evolution
an external expert validation is fundamental as special running situations of the system
may lead to misleading changes that, instead of improving the current version of the
model, can make it worst.

Another important point that we paid attention is regarding to two types of evolution.
The system manager can apply a certain modification onto one specific model instance

123

A. M. Ferreira, B. Pernici

or the model structure source. When selecting the first option, model instance, the
validated modifications do not impact on other model instances, i.e., they are applied
exclusively to the current instance. Instead, if the second option is selected, the changes
are applied to all current instances of the model. Of course a mixed approach can be
used in which some modifications are permanent within the model and others are
made for specific instances. In this case, every single modification has to be validated
individually by the manager.

5 Evaluation

The aim of the proposed framework is to provide mechanisms that support the identi-
fication and enactment of adaptation actions within data centers in order to maximize
the trade-off between energy consumption and performance. For this reason we need
many other supporting mechanisms that shall be provided by these Service Centers,
which are considered as the future generation of current Data Centers. This is the
reason why we have a strong link with the EU project Green Active Management of
Energy in IT Service centers (GAMES).3 GAMES architecture fulfills all required
mechanisms that were assumed to exist throughout this paper, like the monitoring and
runtime environment modules.

Considering that, this section describes how our approach fits within GAMES archi-
tecture. The first important module of GAMES used in our framework is the assess-
ment module that supports the creation of the initial version of our goal-based model.
Then, without the detailed monitoring system proposed in GAMES, the event analy-
sis of our framework would not have been possible. As we focus on the application
design issues that enable the enactment of adaptation actions, the runtime controller
proposed in GAMES is essential to analyze the runtime conditions and to validate
which actions can be executed based on running context conditions, e.g., one server
might not be available due to maintenance actions. After positioning our presented
framework within GAMES architecture, we use the obtained results from the project
testbeds to fill in a simulated environment in which our approach is implemented and
initial results are obtained.

5.1 GAMES architecture

The proposed architecture of GAMES provides the necessary mechanisms to deal with
data centers energy issues at different levels simultaneously [14]. GAMES architecture
is composed of three main modules:

– Design-Time Environment (DTE): in this module, assessment and mining tech-
niques are used to identify critical situations. It supports SBA and IT infrastructure
design when more pervasive and long-term adaptations are necessary. This module
also defines the indicators (KPIs and GPIs) that shall drive the adaptations.

3 http://www.green-datacenters.eu/.

123

http://www.green-datacenters.eu/

Managing the complex data center environment

Fig. 8 Online News Publishing System—running example

– Run-Time Environment: this module is able to detect the occurrence of critical
situations and, if required, ask for the execution of adaptation. To do so, it combines
the DTE output with the current context information provided by the sensing and
monitoring system.

– Energy Sensing and Monitoring Infrastructure (ESMI): this module is responsible
for collecting, parsing and storing the sensors information. A fundamental element
of the ESMI is the Energy Practice Knowledge Base where the data center current
and historical information about indicators and context, including configuration
parameters, is stored.

The sensing and monitoring infrastructure is in charge of gathering the data pro-
duced by the sensor network installed on the data center. These sensors get information
not only about the energy consumption of IT devices, but also on the performance and
the usage of them. All this data enables the identification of event occurrences and the
calculation of defined indicators. Querying GAMES knowledge base repository we
can obtain information such as the number of servers that are running or the configu-
rations of the virtual machines installed on a given server. This repository also keeps
historical data, which are used by the proposed approach to validate the outcome of
adaptation actions in specific contexts.

5.2 Running example

In order to demonstrate how the 3-layers model fits with SOA applications, Fig. 8
shows our BP example within a possible execution environment. The figure clearly
separates the layers and their elements after solving the SC problem. For instance, the
abstract task at3 is performed by the composition of two concrete services, cs3 and
cs4. These services are deployed on V M2 and running on server server1.

123

A. M. Ferreira, B. Pernici

The proposed BP has two possible execution paths ep with their respective proba-
bilities of execution. We define ep1 as the most probable one (70 %), which represents
the article approval. The second execution path, ep2, the article is rejected and new
improved version is requested. In the following we assume that only one modification
can be requested. Both execution paths are described below, in which 〈 〉 indicates
sequential execution, { } parallel, and̂optional task. In order to provide a more clear
representation, epsub represents the execution of the abstract tasks at2, at3, at4, at5.

epsub = {〈at2, at3〉, ât4}, at5
ep1 = 〈at1, epsub, {at7, at8}〉
ep2 = 〈at1, epsub, at6, epsub, {at7, at8}〉

We consider that for each abstract task atx there is at least one concrete service
csy that can be used to implement the expected functional requirements. The selection
of concrete services that attend the minimum functionalities is the selection criteria.
After receiving the customer request, all available service providers that are able
to functionally satisfy, at least partially, the request requirements are listed. Several
approaches deal with this phase [25,26] and it is not our focus. The second selection
criteria, called service selection phase, relies on the non-functional requirements,
which may vary significantly. It consists in ranking and choosing the best concrete
service for each abstract task according to global and local constraints, which are
represented by our defined indicators thresholds.

Table 3 presents all concrete services candidates for our example during the service
selection according to non-functional constraints (we assume that all listed services are
functionally equivalent and fulfill the minimum functional requirements). It is worth
pointing out that the abstract tasks at2 and at4 are functionally equivalent (file upload)
and at3 is composed by two concrete services (spell check and grammar check).

5.3 Event analysis implementation

The monitoring module keeps sending monitored data both to the indicator
calculation and event identificationmodules. Monitored variable val-
ues as well as indicators values are provided by GAMES components, which keep
sending during specific time intervals. Thus, our framework has to extract meaningful
events from this bunch of data that represent system threats. The data is interpreted as
continuous streams that are used to keep materialized view of RDF triples. An impor-
tant implementation issue we had to deal with is the timed-stamped characteristic that
incoming streams hold. This issue is solved by using Stream Reasoning techniques
proposed by [16] with a special type of RDF triple that represents the different time
slots.

The implementation of our timed stream reasoner was made using Jena framework,4

which is a well-known Java API to deal with semantic web applications and, in partic-
ular, with RDF and OWL. The reasoner is divided into two different knowledge types:

4 http://jena.sourceforge.net/.

123

http://jena.sourceforge.net/

Managing the complex data center environment

Table 3 Candidate concrete services and their qualities dimensions

Abstract task Concrete service Execution time Price Energy cons.

at1 cs11 1.30 1.2 65

at2, at4 cs21 2.00 5.9 62

cs22 1.70 4.8 50

at3 〈cs31, cs41〉 2.20 5.2 65

〈cs32, cs42〉 2.50 2.8 55

〈cs33, cs43〉 1.60 3.4 51

〈cs34, cs44〉 1.50 3.3 72

at5 cs51 2.70 1.1 64

at6 cs61 0.80 0.5 48

at7 cs71 1.50 4.0 49

cs72 1.00 4.4 55

cs73 1.70 4.3 59

at8 cs81 7.50 2.0 64

cs82 5.50 3.0 70

static and dynamic. The static knowledge is represented by the goal-based module
and specific technical information about the components within our 3-layers model.
At the infrastructure layer, this information is regarding the maximum frequency the
processor can operate at, and the capacity of the storage arrays available, as shown in
Listing 1.2. At the middleware layer, it is concerned to the VMs configuration para-
meters that cannot be changed at runtime. Finally, at the application layer it represents
the annotated information associated with the BP.

Listing 1.2 Static knowledge sample

1 <rdf:RDF
2 xmlns:rdf=‘http://www.w3.org/1999/02/22-rdf-syntax-ns#’
3 xmlns:dt=‘http://localhost/DC/’>
4

5 <rdf:Description rdf:about=‘http://localhost/DC/clusterRECS’>
6 <dt:hasCPU rdf:resource="http://localhost/DC/node01"/>
7 <dt:hasCPU rdf:resource="http://localhost/DC/node02"/>

8

.

.

.

9 </rdf:Description>
10 <rdf:Description rdf:about=’http://localhost/DC/node01’>
11 <dt:type>Intel</dt:type>
12 <dt:id>P8400</dt:id>
13 <dt:nCores>2</dt:nCores>
14 <dt:maxClock>2260</dt:maxClock>
15 <dt:minClock>800</dt:minClock>
16 </rdf:Description>

17

.

.

.

18 </rdf:RDF>

123

A. M. Ferreira, B. Pernici

The dynamic knowledge refers to the materialized RDF views created initially
from the static knowledge and then updated based on the incoming streams. All this
information is stored in memory and represents the goal-model instance with all triples
set with an infinite expiration time. We represent it by the predicate T . As the window
slides over the stream, the incremental maintainer:

1. Puts all incoming triples entering the window in a new predicate called T in ;
2. Loads the current materialization and T in , which represent the incoming triples;
3. Computes the production rules in order to identify the three different levels of

threats;
4. Searches for expired triples;
5. Defines the set of triples to be added T+ and removed T− from the materialization;
6. Updates the RDF materialization according to T+ and T−;
7. Updates the time-stamped triples according to T+ and T−;

5.3.1 Jena2 inference subsystem

One of the biggest advantages of representing pieces of knowledge as RDF triples
is the possibility to apply predefined inferences rules over it. Such rules will lead to
new derived pieces of knowledge which combines two or more existing triples in an
automated manner and many free tools can be easily found. Example of these tools
are MaRVIN [27], Sesame [28] and Jena [29].

Listing 1.3 Jena example - creating the RDF materialization and inference models

1 // Create a model representing the family
2 Model myRDFmodel = ModelFactory.createDefaultModel();
3

4 // Create a new generic rule reasoner to support user defined rules
5 Reasoner reasoner = new GenericRuleReasoner(Rule.parseRules(ruleSrc));
6 reasoner.setDerivationLogging(true);
7

8 // Create a new inference model over myRDFmodel using the reasoner above
9 InfModel inf = ModelFactory.createInfModel(reasoner, myRDFmodel);

10

11 // Create the RDF stream generator based on GAMES testbeds
12 RDFStreamsGenerator generator = new RDFStreamsGenerator(inf);
13 generator.start();

MaRVIN states for Massive RDF Versatile Inference Network which performs
RDFs inference through a parallel and distributed platform. Its main advantage is
regarding to the arbitrary scalability which computes the materialized closure grad-
ually. Such approach releases the users to wait for the full closure to be computed.
In Sesame the inference engine is within the Storage And Inference Layer (SAIL)
which is completely independent and makes possible to implement Sesame on top
of a number of repositories without changing any other component. At the semantic
level, the RQL query engine used in SAIL layer infer new statements using queries
that distinguish between schema and data information. However, the most suitable
for our purposes is Jena toolkit inference engine, which provides better flexibility

123

Managing the complex data center environment

and allows several reasoners to be plugged in it, including a generic rule engine that
allows many customization of RDF processing and transformation. Listing 1.3 depicts
a piece of Java code in which an empty RDF model and inference model are created
together with a new generic rule reasoner. Note that the variable ruleSRC contains
all predefined inference rules to identify the different threat levels.

Another important feature of Jena inference subsystem is its traceability function.
Using a simple method—InfModel.getDerivation(Statement)—is pos-
sible to trace how an inferred statement was generated, which is one of the key concepts
behind the proposed solution. To enable this functionality we just need to start logging
all derivations, as it can be seen at line 6 in Listing 1.3.

5.3.2 Threat levels deduction

In order to create an event occurrence, the event identificationmodule iden-
tifies three different levels of threat, in which only the third level shall actually trigger
the creation of an event occurrence. The first level identifies indicators violation,
warning or alarming, based on their calculated value and defined thresholds. These
indicators are classified as ‘yellow’ or ‘red’, respectively. As not all violations lead to
an event occurrence, the second level identifies the indicators that are current violating
warning thresholds and are also inclined to violate alarming thresholds. Indicators in
this situation are classified as ‘orange’. Finally, the third level represents indicators
that are either classified as ‘red’ or ‘orange’ for a longer period than the value defined
in the indicator acceptance attribute. In this case, they represent threats to the system
and event occurrences shall be triggered.

The identification of all three levels of threats is implemented through deduction
rules, in which the stream reasoner analyzes the incoming stream and creates new RDF
triples in the materialized view. Based on a set of rules, the mechanism determines
the different levels of threat which each monitored indicator value represents to the
system. Four inference rules are used for that as depicted in Listing 1.4. The first two
rules, rule_1a and rule_1b, define if there is a warning or alarming indicator violation,
respectively (threat level 1). Note that the variables ?Y and ?R represent the possible
set of warning and alarming values of indicator ?a as defined in Eq. 1. The third rule,
rule_2, recognizes indicators that shall be classified as ‘orange’ (threat level 2). The
last rule, rule_3, infers the ones that shall trigger an event occurrence, thus representing
a system threat to be eliminated by adaptation actions (threat level 3).

Listing 1.4 Jena inference rules for threat levels identification

1 String ruleSrc = ‘‘
2 [rule_1a: (?a http://localhost/EI/hasValue ?b), (?b http://localhost/EI/isIn ?c), (?c rdfs:range ?Y),
3 uriConcat(?a, ‘$hasValue$’, ?b, ?d), (?d http://localhost/EI/hasTime ?time),
4 uriConcat(?a, ‘$hasStatus$Yellow’, ?e)
5 -> (?a http://localhost/EI/hasStatus ‘Yellow’), (?e http://localhost/EI/hasTime ?time)]
6
7 [rule_1b: (?a http://localhost/EI/hasValue ?b), (?b http://localhost/EI/isIn ?c), (?c rdfs:range ?R),
8 uriConcat(?a, ‘$hasValue$’, ?b, ?d), (?d http://localhost/EI/hasTime ?time),
9 uriConcat(?a, ‘$hasStatus$Red’, ?e)

10 -> (?a http://localhost/EI/hasStatus ‘Red’), (?e http://localhost/EI/hasTime ?time)]
11
12 [rule_2: (?a http://localhost/EI/hasValue ?b), (?b http://localhost/EI/isIn ?c), (?c rdfs:range ?Y),
13 (?b http://localhost/EI/isIn ?d), (?d rdfs:range ?R’),
14 uriConcat(?a, ‘$hasValue$’, ?b, ?e), (?e http://localhost/EI/hasTime ?time),
15 uriConcat(?a, ‘$hasStatus$Orange’, ?f)

123

A. M. Ferreira, B. Pernici

16 -> (?a http://localhost/EI/hasStatus ‘Orange’), (?f http://localhost/EI/hasTime ?time)]
17
18 [rule_3: (?a http://localhost/EI/isIn ?b), (?b rdfs:range ?V),
19 (?c rdf:first sortByTimeAsc(?V)), (?d rdf:first sortByTimeInv(?V)),
20 (?a http://localhost/EI/hasAcceptance ?e), diff(?c ?d ?g), greaterThan(?g ?e)
21 uriConcat(?a, ‘$isIn$’, ?b, ?g), (?g http://localhost/EI/hasTime ?time),
22 uriConcat(?a, ‘$triggerEventOccurr$’, ?h)
23 -> (?a http://localhost/EI/triggerEventOccurr TRUE), (?h http://localhost/EI/hasTime ?time)]’’;

5.4 The impact on events and actions

Based on some GAMES modules, such as the monitoring system, and the testbed data
obtained by Nagios we configure and run our framework modules within a controlled
environment. As said before, we do not intend to replace any component of GAMES,
but instead, provide additional mechanisms that can be used to improve the existing
ones.

Looking at GAMES data we observed that the proposed controllers (Local Control
Loop LCL for decisions at the server level and Global Control Loop GCL for decisions
at the entire facility) do not have sophisticated mechanisms to identify system threats
that require the enactment of adaptation actions, considering as threat all threshold
violations. The GCL algorithm, for example, calculates the service center greenness
level in order to decide if adaptation actions are needed. If so, the algorithm searches for
similar scenarios occurred in the past. In case of new scenarios, reinforcement learning
techniques are used to select the actions. The selection process uses a reward/penalty
approach towards the service center greenness level. The aim of our proposed event
identification and analysis modules is to reduce the number of adaptation actions
execution by creating three levels of system threats, in which not all of them shall
trigger adaptation actions. In this way, we aim to narrow the set of violated indicators
that require adaptation without harming the overall system.

Analyzing the many database tables produced by Nagios we were able to repro-
duce situations that were responsible for triggering adaptation actions, represented by
indicators violations. This was possible only because all experiments were performed
three times: without GAMES methodology intervention and two types of controllers
approach: fuzzy and bio-inspired [14].

The graph shown in Fig. 9 depicts the accumulated number of raised events that were
treated as system threats (i.e., adaptation actions were triggered) within a period of 60
time slots of monitored data. It is possible to notice that GAMES GLC always identified
more threats than our Event Identification (EI) module. This is done using our pro-
posed indicator flexibility, represented by the warning thresholds. The EI_relaxed
represents a wider range for warning indicators violation. Moreover, the indicator
acceptance attribute and the three levels of threats avoid the triggering of unneces-
sary adaptation. For example, design-time actions like SLA renegotiation may cause
temporary quality degradation like availability violation. Therefore, if the SLA rene-
gotiation action lasts as expected, the availability violation should not trigger any
other adaptation. It is worth mentioning that at time slot 6 the three scenarios (GAMES
GLC, EI_strict and EI_relaxed) represent similar levels of goals satisfaction,
although the first two have higher expectations with respect to the third one.

123

Managing the complex data center environment

 0

 100

 200

 300

 400

 500

 600

 700

 0 10 20 30 40 50 60

N
um

be
r

of
 th

re
at

s
id

en
tif

ie
d

Time slots

System threats per time

Games GCL
EI_strict

EI_relaxed

Fig. 9 Graph identifying the number of threats before action enactment

(a)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10 12 14 16

V
io

la
te

d
in

di
ca

to
rs

 (
re

d)

Time slots

Violated indicators per time (10% action failure)

Games GCL
EI with orange

EI without orange

(b)

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 2 4 6 8 10 12 14 16

V
io

la
te

d
in

di
ca

to
rs

 (
re

d)

Time slots

Violated indicators per time (20% action failure)

Games GCL
EI with orange

EI without orange

Fig. 10 Number of violated indicators: a 10 % of action failure, b 20 % of action failure

The proposed approach also reflects in the number of violated indicators. The graphs
depicted in Fig. 10 compare the number of alarming indicators violation, i.e., ‘red’
status, in three scenarios: (i) GAMES GLC that was executed following GAMES con-
trollers in a real testbed at HLRS facility; (ii) EI with orange that was executed
in a simulated environment but with GAMES sensors data as initial input and takes
into account the indicators classified as ‘orange’ status together with the ‘red’ ones;
and (iii) EI without orange that was also executed in a simulated environment,
but without considering ‘orange’ indicators as eminent system threats. The simula-
tion was conducted using an expected adaptation action failure rate, in order to fairly
compare our simulated experiments against GAMES testbed experiments. Figure 5a
represent 10 % of actions failure, while Fig. 5b 20 %.

Our proposed approach reaches the desired levels of goals satisfaction considering
a fewer number of violated indicators. Differently from the previous figure, in these
figures we do not consider the number of system threats, but the number of violated
indicators that can or cannot represent a system threat in our approach. Instead, in
GAMES all indicators violations are considered as threats and require adaptation
actions. In almost all time slots (in both graphs) our scenarios have less alarming

123

A. M. Ferreira, B. Pernici

(a)

 80

 100

 120

 140

 160

 180

 200

 0 10 20 30 40 50 60

Im
pa

ct
 fa

ct
or

Time slots

Energy Impact - Cluster1

Normal
GAMES GLC

Framework

(b)

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 0 10 20 30 40 50 60

Im
pa

ct
 fa

ct
or

Time slots

Energy Impact

Cluster3
Cluster2
Cluster1

Fig. 11 Energy impact factor comparison during 60 time slots: a cluster 1–18 nodes, b three different
clusters

violated indicators. It does not mean that our enacted actions got better results since
we considered the same set of actions, but that warning violation are not seen as threats.
Although the second scenario, EI with orange, has to deal with more violations,
we argue that ‘orange’ indicators have to be considered as ‘red’ in this phase as they
are very likely to become ‘red’.

In order to compare the different solutions from an energy perspective, we adopt
an Energy Impact Factor. This value is composed of the estimation of two
physical components usage: CPU and memory, where CPU utilization has the biggest
impact on energy consumption [30]. The idea is to quantify how the execution of
different approaches can impact on energy consumption. The adoption of this factor is
justified in face of the difficult to obtain of energy consumption values within simulated
environments. For example, if the execution of one application service requires more
computational power (CPU) than other one, its energy impact is also higher.

The graph depicted in Fig. 11a shows the energy impact factor of the entire cluster
(i.e., the 18 server nodes) during a period of 60 time slots, which represent part of
the execution of the BP. The first important improvement that both GAMES and our
proposed framework provide is the reduction of two peaks of power consumption.
Then, we can see that most of the time our framework slightly overtakes GAMES
controller by having less energy impact, making clear the advantage of dealing with
less raised events and, therefore, less adaptation actions. As adaptation actions are
intrinsic related to other actions and events, it is unlikely that the enactment of an
adaptation actions does not produce any side-effect and, by doing so, the system can
enter into an infinite cycle. The presented approach aims to reduce the number of
raised events and enacted actions in order to increase the probability of the overall
actions effectiveness.

Making use of a simulated environment, we extend the experiments applied to our
solution through three different clusters scenarios depicted in Fig. 11b. The objective
of this experiment is to demonstrate our framework behavior within different physical
environments by increasing/decreasing two variables: the number of servers available
in the clusters and their respective CPU. These variables were doubled from one cluster
to another. The important data we can extract from the graph is that the energy impact
do not change significantly among the clusters, demonstrating the framework energy
consumption advantages even within more complex scenarios.

123

Managing the complex data center environment

Our proposed approach was able to keep less violated indicators based on a fewer
number of raised events. This was possible due to our refined mechanisms that recog-
nize different types of system threats and, therefore, the adaptation selection can focus
on the most significant ones. Also, the FIM mining technique used to support our goal-
based model evolution also played an important rule to refine the event identification
and adaptation selection modules. Due the identification of unforeseen impact rela-
tions, the adaptation selection module could reduce the appearance of new indicators
violations as a side-effect of the adaption action execution.

6 Related work

6.1 Green business process metrics

Starting from general software engineering metrics, Kaner and Bond [31] delineate
a framework for evaluating software metrics regarding to their purpose, scope, cal-
culation formula, value meaning, and their relationships. In the approach, a metric
is generally defined as “the empirical, objective assignment of numbers, according
to a rule derived from a model or theory, to attributes of objects or events with the
intent of describing them”. Distinctively from software engineering metrics, the intro-
duced metrics evaluate BP design attributes and mashup applications performance
and energy parameters during its execution. In order to automatically identify the KPI
relations and extract their potential influential factors, Popova and Sharpanskykh [32]
formalize the concept of performance indicator and their internal (between indica-
tors) and external (indicators and processes) relationships. However, the relation with
external concepts (such as process) does not specify the process instance. Runtime
variables may cause ambiguous values interpretation of the same process having two
or more instances. This problem is partially solved by Rodriguez et al. [33] approach
that quantifies relationships in the performance measurement system (PMS) context.
This is done by defining the relationships among KPIs and mapping them with PMS
in order to create cause-effect relations at business goals level.

The relationships between performance indicators are identified by applying two
mathematical techniques over the data matrix. The first, principal component analysis,
recognizes cause-effect relations based on each indicator description. The KPIs that
contain cause-effect relations are named Business Drivers Key Performance Indicators
because of their high factor of impact with respect the others. The second technique,
partial least squares models, quantifies the importance degree of each identified cause-
effect relation. These models are represented by typical regression equations that
predict effect(s) from cause(s) variable(s), called PLS models, which is highly based
on the designer expertise.

Taking into consideration the green aspects of the BPs, Nowak et al. [34] introduce
the green Business Process Reengineering methodology in order to tackle existing
SBAs and energy consumption issues from a holistic approach within modern data
centers. The authors introduce the Key Ecological Indicators (KEIs), which are spe-
cial types of performance indicators to measure up business process greenness. The
approach relies on impact of the process execution decisions into the company’s busi-

123

A. M. Ferreira, B. Pernici

ness goals. For instance, to reduce the KEI “CO2 emission” of a shipping process, the
solution adopted is to reduce the number of times per day the shipper picks up the
charge from three to one. Instead, the “CO2 emission” with respect to the IT resources
used to execute the BP is not taken into consideration.

6.2 SBA self-adaptation frameworks

SBAs are characterized by independent services that, when composed, perform desired
functionalities [35]. In general, these services are provided by third parties and are uti-
lized by different applications. Thus, SBAs operate in a heterogeneous and constantly
changing environment. Thus, they have to be able to constantly modify themselves in
order to meet agreed functional and quality constraints in face of a raised problem or
an identified optimization or an execution context change [36]. In the ambit of service
oriented computing, application adaptive features play an even more important role.

Bucchiarone et al. [37] delineate the effect of application design principles (design-
time) within its execution (runtime) recovery capabilities. Thus, a SBA life-cycle that
focus on adaptation was created which covers both requirements changes and per-
formance issues. In the proposed life-cycle design-time and runtime are represented
together such that they support each other. Adaptation strategies, which are composed
by a set of actions, are triggered according to application degradation (functional/non-
functional) or context shift that involves both environmental and stakeholders’ require-
ments. They are selected based on the adaptation scope and impact, which may vary
depending on the strategy trigger. The identification of such triggers within complex
systems such as a data center is not an easy task due to the many components involved.

Considering more comprehensive approaches, SBA adaptation frameworks deal
with large different types of service adaptations and, in particular, propose an inte-
grated view from the infrastructure to the application layer [38–40]. These frameworks
dynamic adapt SBAs from both structural and behavioral aspects by taking into account
software and hardware changes. The Process with Adaptive Web Services framework
proposed by [38] divides service adaptation issues in process design (design-time) and
execution (runtime) phases. The importance of process design phase is emphasized as
it actually enables autonomous service adaptation at runtime. Focusing on the inter-
relationships among the different adaptation actions, [39] present a cross-layer SBA
adaptation framework. The aim of the approach is to align the adaptation actions and
monitored events from the different layers in order to obtain more effective adapta-
tion results. Three layers are taken into consideration: business process management
(BPM composed by the business process workflow and KPIs), service composition
and coordination (SCC composed by service compositions and process performance
metrics–PPM) and service infrastructure (SI composed by service registry, discovery
and selection mechanisms).

The key point made by the authors regarding to their framework is that it takes into
consideration the dependencies and effects of such actions within the three different
layers. First, they tackle the lack of alignment of monitored events such that events and
their mechanisms have to be related in a cross-layer manner. It enables their correlation
and aggregation. Second, the lack of adaptation effectiveness is filled by providing a

123

Managing the complex data center environment

centralized mechanism able to aggregate and to coordinate different adaptation actions
that are triggered by the same event. Third, the lack of adaptation compatibility, which
means to identify adaptation necessities across layers by identifying the source of the
problem that generated the event. Finally, the lack of adaptation integrity is dealt in
terms of foreseeing results. It means to ensure if the selected adaptation actions are
enough to achieve the desired results and how many times they need to be enacted.

Mirandola and Potena [41] framework also considers dynamic service adaptation
based on optimization models in order to minimize adaptation costs and enforce
QoS aspects. The necessity for adaptation is assessed through a context-aware self-
adaptation mechanism that captures required data about the environment and triggers
appropriate adaptation actions. The novelty of the framework relies on the fact that
it handles both software and hardware adaptation from functional and non-functional
requirements perspectives. In addition, the framework optimization model is flexible
as it is independent from adopted methodology or architectural model. In a similar
way, Psaiser et al. [40] present VieCure framework. The framework focuses on unpre-
dictable and faulty behavior of service into a mixed system of Service-based Sys-
tems and Human-provided Services. Feedback loop functions are used to provide the
framework self-adaptation and behavior monitoring features through a MAPE-k cycle
(Monitor, Analyze, Plan, Execute, and Knowledge). The monitoring components are
responsible to gather and to store information about different systems, mixed systems,
regarding to the infrastructure, application activities, and QoS. The aggregation of
such information is therefore presented as events that trigger the diagnosis and analy-
sis component. These components define the required recovery actions by analyzing
historical failure data sources.

6.3 Goal-driven SBA adaptation

Goal-driven models have been widely used in Software Engineering field in many
different ways and, especially in Requirements Engineering (RE), where the objective
is to focus on why systems are constructed instead of what features the system has
to comply with [42]. Goal-Oriented Requirements Engineering provides richer and
higher-level abstraction models from which reasoning techniques are used to answer
why, who and when questions during early software development phases. The goal-
driven models allow the designers to specify the system goals and their relations such
that they are aligned with the system requirements.

Gehlert and Heuer [43] propose service replacement adaptation every time there
is a new available service that better contributes towards the application goals ful-
fillment (self-optimization) and provides equivalents functionalities. In order to do
so, the authors use a goal-driven approach that enables satisfaction analysis of single
goals with respect to the entire model provided by Tropos [10]. After the identifica-
tion of functional equivalent new services, the approach distinguishes four different
situations for adaptation: (i) the new service provides equal goals satisfaction; (ii) the
new service provides different goals satisfactions ratios; (iii) the new service adds new
functionalities to the application which are expressed as new hard-goals in the model
(goal extension); and (iv) the new service has less functionalities, but can be combined

123

A. M. Ferreira, B. Pernici

with other services in order to fulfill the expected goals into a better way than before
(goal reduction). Based on that, the Tropos quantitative reasoning algorithms are used
in order to calculate goals satisfiability and deniability, which properly identify the
gains of the adaptation.

Looking at keeping stakeholders goals aligned with the system runtime behavior,
Monitoring and Adaptation Environment for Service-oriented Systems [44] (MAE-
SoS) tackles both system design-time and runtime aspects. If goals are not fulfilled,
variability models are used to perform semi-automated corrective adaptation actions.
These variability models support two types of adaptations based on execution per-
formance and stakeholders’ variations. Considering a running example, the authors
demonstrate how to trace the impact of runtime system behavior within high-level
goals and vice versa. However, the approach does not consider the inter-dependencies
among different adaptation actions, which may limit the variability models scope.
Such need is partially accomplished by [45] through the usage of the Belief-Desire-
Intention agent models of Tropos. Tropos methodology is extended in order to support
interrelationships between goals and the system environment where SBA failures and
correspondent recovery actions are represented as design abstractions. Based on Tro-
pos models, the authors introduce a fault modeling dimension, which captures errors
that may lead to failures, their symptoms, and the linking between symptoms and
possible recovery actions.

7 Concluding remarks

Though the research on green computing can follow several directions, this paper
aimed to cover service oriented aspects considering both the design and the execution
of SBAs. In order to consider the energy aspects of a SBA, we first propose some
metrics in order to extract the application main characteristics in a quantitative manner,
which are used to support the calculation of GPIs. For this matter, detailed information
about these indicators and their dependencies are presented.

In order to support the adaptation action selection, we propose a framework that is
based on a goal-based model to analyze the actions impact propagation throughout the
system model. The novelty relies on the components, which support the identification
of system threats based on pattern recognition and context evaluation. Data-stream rea-
soning mechanisms are used to evaluate diverse scenarios and to identify relationships
among system threats and enacted actions at runtime. In parallel, mining techniques
are used to ensure that the considered goal-based model instance is adequate with the
underlying system environment by evolving the model elements (like unforeseen rela-
tionships) according to monitored data. Thus, it is possible to have different instances
of the same model that fit within different environmental configurations.

This framework is integrated within GAMES methodology, which provides the
surrounding elements, such as monitoring system, to enable execution of the proposed
approach.

The research work presented by this paper has provided solutions to the problem
under investigation. But still unsolved issues delineate many directions to be followed.
For instance, the solution presented is towards one single service center. Extending it to

123

Managing the complex data center environment

federated data centers new issues arise and the complexity of managing desired goals
levels become an even more critical aspect. Existing research towards this directions
is being studied in ECO2Clouds5 and FIT4Green6 EU projects. Further work is also
needed to identify which are the best indicators to be analyzed, the decisions about
adaptation, and on the effect (short and medium term) of adaptation action.

Acknowledgments This work has been partially supported by the GAMES project (http://www.
green-datacenters.eu) and Eco2Clouds EU Project (http://eco2clouds.eu), which are partially funded by the
European Commission under the 7th Framework Program grant agreement numbers 248514 and 318048,
respectively. This work expresses the opinions of the authors and not necessarily those of the European
Commission. The European Commission is not liable for any use that may be made of the information
contained in this work.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.

Appendix: List of adaptation actions

See Table 4.

Table 4 Energy-aware adaptation actions at all architecture layers

Action Description

Design-time actions at application layer

1. BP redesign Redefinition of the process functionalities

2. Structure change Changes with respect to routing tasks

3. Optional flow definition One or more execution paths can be skipped

4. Optional task definition The execution of one or more abstract tasks can be skipped

5. Non-critical task definition Task quality and energy constraints can be relaxed

6. Redundancy elimination Tasks that are redundant are decommissioned

7. Service replacement Service can be replaced by functional equivalent ones

8. Service migration Services can migrate together with their associated VM

9. SLA renegotiation Renegotiate to reduce functional and non-functional minimum requirements

Runtime actions at middleware and infrastructure layers

1. VM migration The VM container execution from one server to another

2. VM deploy Create a new VM

3. VM undeploy Decommission a VM

4. VM reconfiguration Reallocate more or less resources for the VM

5. Change CPU P-state Increase or decrease CPU P-state level

6. Change disk mode Change the disk to acoustic or normal mode

7. Change server mode Hibernate/wake-up servers that are expected to stay idle for short period of time

8. Shutdown server Turn-off/on servers that are not expected to be used for long period of time

5 http://eco2clouds.eu.
6 http://www.fit4green.eu.

123

http://www.green-datacenters.eu
http://www.green-datacenters.eu
http://eco2clouds.eu
http://eco2clouds.eu
http://www.fit4green.eu

A. M. Ferreira, B. Pernici

References

1. Cook G (2012) How clean is your cloud? Report, Greenpeace International http://www.greenpeace.
org/international/en/publications/Campaign-reports/Climate-Reports/How-Clean-is-Your-Cloud/

2. Velte T, Velte A, Elsenpeter R (2008) Green IT: Reduce your information system’s environmental
impact while adding to the bottom line. McGraw-Hill, New York

3. Papazoglou MP, Heuvel WJ (2007) Service oriented architectures: approaches, technologies and
research issues. VLDB J 16(3):389–415

4. Turner M, Budgen D, Brereton P (2003) Turning software into a service. Computer 36(10):38–44
5. Lim MY, Freeh VW (2007) Determining the minimum energy consumption using dynamic voltage

and frequency scaling. In: Proceedings of the 21th International Parallel and Distributed Processing
Symposium. IPDPS, pp 1–8

6. Barroso LA, Hölzle U (2007) The case for energy-proportional computing. Computer 40(12):33–37
7. Cappiello C, Fugini M, Mello Ferreira A, Plebani P, Vitali M (2011) Business process co-design for

energy-aware adaptation. In: Proceedings of 4th International Conference on Intelligent Computer
Communication and Processing. ICCP’11, IEEE, pp 463–470

8. Mello Ferreira A, Pernici B, Plebani P (2012) Green performance indicators aggregation through
composed weighting system. In: Proceedings of ICT as Key Technology against Global Warming,
Lecture Notes in Computer Science, vol 7453. Springer, Berlin, pp 79–93

9. Kipp A, Jiang T, Fugini M, Salomie I (2012) Layered green performance indicators. Future Gener
Comput Syst 28(2):478–489

10. Bresciani P, Perini A, Giorgini P, Giunchiglia F, Mylopoulos J (2004) Tropos: an agent-oriented soft-
ware development methodology. Auton Agents Multi Agent Syst 8(3):203–236

11. Yu ESK (1996) Modelling strategic relationships for process reengineering. PhD thesis, Toronto,
Canada, UMI Order No. GAXNN-02887 (Canadian dissertation)

12. Dardenne A, Van Lamsweerde A, Fickas S (1993) Goal-directed requirements acquisition. Sci Comput
Program 20(1–2):3–50

13. Asnar Y, Giorgini P, Mylopoulos J (2011) Goal-driven risk assessment in requirements engineering.
Requir Eng J 16(2):101–116

14. Bertoncini M, Pernici B, Salomie I, Wesner S (2011) GAMES: Green Active Management of Energy
in IT Service Centres. In: Information Systems Evolution. Lecture Notes in Business Information
Processing, vol 72, pp 238–252. Springer, Berlin. doi:10.1007/978-3-642-17722-4_17

15. Ali R, Dalpiaz F, Giorgini P (2010) A goal-based framework for contextual requirements modeling
and analysis. Requir Eng 15(4):439–458

16. Barbieri DF, Braga D, Ceri S, Della Valle E, Grossniklaus M (2010) Incremental reasoning on streams
and rich background knowledge. In: Proceedings of the 7th International Conference on The Semantic
Web: research and Applications, volume Part I. ESWC’10, pp 1–15. Springer, Heidelberg

17. Manola F, Miller E (2004) Rdf primer. http://www.w3.org/TR/rdf-primer/
18. Aggarwal CC (2006) Data streams: models and algorithms (Advances in database systems). Springer,

New York
19. Zeng L, Benatallah B, Ngu AHH, Dumas M, Kalagnanam J, Chang H (2004) Qos-aware middleware

for web services composition. IEEE Trans Softw Eng 30(5):311–327
20. Agrawal R, Srikant R (1994) Fast algorithms for mining association rules in large databases. In:

Proceedings of the 20th International Conference on Very Large Data Bases. VLDB’94. Morgan
Kaufmann Publishers Inc., San Francisco, pp 487–499

21. Han J, Pei J, Yin Y (2000) Mining frequent patterns without candidate generation. In: Proceedings of
the 2000 ACM International Conference on Management of Data. SIGMOD’00. ACM, New York, pp
1–12

22. Agarwal RC, Aggarwal CC, Prasad VVV (2001) A tree projection algorithm for generation of frequent
item sets. J Parallel Distrib Comput 61(3):350–371

23. Pei J, Han J, Lu H, Nishio S, Tang S, Yang D (2001) H-mine: Hyper-structure mining of frequent
patterns in large databases. In: Proceedings of the 2001 IEEE International Conference on Data Mining.
ICDM’01. IEEE Computer Society, Washington, pp 441–448

24. Borgelt C (2010) Simple algorithms for frequent item set mining. In: Koronacki J, Ras Z, Wierzchon
S, Kacprzyk J (eds) Advances in machine learning II, vol 263, Studies in computational intelligence-
Springer, Berlin, pp 351–369

123

http://www.greenpeace.org/international/en/publications/Campaign-reports/Climate-Reports/How-Clean-is-Your-Cloud/
http://www.greenpeace.org/international/en/publications/Campaign-reports/Climate-Reports/How-Clean-is-Your-Cloud/
http://dx.doi.org/10.1007/978-3-642-17722-4_17
http://www.w3.org/TR/rdf-primer/

Managing the complex data center environment

25. Plebani P, Pernici B (2009) URBE: Web service retrieval based on similarity evaluation. IEEE Trans
Knowl Data Eng 21(11):1629–1642

26. Hao Y, Zhang Y (2007) Web services discovery based on schema matching. In: Proceedings of the
Australasian conference on Computer science. ACSC’07, Australian Computer Society, Inc., pp 107–
113

27. Anadiotis G, Kotoulas S, Oren E, Siebes R, van Harmelen F, Drost N, Kemp R, Maassen J, Seinstra
F, Bal H (2009) Marvin: a distributed platform for massive rdf inference. http://www.larkc.eu/marvin/
btc2008.pdf

28. Broekstra J, Kampman A, van Harmelen F (2002) Sesame: a generic architecture for storing and
querying RDF and RDF schema. In: Proceedings of International Semantic Web Conference (ISWC),
pp 54–68

29. Reynolds D (2009) Jena 2 Inference Support. http://jena.sourceforge.net/inference/
30. Bohra A, Chaudhary V (2010) VMeter: Power modelling for virtualized clouds. In: Proceedings of the

2010 IEEE International Symposium on Parallel Distributed Processing, Workshops and Phd Forum.
IPDPSW’10, IEEE Computer Society, pp 1–8

31. Kaner C, Bond WP (2004) Software engineering metrics: What do they measure and how do we know?
In: Proceedings of the 10th International Software Metrics Symposium. METRICS’04

32. Popova V, Sharpanskykh A (2010) Modeling organizational performance indicators. Inf Syst
35(4):505–527

33. Rodriguez RR, Saiz JJA, Bas AO (2009) Quantitative relationships between key performance indicators
for supporting decision-making processes. Comput Ind Eng 60(2):104–113

34. Nowak A, Leymann F, Mietzner R (2011) Towards green business process reengineering. In: Pro-
ceedings of the 2010 International Conference on Service-Oriented Computing. ICSOC’10. Springer,
Berlin, Heidelberg, pp 187–192

35. S-Cube Partners (2008) State of the art report on software engineering design knowledge and survey
of HCI and contextual knowledge. Deliverable JO-JRA-1.1.1, S-Cube Network of Excellence

36. Kazhamiakin R, Benbernou S, Baresi L, Plebani P, Uhlig M, Barais O (2010) Adaptation of service-
based systems. In: Papazoglou M, Pohl K, Parkin M, Metzger A (eds) Service research challenges and
solutions for the future Internet., Lecture Notes in Computer ScienceSpringer, Berlin, pp 117–156

37. Bucchiarone A, Cappiello C, Di Nitto E, Kazhamiakin R, Mazza V, Pistore M (2010) Design for
adaptation of service-based applications: main issues and requirements. In: Service-Oriented Comput-
ing. ICSOC/ServiceWave 2009 Workshops. Lecture Notes in Computer Science, vol 6275. Springer,
Berlin, pp 467–476

38. Ardagna D, Comuzzi M, Mussi E, Pernici B, Plebani P (2007) PAWS: a framework for executing
adaptive web-service processes. IEEE Softw Mag 24(6):39–46

39. Kazhamiakin R, Pistore M, Zengin A (2009) Cross-layer adaptation and monitoring of service-based
applications. In: Proceedings of the 2009 International Conference on Service-oriented computing.
ICSOC/ServiceWave’09. Springer, Berlin, pp 325–334

40. Psaier H, Skopik F, Schall D, Dustdar S (2010) Behavior monitoring in self-healing service-oriented
systems. In: Proceedings of the 34th IEEE Annual Computer Software and Applications Conference.
COMPSACW’10, pp 357–366

41. Mirandola R, Potena P (2011) A QoS-based framework for the adaptation of service-based systems.
Scalable Comput Pract Exp 12(1):63–78

42. Anton AI (1996) Goal-based requirements analysis. In: Proceedings of the 2nd International Confer-
ence on Requirements Engineering. ICRE’96, IEEE Computer Society, pp 136–144

43. Gehlert A, Heuer A (2008) Towards goal-driven self optimisation of service based applications. In:
Proceedings of the 1st European Conference on Towards a Service-Based Internet. ServiceWave’08.
Springer, Berlin, pp 13–24

44. Franch X, Grunbacher P, Oriol M, Burgstaller B, Dhungana D, Lopez L, Marco J, Pimentel J (2011)
Goal-driven adaptation of service-based systems from runtime monitoring data. In: Proceedings of the
35th IEEE Annual Computer Software and Applications Conference Workshops. COMPSACW’11,
pp 458–463

45. Morandini M, Penserini L, Perini A (2008) Towards goal-oriented development of self-adaptive sys-
tems. In: Proceedings of the 2008 international workshop on Software engineering for adaptive and
self-managing systems. SEAMS’08. ACM, New York, pp 9–16

123

http://www.larkc.eu/marvin/btc2008.pdf
http://www.larkc.eu/marvin/btc2008.pdf
http://jena.sourceforge.net/inference/

	Managing the complex data center environment: an Integrated Energy-aware Framework
	Abstract
	1 Introduction
	2 Indicators
	2.1 Green performance indicators (GPIs)

	3 System threats identification
	3.1 Goal-based modeling

	4 Integrated Energy-aware Framework
	4.1 Event identification
	4.1.1 Event context instantiation
	4.1.2 Identifying system threats
	4.1.3 Creation of event occurrences

	4.2 Event analysis
	4.3 Adaptation selection
	4.4 History-based analysis
	4.4.1 Identification of action feedback
	4.4.2 Frequent Item set Mining (FIM) to find frequent patterns
	4.4.3 Evolution verification

	5 Evaluation
	5.1 GAMES architecture
	5.2 Running example
	5.3 Event analysis implementation
	5.3.1 Jena2 inference subsystem
	5.3.2 Threat levels deduction

	5.4 The impact on events and actions

	6 Related work
	6.1 Green business process metrics
	6.2 SBA self-adaptation frameworks
	6.3 Goal-driven SBA adaptation

	7 Concluding remarks
	Acknowledgments
	Appendix: List of adaptation actions
	References

