
The Design of Experiments 
 
To model the AQI objective just presented in the decision problem formalization, it 
is required at first to run a Chemical Transport Model on a set of emission 
reduction scenarios, considering a so called Design Of Experiment [3]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As an example, in the previous table a set of 12 simulations have been selected. In 
the table B means the base case emission scenario (increased of 15%), H the 
maximum feasible scenario (decreased of 15%) and L the intermediate point.  
The idea of the Design of Experiment is to be able (with these B, L and H values) to 
cover the possible extreme variations of emissions (between minimum and 
maximum values) so that the source-receptor models (identified from these data) 
will be finally able to model a generic “emission to concentration” link. 

 
 

 

 

 

 
 
 
 
 
 
 
 
 

The decision problem formalization 
 
The decision problem (in the case of application only of technical measures) can 
be formalized as follows [1], [2]: 

 
 
 
Where 
 

•  x is the decision variable vector, in this case the level of application of a 
certain reduction technology; 
•  X is the feasible solution set; 
• E(x) are the emission, computed as a function of technlogy application 
•AQI is the Air Quality Index [3], [4]; 
• C is the Cost Index. 
 

Since the  nonlinearity and complexity of relationship between AQI and emissions,  
AQI(E(x)) is usually computed by means of complex Chemical Transport Model 
(CTM), that cannot be implemented in the solution of the optimization problem 
due to high computational time. 
For these  reasons, the relationship has to be implemented by simplified model 
based on neural networks computed starting from the results of a very limited 
number of CTM simulations.  
The selection of the number and the features of the simulations to be performed 
is usually performed in the first phase of the project, named Design of 
Experiments (DoE), starting from the range of input variability needed for the 
solution of (*). 
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Air pollution in the atmosphere derives from complex non-linear relationships that involve anthropogenic and biogenic precursor emissions. Due to this complexity, Decision 
Support Systems (DSSs) are important tools, to help Environmental Authorities to improve air quality reducing human and ecosystems pollution impacts in a cost efficient 
way. In this work seasonal air quality surrogate models (to be used in a DSSs) are presented. These surrogate models are able to model the nonlinear relation between 
emissions and air quality indexes considering also sub-yearly aggregation time horizons, usually not considered in integrated assessment models.  

The surrogate model results 
 
The input-output patterns provided by the CHIMERE CTM simulations on the DoE 
scenarios have been used to train seasonal Artificial Neural Networks (ANNs) [3]. 
These ANNs are able to consider yearly, winter (October to March) and summer 
(April to September) time horizons, linking the temporally (summed up) aggregated 
emissions with the yearly/seasonal targets. The input/output structure is shown in 
the following Figure. 
 
 
 
 
 
 
 
 
 
 
 
 
In this case study, the ANNs identification has been done considering the Emilia 
Romagna domain, as shown in the following Figure (see light blue cells). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The results in terms of validation scatter plot are shown in the following Figure for 
winter PM10 (top left figure); winter PM25 (top right); summer SOMO35 (bottom 
left); and winter NO2 (bottom right). As shown in these Figures, the ANNs are able 
to properly model the seasonal behavior for the various emission reduction 
scenarios and AQIs considered. 
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ANNs inputs:  

quadrant precursor emissions 

ANNs output:  

AQI 

 

SOMO35 (mg/m3) NO2 (mg/m3) 

PM10 (mg/m3) PM2.5 (mg/m3) 


