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C-C motif ligand 2 (CCL2), also known as monocytic chemotactic protein 1

(MCP-1), is an integral chemotactic factor which recruits macrophages for the

immune response. Together with its receptors (e.g., CCR2, ACKR1, and ACKR2),

they exert noticeable influences on various diseases of different systems. At the

maternal-fetal interface, CCL2 is detected to be expressed in trophoblasts,

decidual tissue, the myometrium, and others. Meanwhile, existing reports have

determined a series of physiological regulators of CCL2, which functions in

maintaining normal recruitment of immunocytes, tissue remodeling, and

angiogenesis. However, abnormal levels of CCL2 have also been reported to

be associated with adverse pregnancy outcomes such as spontaneous

abortion, preeclampsia and preterm labor. In this review, we concentrate on

CCL2 expression at thematernal-fetal interface, as well as its precise regulatory

mechanisms and classic signaling pathways, to reveal the multidimensional

aspects of CCL2 in pregnancy.
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1 Introduction

Chemokine C-Cmotif ligand 2 (CCL2) whose common name is monocytic chemotactic

protein 1 (MCP-1), is encoded by the CCL2 gene which is located on chromosome 17q11.2

(1). Belonging to the CC chemokine superfamily, the inflammatory chemoattractant is made

up of 76 amino acids and characterized by four regions of b-sheet that include residues 9–11
(b0), 27–31 (b1), 40–45 (b2), and 51–54 (b3) and two helical regions (2). Besides, like other
members of CC chemokine superfamily, it also shares two disulphide bonds at amino acid

34-59 and 35-75 and the conserved C-C motif containing two adjacent cysteines (3).
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Additionally, the flexible N-terminal region located in the

conserved C-C motif is believed to be important in receptor

activation (4). CCL2 can be secreted by numerous cell types

including endothelial cells, activated monocytes, fibroblasts,

vascular smooth muscle cells (VSMCs), renal tubular epithelial

cells, astrocytes, microglia, and neurons (5–11). Combination and

activation of the seven transmembrane G-protein-coupled receptor

C–C chemokine receptor type 2 (CCR2) primarily direct myeloid

and lymphoid cell migration, especially blood monocytes, memory

T lymphocytes, and natural killer (NK) cells (12). Furthermore,

part of CCL2 can also bind to the atypical chemokine receptor 1

(ACKR1), ACKR2, and the glycosaminoglycan chains of

proteoglycans including heparan sulfate, heparin, and dermatan

sulfate, and then creates a series of reactions (13, 14).

In general, CCL2, especially CCL2 - mediated cell migration,

has an emerging role in human pathologic process. On the one

hand, it plays a critical role in engendering the adaptive immune

response and contributes to the pathogenesis of a variety of

diseases such as rheumatoid arthritis. In this process,

inflammatory stimuli activate the expression of CCL2 to sustain

and aggravate Th17 cell recruitment to the specific location,

followed by the production of inflammatory cytokines and other

successive responses (14, 15). CCL2 also appears to have a vicious

role in the tumor microenvironment (16). Evidence has been

provided that the CCL2-CCR2 axis can be stimulated by tumor

necrosis factor alpha (TNF-a) from tumors cells in the tumor

development to further recruit tumor-associated macrophages

(TAMs) who helps cancer cells escape from immune system,

and finally prompt the development of tumor. For example, the

overexpression of CCL2 enhances the outgrowth, invasion, and

metastasis of the 4T1 murine mammary cancer cell line which is

one of the most widely used breast cancer models (17–19). Besides,

in the nervous system, CCL2, expressed by dorsal root ganglia

(DRG) under the influence of sterile alpha and Toll/interleukin-1

receptor motif-containing 1 (Sarm1), will in turn boost the growth

potential of DRG through the accumulation of macrophages in the

distal nerve segment. Also, CCL2 is found to be implicated in the

neuropathic pain (20). In terms of metabolic illnesses, CCL2

appears to participate in tissue damage and insulin resistance in

the setting of diabetic nephropathy (21). Research also shows that

CCL2 deficiency in diabetic (db/db) mice which is a recognized

model of type 2 diabetes with a mutation of the diabetes (db) gene

encoding for the leptin receptor reduces renal macrophage

accumulation and the progression of diabetic renal injury (22).

Furthermore, several studies have demonstrated that endothelial

cells on arterial vessels can release CCL2 to upregulate the cell

adhesionmolecules like vascular cell adhesionmolecule 1 (VCAM-

1), intercellular adhesion molecule 1 (ICAM-1), P-selectin, and E-

selectin, to trigger cell arrest and facilitate leukocyte immigration

into atherosclerotic lesions (23). This dysfunction is also strongly

correlated with hypertension and other cardiovascular diseases

(24, 25).
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Previous evidence has indicated that CCL2 is secreted by

human first-trimester decidual tissue in an autocrine manner

through the extracellular signal-regulated kinases (ERK)/

mitogen-activated protein kinase (MAPK) pathway and is

regulated by pregnancy-associated factors (26), and the

difference in its concentration can lead to both normal

pregnancy progression and pathological pregnancy. In this

review, we critically summary the expression of CCL2 at the

maternal-fetal interface and the significance of CCL2 in normal

and pathological pregnancies to untangle the connections.
2 The expression of CCL2 at the
maternal-fetal interface.

2.1 CCL2 in the trophoblast cells

Trophoblast cells can be functionally divided into villous

cytotrophoblast (vCTB), syncytiotrophoblast (STB), and

extravillous trophoblasts (EVT). It is well acknowledged that

vCTBs and EVTs can produce moderate amounts of CCL2 in

early gestation (27, 28). According to Naruse’s investigation, the

level of CCL2 in 8-10 weeks of gestation did not differ from the

level in 12–14 weeks but the significance of this result has not

been clarified (29). Although there are few literatures regarding

CCL2 in STBs, some reports about CCR2 such as ACKR2 which

is vital in STB should be given more attention. The reason for its

atypia is that ACKR2 is parallel in structure and bonding

capacity with its ligands to typical chemokines but plays a

different part in inflammatory and immune regulation (30).

More specifically, being present in early endosomes of STB,

ACKR2 mainly internalizes and eliminates redundant CCL2 to

deter unnecessary cell transport (31) (Table 1).
2.2 CCL2 in the decidual stromal cells

In many studies, immunohistochemistry and ELISA have

detected the strong expression and secretion of CCL2 in decidual

stromal cells (DSC) from normal pregnant women ending up

their gestation for nonmedical reasons in the first trimester (32–

34). Specifically, after primary culture in vitro, the transcription

and autocrine secretion of CCL2 in 72-h supernatant liquid is

confirmed to be positively correlated with time (35). He et al.

gained similar outcomes using reverse transcription-polymerase

chain reaction (RT-PCR) while CCR2 was also found to be

abundantly expressed in the cytoplasm and on the cellular

membrane of DSC through Immunohistochemical and

Immunocytochemical staining. However, in the same study,

immunocytochemical characterization presented more

pigmentation of CCR2 in endometrium stromal cells (ESC)

than in DSCs, suggesting the certain function of CCR2 in
frontiersin.org
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establishing and sustaining the relationship between DSCs and

ESCs (26).
2.3 CCL2 in the decidual immune cells

Broadly speaking, decidual immune cells (DICs) at the

maternal-fetal interface include antigen-presenting cells

(APCs), T cells and NK cells (36). Macrophages, serving as

APCs, are the most closely associated with both CCL2 and CCR2

among DICs. Decidual macrophages discharge similar amounts

of CCL2 as peripheral derived macrophages to recruit blood

macrophages into the decidua (37). CCR2+CD11chigh

macrophages, one of the subtypes of decidual macrophages in

early pregnancy, can be gathered to EVT through combining

with CCL2 and excessively express relevant genes such as

interleukin-1 beta (IL-1b) and prostaglandin G/H synthase 2

(PTGS2/COX2) in order to establish a proinflammatory status

for the phagocytosis of pathogens (38). As the least numerous

DICs in decidua, T cells are also the nonnegligible target of

CCL2 (39). The expression of CCR2 by CD4+ T cells is much

higher in the decidual tissue than in peripheral blood (40). Its

subgroups, including T helper (Th)1, Th2, Th17, and T

regulatory cells (Treg cells), collaborate with CCL2 to realize

their physiologic properties (41). The NK cells at the maternal-

fetal interface are collectively known as uterine natural killer

(uNK) cells, which consist of decidual natural killer (dNK) cells

and endometrial NK (eNK) cells. And dNK cells account for the

largest part of DICs (42). Regrettably, little evidence has

illustrated the spontaneous expression of CCL2 in dNK cells.

Gibson et al. found that uNK cells from decidua could release

CCL2 after the stimulation of estradiol (E2) to modulate vascular

function but the exact type of uNK cells (dNK or eNK cells) was

unknown (43). Of note, the interaction between CCL2 and

CCR2 can assist DICs in regulating the maternal-fetal interface

immune microenvironment to promote pregnancy progression

(34, 44).
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3 Regulation of CCL2 expression at
the meternal-fetal interface

As described above, CCL2 is of great importance at the

maternal-fetal interface and its expression and secretion can be

regulated by multiple endogenous factors to assure a friendly

uterine microenvironment (Table 2). Here, the pathological

regulators of pregnancy diseases will be enumerated.
3.1 Hormones

Pregnancy is a complex process in which the concentrations

of estrogen, progesterone, and other relevant hormones are

much higher than those at any other stages of life (63). We

can therefore consider the association between the regulatory

role of pregnancy-associated hormones and CCL2. When a

woman is pregnant, the estrogen in her state not only takes

part in the decidualization and remodeling of uterine tissue, but

also boosts the production of CCL2 from DSCs possibly through

working on the promoter region containing binding sites for

activator protein-1 (AP-1) and nuclear factor kappa B (NF-kB)

(26, 45). Another interesting study reported that E2 reduced the

level of CCL2 in the placenta to control inflammation and

further treat preeclampsia (PE) via estrogen receptor Α36

(ERΑ36)-induced toll-like receptor 4 (TLR4) pathways (46).

Apart from this, the level of CCL2 mRNA and protein can be

drastically elevated by human chorionic gonadotropin (hCG) as

well as progesterone but the concrete mechanisms need further

exploration (64). Since gestation is actually a mild inflammatory

process accompanied by the infiltration of leukocytes and the

generation of CCL2 and other inflammatory chemokines (47),

pro-inflammatory hormones are expected to regulate the

expression of CCL2. Take prostaglandin F2Α (PGF2Α) as an

example, it links to PGF2Α receptor (PTGFR) to increase CCL2

in a dose-dependent manner in vitro and knockdown of PTGFR

reverses the up-regulation. Chen et al. have put forward its

signaling pathways in human uterine smooth muscle cells
TABLE 1 The expression of CCL2/CCR2 at the maternal-fetal interface.

CCL2 CCR2 ACKR2

villous cytotrophoblast + + -

Syncytiotrophoblast - - +

extra-villous trophoblast + - -

Decidual stromal cells + + -

Decidual macrophages + + -

CD4+T cells - + -

Decidual nature killer cells - - -
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(HUSMCs) in the third trimetster, including phospholipase C/

protein kinase C (PLC/PKC), ERK1/2, MAPK p38, and

phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)

signaling (48). Little, however, is known about the pathways

triggered by PGF2Α in decidual cells. In addition, vasoactive

intestinal peptide (VIP) which originates from the STB in the

early trimester and spreads in the decidual stroma can lead the

transmission of peripheral monocytes to the decidua via

accelerating the expression of CCL2 and CCL3 (49).

Meanwhi le , CCL2 can be regarded as one of the

decidualization markers induced by VIP (50).
3.2 Cytokines

There is no doubt that cytokines are indispensable in

creating an environment more suitable for pregnancy and the

interactive network among them is so complicated that plenty of

modulatory outcomes can be observed, including cell migration,

invasion, and gene expression (65, 66). The adjustment of CCL2

always takes place at the maternal-fetal interface during different

trimesters with the help of interleukin (IL)-33, IL-1b, TNF-a,
receptor-activator of NF-kB ligand (TNFSF11, also known as

RANKL) and so on. In Hu et al.’s investigation, IL-33 treatment

raised the concentration of CCL2 and CCR2 in DSCs, and IL-33
Frontiers in Immunology 04
inhibitor prevented the change. Phosphorylation of NF-kB p65

and ERK1/2 has also been involved in the above up-regulation

process that is beneficial to the proliferation of DSCs and the

sustainment of a normal pregnancy (51). Membrane RANKL

and RANK proteins are located in DSCs of the first trimester and

encourage the growth of DSCs by enhancing the CCL2/CCR2

axis (52). Additionally, Renaud et al. reported that the

inducement of TNF-a caused the ascent of CCL2 and CCL5

in trophoblast cells in the first trimester through the activation of

MAPK and c-Jun N-terminal kinase (c-JNK) (53). Cumulative

evidence supports that when TNF-a is overexpressed, it has an

enormous influence on the adverse consequences of pregnancy

which will be mentioned below (67, 68). Moreover, in vitro

experiments conducted by Lockwood et al. showed that decidual

cells dealt with IL-1b triggered high expression of CCL2 (54). In

short, different cytokines sometimes mediate similar pathways to

regulate CCL2 but lead to different impacts, which drives the

need for more studies exploring their independent but

correlative characteristics in pregnancy.
3.3 Enzymes and metabolites

Normal activity of enzymes and metabolism is of major

significance for hemodynamics at the maternal-fetal interface.
TABLE 2 Regulation of CCL2 expression at the maternal-fetal interface.

Classification Regulatory
factor

Function Reference

Hormones E2 Boosts the production of CCL2 in DSCs by working on the binding sites for AP-1 and NF-kB (26, 45)

Reduces the level of CCL2 in the placenta to control inflammation via ERΑ36/TLR4 pathways (46)

HCG Elevates the level of CCL2 protein and mRNA (47)

Progesterone Elevates the level of CCL2 protein and mRNA (47)

PGF2Α Increases CCL2 in a dose-dependent manner involving PLC/PKC, ERK1/2, MAPK p38 and PI3K pathway (48)

VIP Accelerates the expression of CCL2 to be one of decidualization markers (49, 50)

Cytokines IL-33 Raises the concentration of CCL2 and CCR2 in DSCs through the phosphorylation of NF-kB p65 and ERK1/
2

(51)

RANKL Enhance CCL2/CCR2 axis concerning with NF-kB pathway (52)

TNF -a Causes the ascent of CCL2 in first trimester trophoblast cells through the activation of MAPK and c-JNK
signaling

(53)

IL-1b Triggers high expression of CCL2 (54)

Enzymes and
Metabolites

Thrombin Augments CCL2 protein expression through PAR-1 mediated pathways including PAR-1/Raf-1/MEK/MAPK
cascade responses, PAR-1/Rho/Rho-kinase pathway or non-PAR-1 pathway including PLC-InsP3/Ca2+-PKC
and downstream ERK1/2 but CCL2 mRNA doesn’t be affected

(55–58)

HO-1 Advances CCL2 and CCR2 expression in decidual cells (59)

LPA Works on LPA1 receptor of human first-trimester trophoblast cells and then releases CCL2 via Gi protein,
ERK, PKC, p38, Akt, JNK and NF-kB signaling

(60, 61)

Lactate Restrains the expression of CCL2 via GPR81 (62)
f
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Deep embedment of trophoblast cells into the maternal arteries

can reshape vessels with high flow and capacity to ensure

adequate nutrition for the fetus (69). Successive penetration of

circulating VII complexes results in the synthesis of thrombin in

the stromal tissue. In addition to its coagulation function, its

moderate level maintains gestational normality and keeps the

level of some chemokines including CCL2 and IL-8 under

control. If this normal range is exceeded, preeclampsia and

recurrent miscarriage will arise more easily (55, 70). Matta

et al. found that due to the posttranslational effect, higher

concentration of thrombin advanced more CCL2 protein

expression in decidual cells of the early stage, but the level of

CCL2 mRNA remained unaffected (56). Focusing on the

mechanisms, Kawano pointed out that proteinase-activated

receptors-1 (PAR-1) was the crucial receptor to regulate

thrombin-dependent pathways. When ESC prepared for

implantation, Raf-1 got activated after the combination with

PAR-1, initiated the mitogen-activated protein kinase kinase

(MEK)/ERK cascade responses and finally augmented CCL2

expression (57). Meanwhile, recent findings referred to the PAR-

1/Rho/Rho-kinase pathway in EVTs as a necessity of the

increase of CCL2 (55). The non-PAR-1 pathway includes

PLC-inositol 1,4,5-trisphosphate (InsP3)/Ca2+-PKC, and

downstream ERK1/2 (57, 58). Heme oxygenase-1 (HO-1)
Frontiers in Immunology 05
turns out to be involved in placental angiogenesis,

antioxidative surroundings, and macrophage transfer. Absence

of HO-1 in pregnant uteri can substantially lessen CCL2 and

CCR2 in decidual cells so that monocyte/macrophage

infiltration will not be sufficient to maintain a successful

p regnancy (59 ) . When i t comes to metabo l i t e s ,

lysophosphatidic acid (LPA) from the metabolism of

lysophospholipase D increases with advancing gestational

weeks. It works on LPA1 receptor of human first-trimester

trophoblast cells and then releases CCL2 and IL-8 via Gi

protein, ERK, PKC, p38, Akt, JNK, and NF-kB signing (60,

61). Conversely, lactate is one of the vital metabolites of violent

myometrium contraction and assists in balancing inflammation

during delivery. It functions via G protein-coupled receptor

GPR81 to restrain the overexpression of CCL2 and attenuate

the ensued preterm birth (62).
4 Biological function of CCL2 at the
maternal-fetal interface

Undoubtedly, under the control of modulators, CCL2 will

achieve a dynamic balance and make full use of itself throughout

entire proceeding, directly and indirectly (Figure 1).
FIGURE 1

Biological Function of CCL2 at the Maternal-fetal interface. (A). Macrophages from maternal blood produce CCL2 and recruit extra
macrophages. Janus kinase 2 (JAK2) is the desirable effector downstream of CCL2-CCR2 for keeping an optional balance of M1 and M2
phenotypes. M1 produces IL-1b, IL-6, IL-8, TNF-a and M2 produces IL-1Ra and IL-10. (B). CCL2 recruits CD4+ T cells, including Th 2, Th17 and
T regulatory cells (Treg cells). The ration of transcription factors GATA3 and T-bet (TBX21) in naive T cells goes up, deciding the bias of Th2
polarization for the tolerate gestation with accumulative IL-4.Th17 cells approach DSC with the guidance of CCL2-CCR2 axis and then generate
IL-17 to endorse trophoblast proliferation and control its apoptosis. (C). M-MDSCs multiply at maternal-fetal interface via CCL2/STAT3 pathway
and can attenuate the activity of T cells. (D). CCR2+CD11chigh macrophages can be gathered to EVT via combining with CCL2 and then regulate
the growth and invasion of EVT through PI3K/Akt/Erk1/2 pathway for stronger implantation. (E). CCL2 causes the proliferation and invasion of
DSCs directed by IL-33. (F). CCL2 and CCR2 expression caused by RANKL/RANK increased Ki67 and Bcl-2 and reduced FasL, making sure the
anti-apoptosis and increment of DSC. (G). With high level of CCL2, dNK cells generate angiopoietin-1 (Ang-1), Ang-2, IFN-g and VEGF-C to
dedifferentiate and degrade VSMC, which is a requisite step in spiral artery remodeling.
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4.1 Role in recruitment and regulation of
immune cells

CCL2 always enjoys a great reputation for its role in

attracting appropriate immune cells to certain tissues, and

DICs in pregnancy are not exempt (71). Macrophages, T cells,

basophils, mast cells, and NK cells can respond to CCL2 (72).

They stem from the mother’s peripheral blood, assemble at the

maternal-fetal interface, and then transform into DICs which

perform essential functions to guarantee the immune

microenvironment and immune tolerance (73, 74).

CCL2 is the most available chemotactic factor to decidual

macrophages. After recruitment, decidual macrophages

subsequently produce a wide range of inflammatory mediators

including CCL2 and attract more macrophages to create a

positive feedback (75). In the first 6–12 weeks, CD14+ decidual

macrophages are sorted into three types: CCR2+CD11chigh,

CCR2-CD11chigh, and CCR2-CD11clow. With the progression

of pregnancy, their respective proportion and cytokine patterns

will change and turn into two phenotypes like traditional M1/

M2 (76). In vivo tests indicated that Janus kinase 2 (JAK2) was

the desirable effector downstream of CCL2-CCR2 for keeping an

optimal balance of macrophage immune state in the first

trimester (34). IL-1b, IL-6, IL-8, and TNF-a from M1-

accociated phenotype are directed at pathogenic and

inflammatory matters while a considerable amount of IL-1

receptor antagonist (IL-1Ra) and IL-10 from the other one

counter undue reactions, and ultimately it achieves the

coexistence of the protection from jeopardy and the tolerance

of immunity (77).

As for T lymphocytes, CCL2 mostly recruits CD4+ T cells.

The shift of CD4+CD25high Tregs is guided by CCL-CCR2 axis

(78). Huang showed that the number of migrant Tregs was

diminished by CCR2 antagonist (64). Furthermore, Th17 cells

can be attracted to decidua, partly due to the connection between

the expression of CCR2 in Th17 and the expression of CCL2 in

DSCs (32, 79). However, Th2 is predominant at the maternal-

fetal interface, which is also related to CCL2 (80). With the

constant stimulation of CCL2 in the early trimester, the

proportion of transcription factors GATA3 and T-bet/TBX21

in naive T cells goes up. And then it leads to the bias of Th2

polarization, followed by an increase in IL-4 and a relative

decrease in interferon gamma (IFN-g), finally contributing to

the toleration of gestation (35, 40).

There are other unconventional DICs receiving the

regulations of CCL2. Myelomonocytic myeloid-derived

suppressor cells (M-MDSCs), characterized as CD14+HLA-

DR-/low cells, were found to multiply at the maternal-fetal

interface via the CCL2/transducer and activator of

transcription 3 (STAT3) pathway. Their ability to attenuate

the activity of T cell has drawn much attention recently and

they may also be associated with the status of immunologic

unresponsiveness in pregnancy (81). Apart from the
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proliferation of M-MDSCs, CCL2 can affect the differentiation

of dendritic cells (DCs) that develop from CD14+ monocytes

and are equipped with the dual ability to present antigens and

inhibit immune responses (36, 82). Current supporting evidence

is that partially owing to the presence of CCL2, DCs in the first

trimester are typically divided into a majority of premature DC-

SIGN+ DCs and a minority of CD83+ DCs. After the

neutralization of CCL2, the amount of DC-SIGN+ DCs

decreased (83). However, according to Jimenez et al., CCL2

appeared to motivate the maturation of DCs (84). This

disagreement will not be solved until the comprehensive

explanation is proposed.

Interestingly, IL-15, TGF-b, and CXCL12 are engaged in the

transition of peripheral CD56bright CD16-NK cells into dNK cells

via CD9, CD49a, CD103, CXCR3, and CXCR4 (85). Though

CCL2 is not found to participate in the transition described

above, it has been reported to mediate the regulatory signal

pathway between dNK cells and peripheral blood NK cells (86).

Otherwise, CCL2 from DSCs is likely to impair the cytotoxicity

of NK cells for maternal-fetal tolerance. The up-regulation of

Suppressor of Cytokine Signaling 3 (SOCS3) mediated by CCL2

may result in the inhibition of perforin in NK cells by

undermining the activity of STAT family members, especially

STAT3 and STAT5 (87).
4.2 Contribution to tissue remodeling
and embryo implantation

There is broad recognition that at the beginning of

pregnancy some necessary alterations in the uterus will

happen to achieve perfect endometrial receptivity (88, 89). In

humans, distinct from other mammals such as mice, the

remodeling of the endometrium is driven by ovarian

hormones and a series of chemokines to make provision for

embryo implantation (90). During this process, endometrial

stromal fibroblasts are specifically converted into decidual cells

and have been proved to express CCL2 protein (91). It is likely

that CCL2 can mildly strengthen the ability of endometrial

epithelial cells to migrate by curbing the transcription of tight

junction protein 1 (TJP-1). This modification has only been

verified in pigs and remains unknown in humans (92). CCL2

also has a positive influence on the proliferation and vigor of

ESC through Akt and MAPK/ERK1/2 rather than MAPK p38

and the JNK signaling pathway, which is advantageous for

decidualization (93, 94).

Once trophoblast cells build firm bonds with the prepared

endometrium, regional epithelial apoptosis enables trophoblast

to intrude into deeper decidua along with the differentiation of

trophoblast cells (95, 96). It is CCL2 that produced by DSCs to

attract EVTs via CCR2 and then the invasiveness is notably

heightened (97). In fact, the indirect effect of CCL2 on

trophoblast cells is far from negligible. CCL2 attracts
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macrophages expressing G-CSF to regulate the growth and

invasion of EVT through the PI3K/AKT/ERK1/2 pathway for

deeper implantation (98). Th17 cells approach DSC with the

guidance of the CCL2-CCR2 axis and then generate IL-17 to

endorse trophoblast proliferation and control the apoptosis (32).

Other secondary assistances can also be offered by CCL2 such as

the suppression of cyclooxygenase-2 (COX-2) related to

oxidative stress and these make a pregnancy more likely to

succeed (99).
4.3 Effect on proliferation and invasion
of DSCs

DSCs are considered as a major component following the

decidualization to back up embryonic growth on the aspects of

nutrition, immune tolerance, and anti-inflammation (100, 101).

However, the realization of competence relies on natural

proliferation and invasion of DSCs, whose relevance to CCL2

has been mentioned in Hu’s study. Neutralizing antibodies to

CCL2 reduced the proliferation and invasion of DSCs directed

by IL-33, which means CCL2 may play a coordinating role with

IL-33 to help DSCs to growth and invade (51). On the other

hand, Meng et al. found that the expression of CCL2 and CCR2

caused by RANKL/RANK increased Ki67 and Bcl-2 and reduced

FasL, ensuring the anti-apoptosis and increment of DSC. The

mechanism behind the condition has not yet been completely

understood (52).

Taken together, current researches make it clear that CCL2 is

involved more in the interplay between DSCs and DICs than the

development of DSCs itself (102). Therefore, future exploration

on the latter can be taken into account as one possible

orientation for CCL2.
4.4 Ability of spiral arteries remodeling

As pregnancy progresses, angiogenesis leads to the

generation of expanding spiral arteries that replace existing

high resistance ones. It requires the cooperation of EVT,

VSMC, endothelial cells, and DICs realized by a succession of

angiogenic factors and signaling circuits, including CCL2 (103–

106). In the early stage of angiogenesis, dNK cells and

macrophages intrude into the wall of spiral arteries and

generate angiopoietin-1 (Ang-1), Ang-2, IFN-g, and VEGF-C

to dedifferentiate and degrade VSMC, which is a requisite step in

spiral artery remodeling (107, 108). Meanwhile, CCL2 in

decidual macrophages assists the appropriate transformation

of vessels via rationalizing the M1/M2 ratio (109). Though

preceding conclusions have demonstrated that macrophages

affected the release of proangiogenic factors through the

expression of tyrosine kinase via immunoglobulin-like and

EGF-like domains (TIE2), neuropilin 1 (NRP1) or the
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transcription of E26 transformation-specific-1 (Ets-1) in

endothelial cells of different tissues, we hypothesize whether

these proteins fit in macrophages at the maternal-fetal interface

depends on different characteristics in separate vascular beds

(110–113). In the second and third trimester, further increase in

spiral blood flow implies the persistence and improvement of

this process. Ma et al. observed that placental tissue cultivated in

vitro, to some degree, steered proliferation, migration, adhesion,

invasion, and tube formation of HUVEC. As one of the

representative elements, high level of CCL2 disintegrated the

extracellular matrix (ECM) via increasing the secretion of MMP-

1 and this propelled the expression of fibroblast growth factor,

platelet-derived growth factors, and vascular endothelial growth

factor to elicit signal pathways in HUVEC, including MAPKs

(114, 115). However, in vivo mechanisms demand more careful

verification. All in all, the role of CCL2 in other steps of the

development of uteroplacental circulation deserves to

be elucidated.
5 The role of CCL2 in pathological
pregnancy

When the level of CCL2 moves out of the normal

physiological range, its functions introduced above will be

ineffective and cause several diseases of pregnancy (116). More

and more researchers have monitored changes in CCL2 during

the development of different pathological conditions, suggesting

that it could be useful for prediction and treatment.
5.1 Spontaneous abortion

Spontaneous abortion (SA), or miscarriage, is the most

frequent cause of autogenic pregnancy demise before the 24th

gestational week (117). Chromosomal abnormalities is the

principal menace and aberrant level of chemokines is regarded

as an additional hazard (118). For example, the rise of TNF-a
and macrophage inflammatory protein 1-alpha (MIP-1a) in

women who spontaneously abort is apparent, while CCL2 is a

disputed point (119). Zhang et al. found that the amount of

CCL2 mRNA in chorionic and decidual tissues of an SA cohort

surpassed that of the control (120). Later, another study from

Hannan et al., examining the plasma of miscarriage and control

groups, did not witness any expression discrepancy of CCL2,

CCL5, CCL7, and C-X3-C Motif Chemokine Ligand 1 between

the two groups (121). Different methodology and compositions

in decidua and plasma may be the reason behind it. However,

when it comes to recurrent pregnancy loss (RPL; covering three

or more unsuccessful pregnancies), recent data and literatures

have reached agreement that respondents with RPL expressed

higher level of CCL2 than normal gravidas (122).
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In fact, there is a more inflamed microenvironment in SA

patients that is identified to be consistent with the growing

tendency of pro-inflammatory factors. TLR4 is assigned to the

Toll-like receptors family and can activate the NF-kB pathway

(123). Under circumstances of uterine immune imbalance in

RPL patients, exorbitant TLR4 tends to mediate the alteration of

T cells to Th1 and the generation of Th1 cytokines like TNF-a
and INF-g via CCL2/CCR2, which remains to be further

elucidated (35). TNF-a can accordingly prompt the expression

of CCL2 to create a vicious circle (86, 124). With higher level of

CCL2, more M1macrophages will be recruited and stimulated to

secret more pro-inflammatory factors that enforce CCL2

expression to create a positive feedback loop (125, 126). In

addition, in vivo excessive IL-1b resulting from the decrease in

IL-1Ra level during the window of implantation multiplies the

level of CCL2 mRNA and protein (127). The immune variations

on account of the cell dysfunction are likely to contribute to the

pathogenesis of abortion but the underlying mechanisms need to

be clarified.
5.2 Preeclampsia

Preeclampsia (PE) is an intricate pregnancy complication

that presents with newly developed hypertension after the 20th

gestational week and causes placental dysfunction and maternal

organ abnormalities (128). It is broadly accepted that impaired

intrusion of trophoblasts breaks stable angiogenesis, leading to

endothelial malfunction, oxidative stress, and improper

inflammation (129). The variation and pertinent regulators of

CCL2 in this process are worth consideration. Evidence in PE

patients has suggested that the concentration of CCL2 was well

beyond the normal range, both in the plasma and placenta (130).

It was conformed to the results of Cui’s investigation that CCL2

expression was higher in patients during mid-pregnancy and

increased with the expansion of severity (131). On the contrary,

a cohort study targeting the level of CCL2 in maternal

circulation during the first trimester to forecast the incidence

of PE showed that patients with PE produced less CCL2 in early

pregnancy than control patients. Therefore, CCL2 can be a

reliable biomarker for predicting PE (132). Furthermore, Yan

et al. shed light on the pathological regulation and suggested that

hypoxia in PE lowered the expression of ACKR2 (D6), as well as

impelled the upregulation of CCL2 by negative feedback and the

apoptosis of trophoblasts (30, 133). Zhang et al. made use of

nuclear factor erythroid 2-related factor 2 (Nrf-2) inhibitor in

vivo to confirm that low levels of Nrf-2, which is relevant to

reactive oxygen species (ROS), could increase CCL2 in placental

tissue (134). Li et al. proposed the original concept that cell‐free

fetal DNA (cffDNA) from dead STB or CTB accrued in patients

with PE. Melanoma 2 (AIM2) as a DNA sensor in trophoblasts

distinguished high level of cffDNA and excited the

overexpression of CCL2 (135).
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Additionally, there are other studies emphasizing the

influence of changing levels of CCL2 on PE. In one of the

monocyte/macrophage-specific discussions, partly because of

the increase of CCL2, the number of CD14+CD11c+CD163-

monocytes markedly grew with the suppression of

CD14+CD11c+CD163+ monocytes (136). The former enhanced

Fas-intermediated apoptosis of EVT to disturb intact placental

implantation (137). On the other hand, incremental CCL2 and

IL-8 attracted circulating monocytes to vessel walls and to harm

the vascular endothelium in a way similar to that of

atherosclerotic lesions. In this regard, Scott substantiated that

antioxidation treatment with vitamin E in vivo and in vitro both

intercepted the production of CCL2 via the TLR-NF-kB signal,

mitigating the negative influence (46, 138, 139). As for

systematic inflammatory disorders, it is also associated with

the overexpression of CCL2, especially in the last trimester (140).

Ove ra l l , t h e above -ment ioned in t e rp re t a t ions

demonstrate the value of CCL2 in pathogenesis and

outcomes of PE, but further investigation into the

biomolecular pathway is needed.
5.3 Preterm labor

Preterm labor (PTL) is considered as birth before completed

37 weeks of gestation (141). In fact, the pathophysiology of it is

similar to the term labor. Generally speaking, in the last

trimester, more leukocytes are attracted into the myometrium

to form an “inflammatory microenvironment” with the final

onset of parturition. However, this process sometimes happens

ahead of schedule because of several pathologic processes and

the impaired immune tolerance, and PTL occurs (142, 143).

Inflammation arising from intra-amniotic infection (IAI) is

universally recognized to have a certified causal relationship

with preterm delivery. It is featured with anomalous infiltration

of monocytes/macrophages and neutrophils, followed by the

increasing level of immune mediators and pro-inflammatory

cytokines (144). CCL2, one of them, has turned out to be

excessive no matter in tissue of preterm pregnancies or models

of PTL. Phetcharawan et al. obtained placental samples from

pregnancies delivered between 25.3–36.0 weeks and discovered

that compared with PTL alone, placental CCL2 mRNA level in

PTL with IAI was higher, which demonstrated the essential role

of CCL2 in PTL caused by IAI (145, 146) . Also,

lipopolysaccharide (LPS), a bacterial product, can be

administrated to pregnant animals to imitate infection and

establish the model of PLT. In addition to placental tissues

from models, uterine tissues can embody the difference of CCL2

expression. For example, Marcia et al. adopted it in the in vivo

test and got the result that myometrial SMCs of the uterine

tissues from the LPS-treated group produced more CCL2 than

the control ones (147). There are a few of upstream signal

molecules regulating the expression of CCL2, some of which
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have been regarded as targets for studies on treatment and

prevention. The interferon regulatory factor 5 (IRF5) was

found elevated in myometria l cel ls to respond to

inflammation. In vitro siTRF5 experiment found the

diminishment of TNF-mediated CCL2 mRNA expression,

corroborating that IRF5 enhanced CCL2 expression at the

transcriptional level. Concretely, IRF5 combined with RELA

subunit of NF-ΚB activated by TNF-a and stimulated NF-ΚB

signal pathway to secret more CCL2 (148). GPRs belong to

another family related closely to labor and GPR91 is one of them

who are active in inflammation during PTL. The knockdown of

GPR91 had effect on the reduction of IL1b-mediated rather than

TNF-mediated CCL2 mRNA expression and secretion, which

might attribute to their recruitment of different messengers to

regulate downstream genes (149). Other experiments focusing

on the therapy of PTL mainly acted on different targets but

ended up with NF-kB signal pathway to decrease the secretion of

CCL2 (150–152). Therefore, CCL2 seems to make a difference in

terminal inflammatory pathway and it is worth intensive

studying how CCL2 exerts its function (153).
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In conclusion, a growing body of evidence demonstrates that

CCL2 was produced at the maternal-fetal interface, aided by

pregnancy-associated regulatory factors, especially in decidual

stromal cells. As a valuable chemoattractant, it fosters the

migration of a different sort of decidual immune cell from

peripheral tissue to the decidua by binding typical or atypical

receptors. Meanwhile, equally important is its contribution to

the decidualization of the endometrium, invasion of

trophoblasts, and proliferation of decidual stromal cells. Its

participation in the NF-ĸB pathway, Akt signaling pathway,

and ERK pathway also bridges the communication between cells.

However, when exogenous infections or endogenous changes

disorder the level of CCL2, impaired cell function and altered

immunological tolerance will appear, leading to miscarriage,

preeclampsia or preterm labor (Table 3). And currently, some

recent experimental works have chosen deviant molecules

upstream of the CCL2-CCR2 axis as therapeutic targets to

normalize CCL2 expression and improve disadvantageous
TABLE 3 The behaviors of CCL2 in different pregnancy outcomes at specific trimesters .

Normal pregnancy Abortion Pre-eclampsia Preterm labor

Attracts macrophages to keep a balanced
immune state in the first trimester (34)

Recruits more M1 macrophages to secret
more pro-inflammatory factors in the early
trimester (125, 126)

Enhances Fas-intermediated
apoptosis of EVT in the
second trimester (137)

Increases the infiltration of
neutrophils and impairs
immune tolerance in the last
trimester (142, 143)

Recruits Th17 for generating IL-17 to endorse
trophoblast proliferation and control the
apoptosis in the first trimester (32)

Mediates the alteration of T cells to Th1
and the generation of Th1 cytokines,
leading to immune variations in the first
trimester (86, 124)

Accumulates excess ROS to
disturb the proliferation of
trophoblasts in the second
trimester (134)

Produces the bias of Th2 polarization for the
toleration of gestation in the first trimester (35,
40)

Attracts circulating monocytes
to damage the vascular
endothelium in the second
trimester (137)

Enhances the proliferation and vigor of ESC
through Akt and MAPK/Erk1/2 signaling
pathway, for decidualization in the first
trimester (93, 94, 97)

Leads to systematic
inflammatory disorders in the
third trimester (140)

Regulates the growth and invasion of EVT for
deeper implantation in the first trimester (98)

Prompts the proliferation and anti-apoptosis
of DSC in the first trimester (51, 52)

Rationalizes the M1/M2 ratio for appropriate
vascular transformation in the second
trimester (109)

Increases the level of proangiogenic factors for
vascular remodeling in the second trimester
(114, 115)

Recruits more macrophages into uterine tissues
for an “inflammatory microenvironment” in
the last trimester and the onset of parturition
(48)
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outcomes. Accordingly, through this literature summary, we can

try to realize the clinical function of CCL2 as possible and

improve the pathological pregnancy outcome by more precise

regulation of CCL2 level in the future. Hopefully, our growing

knowledge of new methodologies such as organoid culture

models, CRISPR technology, and mesenchymal stem cells can

establish a more spacious platform for research about CCL2 in

normal and pathological pregnancies (154–156) to meet the

challenges attributing to differences between species and

complex crosstalk happening in vivo.
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Pérez J. Inflammatory molecules and pathways in the pathogenesis of diabetic
nephropathy. Nat Rev Nephrol (2011) 7(6):327–40. doi : 10.1038/
nrneph.2011.51
frontiersin.org

https://doi.org/10.1186/s13046-020-01666-z
https://doi.org/10.1016/j.cyto.2017.12.010
https://doi.org/10.1016/s1359-6101(99)00005-2
https://doi.org/10.1016/s1359-6101(99)00005-2
https://doi.org/10.1038/nri722
https://doi.org/10.1016/0165-5728(95)00064-9
https://doi.org/10.1093/infdis/175.2.478
https://doi.org/10.1093/infdis/175.2.478
https://doi.org/10.1038/ki.1995.437
https://doi.org/10.1093/cvr/cvz308
https://doi.org/10.1093/cvr/cvp238
https://doi.org/10.1093/cvr/cvp238
https://doi.org/10.1161/ATVBAHA.111.230078
https://doi.org/10.1002/cne.20598
https://doi.org/10.1056/NEJMra052723
https://doi.org/10.1056/NEJMra052723
https://doi.org/10.3389/fimmu.2016.00224
https://doi.org/10.3389/fimmu.2019.02759
https://doi.org/10.1016/j.intimp.2018.10.016
https://doi.org/10.3389/fonc.2021.722916
https://doi.org/10.1038/nature15376
https://doi.org/10.1038/nature15376
https://doi.org/10.1038/cmi.2017.135
https://doi.org/10.1038/cmi.2017.135
https://doi.org/10.1038/s41392-020-0205-z
https://doi.org/10.1016/j.pneurobio.2018.12.001
https://doi.org/10.1016/j.pneurobio.2018.12.001
https://doi.org/10.1038/nrneph.2011.51
https://doi.org/10.1038/nrneph.2011.51
https://doi.org/10.3389/fimmu.2022.1053457
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lin et al. 10.3389/fimmu.2022.1053457
22. Chow FY, Nikolic-Paterson DJ, Ma FY, Ozols E, Rollins BJ, Tesch GH.
Monocyte chemoattractant protein-1-Induced tissue inflammation is critical for
the development of renal injury but not type 2 diabetes in obese Db/Db mice.
Diabetologia (2007) 50(2):471–80. doi: 10.1007/s00125-006-0497-8

23. Winter C, Silvestre-Roig C, Ortega-Gomez A, Lemnitzer P, Poelman H,
Schumski A, et al. Chrono-pharmacological targeting of the Ccl2-Ccr2 axis
ameliorates atherosclerosis. Cell Metab (2018) 28(1):175–82.e5. doi: 10.1016/
j.cmet.2018.05.002

24. Mikolajczyk TP, Szczepaniak P, Vidler F, Maffia P, Graham GJ, Guzik TJ.
Role of inflammatory chemokines in hypertension. Pharmacol Ther (2021)
223:107799. doi: 10.1016/j.pharmthera.2020.107799

25. Kashyap S, Osman M, Ferguson CM, Nath MC, Roy B, Lien KR, et al. Ccl2
deficiency protects against chronic renal injury in murine renovascular
hypertension. Sci Rep (2018) 8(1):8598. doi: 10.1038/s41598-018-26870-y

26. He Y-Y, Du M-R, Guo P-F, He X-J, Zhou W-H, Zhu X-Y, et al. Regulation
of c-c motif chemokine ligand 2 and its receptor in human decidual stromal cells by
pregnancy-associated hormones in early gestation. Hum Reprod (Oxford England)
(2007) 22(10):2733–42. doi: 10.1093/humrep/dem208

27. Svensson-Arvelund J, Mehta RB, Lindau R, Mirrasekhian E, Rodriguez-
Martinez H, Berg G, et al. The human fetal placenta promotes tolerance against the
semiallogeneic fetus by inducing regulatory T cells and homeostatic M2
macrophages. J Immunol (Baltimore Md 1950) (2015) 194(4):1534–44.
doi: 10.4049/jimmunol.1401536

28. Pollheimer J, Vondra S, Baltayeva J, Beristain AG, Knöfler M. Regulation of
placental extravillous trophoblasts by the maternal uterine environment. Front
Immunol (2018) 9:2597. doi: 10.3389/fimmu.2018.02597

29. Naruse K, Innes BA, Bulmer JN, Robson SC, Searle RF, Lash GE. Secretion
of cytokines by villous cytotrophoblast and extravillous trophoblast in the first
trimester of human pregnancy. J Reprod Immunol (2010) 86(2):148–50.
doi: 10.1016/j.jri.2010.04.004

30. Gowhari Shabgah A, Jadidi-Niaragh F, Mohammadi H, Ebrahimzadeh F,
Oveisee M, Jahanara A, et al. The role of atypical chemokine receptor D6 (Ackr2) in
physiological and pathological conditions; friend, foe, or both? Front Immunol
(2022) 13:861931. doi: 10.3389/fimmu.2022.861931

31. Teoh PJ, Menzies FM, Hansell CA, Clarke M, Waddell C, Burton GJ, et al.
Atypical chemokine receptor Ackr2 mediates chemokine scavenging by primary
human trophoblasts and can regulate fetal growth, placental structure, and
neonatal mortality in mice. J Immunol (2014) 193(10):5218–28. doi: 10.4049/
jimmunol.1401096

32. Wu H-X, Jin L-P, Xu B, Liang S-S, Li D-J. Decidual stromal cells recruit
Th17 cells into decidua to promote proliferation and invasion of human
trophoblast cells by secreting il-17. Cell Mol Immunol (2014) 11(3):253–62.
doi: 10.1038/cmi.2013.67

33. Lee KM, Wilson GJ, Pingen M, Fukuoka A, Hansell CAH, Bartolini R, et al.
Placental chemokine compartmentalisation: A novel mammalian molecular
control mechanism. PLos Biol (2019) 17(5):e3000287. doi: 10.1371/
journal.pbio.3000287

34. Wei C-Y, Li M-Q, Zhu X-Y, Li D-J. Immune status of decidual macrophages
is dependent on the Ccl2/Ccr2/Jak2 pathway during early pregnancy. Am J Reprod
Immunol (New York NY 1989) (2021) 86(5):e13480. doi: 10.1111/aji.13480

35. Yu N, Weng Y, Liu W, Chen L, Iqbal F, Yin Z, et al. Tlrs induce Th1/Th2
responses by affecting the secretion of Ccl2 at the maternal-foetal interface. Int
Immunopharmacol (2021) 100:108070. doi: 10.1016/j.intimp.2021.108070

36. Yang F, Zheng Q, Jin L. Dynamic function and composition changes of
immune cells during normal and pathological pregnancy at the maternal-fetal
interface. Front Immunol (2019) 10:2317. doi: 10.3389/fimmu.2019.02317

37. Du M-R, Wang S-C, Li D-J. The integrative roles of chemokines at the
maternal-fetal interface in early pregnancy. Cell Mol Immunol (2014) 11(5):438–48.
doi: 10.1038/cmi.2014.68

38. Jiang X, DuM-R, Li M, Wang H. Three macrophage subsets are identified in
the uterus during early human pregnancy. Cell Mol Immunol (2018) 15(12):1027–
37. doi: 10.1038/s41423-018-0008-0

39. Robertson SA, Care AS, Moldenhauer LM. Regulatory T cells in embryo
implantation and the immune response to pregnancy. J Clin Invest (2018) 128
(10):4224–35. doi: 10.1172/JCI122182

40. He YY, He XJ, Guo PF, Du MR, Shao J, Li MQ, et al. The decidual stromal
cells-secreted Ccl2 induces and maintains decidual leukocytes into Th2 bias in
human early pregnancy. Clin Immunol (2012) 145(2):161–73. doi: 10.1016/
j.clim.2012.07.017

41. Solano ME. Decidual immune cells: Guardians of human pregnancies. Best
Pract Res Clin Obstet Gynaecol (2019) 60:3–16. doi: 10.1016/j.bpobgyn.2019.05.009

42. Ander SE, Diamond MS, Coyne CB. Immune responses at the maternal-
fetal interface . Sci Immunol (2019) 4(31) :eaat6114. doi : 10.1126/
sciimmunol.aat6114
Frontiers in Immunology 11
43. Gibson DA, Greaves E, Critchley HOD, Saunders PTK. Estrogen-dependent
regulation of human uterine natural killer cells promotes vascular remodelling Via
secretion of Ccl2. Hum Reprod (Oxford England) (2015) 30(6):1290–301.
doi: 10.1093/humrep/dev067

44. Red-Horse K, Drake PM, Gunn MD, Fisher SJ. Chemokine ligand and
receptor expression in the pregnant uterus: Reciprocal patterns in complementary
cell subsets suggest functional roles. Am J Pathol (2001) 159(6):2199–213.
doi: 10.1016/S0002-9440(10)63071-4

45. Gibson DA, McInnes KJ, Critchley HO, Saunders PT. Endometrial
intracrinology–generation of an estrogen-dominated microenvironment in the
secretory phase of women. J Clin Endocrinol Metab (2013) 98(11):E1802–6.
doi: 10.1210/jc.2013-2140

46. Lin Z-H, Shan X-Y. The effects of estradiol on inflammatory and endothelial
dysfunction in rats with preeclampsia. Int J Mol Med (2020) 45:825–35.
doi: 10.3892/ijmm.2020.4465

47. El-Azzamy H, Balogh A, Romero R, Xu Y, LaJeunesse C, Plazyo O, et al.
Characteristic changes in decidual gene expression signature in spontaneous term
parturition. J Pathol Transl Med (2017) 51(3):264–83. doi: 10.4132/jptm.2016.12.20

48. Xu C, Liu W, Xingji YKL, Fang X, Wood SL, Slater QS DM, et al. Pgf2Α
modulates the output of chemokines and pro-inflammatory cytokines
in myometrial cells from term pregnant women through divergent
signaling pathways. Mol Hum Reprod (2015) 21(7):603–14. doi: 10.1093/molehr/
gav018

49. Paparini DE, Grasso E, Fernandez LDC, Merech F, Weingrill-Barbano R,
Correa-Silva S, et al. Decidual factors and vasoactive intestinal peptide guide
monocytes to higher migration, efferocytosis and wound healing in term human
pregnancy. Acta Physiol (Oxf) (2021) 232(1):e13579. doi: 10.1111/apha.13579

50. Grasso E, Gori S, Paparini D, Soczewski E, Fernandez L, Gallino L, et al. Vip
induces the decidualization program and conditions the immunoregulation of the
implantation process. Mol Cell Endocrinol (2018) 460:63–72. doi: 10.1016/
j.mce.2017.07.006

51. Hu W-T, Li M-Q, Liu W, Jin L-P, Li D-J, Zhu X-Y. Il-33 enhances
proliferation and invasiveness of decidual stromal cells by up-regulation of Ccl2/
Ccr2 Via nf-Κb and Erk1/2 signaling. Mol Hum Reprod (2014) 20(4):358–72.
doi: 10.1093/molehr/gat094

52. Meng YH, Li H, Chen X, Liu LB, Shao J, Chang KK, et al. Rankl promotes
the growth of decidual stromal cells in an autocrine manner Via Ccl2/Ccr2
interaction in human early pregnancy. Placenta (2013) 34(8):663–71.
doi: 10.1016/j.placenta.2013.04.020

53. Renaud SJ, Sullivan R, Graham CH. Tumour necrosis factor alpha
stimulates the production of monocyte chemoattractants by extravillous
trophoblast cells Via differential activation of mapk pathways. Placenta (2009)
30(4):313–9. doi: 10.1016/j.placenta.2009.01.001

54. Lockwood CJ, Matta P, Krikun G, Koopman LA, Masch R, Toti P, et al.
Regulation of monocyte chemoattractant protein-1 expression by tumor necrosis
factor-alpha and interleukin-1beta in first trimester human decidual cells:
Implications for preeclampsia. Am J Pathol (2006) 168(2):445–52. doi: 10.2353/
ajpath.2006.050082

55. Brünnert D, Kumar V, Kaushik V, Ehrhardt J, Chahar KR, Sharma PK, et al.
Thrombin impairs the angiogenic activity of extravillous trophoblast cells Via
monocyte chemotactic protein-1 (Mcp-1): A possible link with preeclampsia.
Reprod Biol (2021) 21(3):100516. doi: 10.1016/j.repbio.2021.100516

56. Matta P, Lockwood CJ, Schatz F, Krikun G, Rahman M, Buchwalder L, et al.
Thrombin regulates monocyte chemoattractant protein-1 expression in human
first trimester and term decidual cells. Am J Obstet Gynecol (2007) 196
(3):268.e1–.e8. doi: 10.1016/j.ajog.2006.09.008

57. Kawano Y, Furukawa Y, Kawano Y, Nasu K, Narahara H. Thrombin-
induced chemokine production in endometrial stromal cells. Hum Reprod (2011)
26(2):407–13. doi: 10.1093/humrep/deq347

58. Spratte J, Schönborn M, Treder N, Bornkessel F, Zygmunt M, Fluhr H.
Heparin modulates chemokines in human endometrial stromal cells by interaction
with tumor necrosis factor Α and thrombin. Fertil Steril (2015) 103(5):1363–9.
doi: 10.1016/j.fertnstert.2015.02.023

59. Zhao H, Kalish F, Wong RJ, Stevenson DK. Infiltration of myeloid cells in
the pregnant uterus is affected by heme oxygenase-1. J Leukoc Biol (2017) 101
(1):217–26. doi: 10.1189/jlb.1A0116-020RR

60. Yang H-L, Lai Z-Z, Shi J-W, Zhou W-J, Mei J, Ye J-F, et al. A defective
lysophosphatidic acid-autophagy axis increases miscarriage risk by restricting
decidual macrophage residence. Autophagy (2022) 18(10):2459–80. doi: 10.1080/
15548627.2022.2039000

61. Yang Y-S, Lu H-F, Lin C-W, Lee H, Chao K-H, Chou C-H, et al.
Lysophosphatidic acid up-regulates expression of growth-regulated oncogene-Α,
interleukin-8, and monocyte chemoattractant protein-1 in human first-trimester
trophoblasts: Possible roles in angiogenesis and immune regulation. Endocrinology
(2010) 151(1):369–79. doi: 10.1210/en.2009-0779
frontiersin.org

https://doi.org/10.1007/s00125-006-0497-8
https://doi.org/10.1016/j.cmet.2018.05.002
https://doi.org/10.1016/j.cmet.2018.05.002
https://doi.org/10.1016/j.pharmthera.2020.107799
https://doi.org/10.1038/s41598-018-26870-y
https://doi.org/10.1093/humrep/dem208
https://doi.org/10.4049/jimmunol.1401536
https://doi.org/10.3389/fimmu.2018.02597
https://doi.org/10.1016/j.jri.2010.04.004
https://doi.org/10.3389/fimmu.2022.861931
https://doi.org/10.4049/jimmunol.1401096
https://doi.org/10.4049/jimmunol.1401096
https://doi.org/10.1038/cmi.2013.67
https://doi.org/10.1371/journal.pbio.3000287
https://doi.org/10.1371/journal.pbio.3000287
https://doi.org/10.1111/aji.13480
https://doi.org/10.1016/j.intimp.2021.108070
https://doi.org/10.3389/fimmu.2019.02317
https://doi.org/10.1038/cmi.2014.68
https://doi.org/10.1038/s41423-018-0008-0
https://doi.org/10.1172/JCI122182
https://doi.org/10.1016/j.clim.2012.07.017
https://doi.org/10.1016/j.clim.2012.07.017
https://doi.org/10.1016/j.bpobgyn.2019.05.009
https://doi.org/10.1126/sciimmunol.aat6114
https://doi.org/10.1126/sciimmunol.aat6114
https://doi.org/10.1093/humrep/dev067
https://doi.org/10.1016/S0002-9440(10)63071-4
https://doi.org/10.1210/jc.2013-2140
https://doi.org/10.3892/ijmm.2020.4465
https://doi.org/10.4132/jptm.2016.12.20
https://doi.org/10.1093/molehr/gav018
https://doi.org/10.1093/molehr/gav018
https://doi.org/10.1111/apha.13579
https://doi.org/10.1016/j.mce.2017.07.006
https://doi.org/10.1016/j.mce.2017.07.006
https://doi.org/10.1093/molehr/gat094
https://doi.org/10.1016/j.placenta.2013.04.020
https://doi.org/10.1016/j.placenta.2009.01.001
https://doi.org/10.2353/ajpath.2006.050082
https://doi.org/10.2353/ajpath.2006.050082
https://doi.org/10.1016/j.repbio.2021.100516
https://doi.org/10.1016/j.ajog.2006.09.008
https://doi.org/10.1093/humrep/deq347
https://doi.org/10.1016/j.fertnstert.2015.02.023
https://doi.org/10.1189/jlb.1A0116-020RR
https://doi.org/10.1080/15548627.2022.2039000
https://doi.org/10.1080/15548627.2022.2039000
https://doi.org/10.1210/en.2009-0779
https://doi.org/10.3389/fimmu.2022.1053457
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Lin et al. 10.3389/fimmu.2022.1053457
62. Madaan A, Nadeau-Vallee M, Rivera JC, Obari D, Hou X, Sierra EM, et al.
Lactate produced during labor modulates uterine inflammation Via Gpr81 (Hca1).
Am J Obstet Gynecol (2017) 216(1):60 e1– e17. doi: 10.1016/j.ajog.2016.09.072

63. Cnattingius S, Torrång A, Ekbom A, Granath F, Petersson G, Lambe M.
Pregnancy Characteristics and Maternal Risk of Breast Cancer. JAMA (2015) 294
(19):2474–80. doi: 10.3892/ijmm.2020.4465

64. Huang X, Cai Y, Ding M, Zheng B, Sun H, Zhou J. Human chorionic
gonadotropin promotes recruitment of regulatory T cells in endometrium by
inducing chemokine Ccl2. J Reprod Immunol (2020) 137:102856. doi: 10.1016/
j.jri.2019.102856

65. White GE, Iqbal AJ, Greaves DR. Cc chemokine receptors and chronic
inflammation–therapeutic opportunities and pharmacological challenges.
Pharmacol Rev (2013) 65(1):47–89. doi: 10.1124/pr.111.005074

66. Yockey LJ, Iwasaki A. Interferons and proinflammatory cytokines in
pregnancy and fetal development. Immunity (2018) 49(3):397–412. doi: 10.1016/
j.immuni.2018.07.017

67. Presicce P, Cappelletti M, Senthamaraikannan P, Ma F, Morselli M, Jackson
CM, et al. Tnf-signaling modulates neutrophil-mediated immunity at the feto-
maternal interface during lps-induced intrauterine inflammation. Front Immunol
(2020) 11:558. doi: 10.3389/fimmu.2020.00558

68. Gomez-Lopez N, Garcia-Flores V, Chin PY, Groome HM, Bijland MT,
Diener KR, et al. Macrophages exert homeostatic actions in pregnancy to protect
against preterm birth and fetal inflammatory injury. JCI Insight (2021) 6(19):
e146089. doi: 10.1172/jci.insight.146089

69. Rana S, Lemoine E, Granger JP, Karumanchi SA. Preeclampsia:
Pathophysiology, challenges, and perspectives. Circ Res (2019) 124(7):1094–112.
doi: 10.1161/CIRCRESAHA.118.313276

70. Vincent T, Rai R, Regan L, Cohen H. Increased thrombin generation in
women with recurrent miscarriage. Lancet (1998) 352(9122):116. doi: 10.1016/
s0140-6736(98)85022-8

71. Griffith JW, Sokol CL, Luster AD. Chemokines and chemokine receptors:
Positioning cells for host defense and immunity. Annu Rev Immunol (2014)
32:659–702. doi: 10.1146/annurev-immunol-032713-120145

72. Jones RL, Critchley HOD. Chemokine and cyclooxygenase-2 expression in
human endometrium coincides with leukocyte accumulation.Hum Reprod (Oxford
England) (1997) 12(6):1300–6. doi: 10.1093/humrep/12.6.1300

73. Fu B, Wei H. Decidual natural killer cells and the immune
microenvironment at the maternal-fetal interface. Sci China Life Sci (2016) 59
(12):1224–31. doi: 10.1007/s11427-016-0337-1

74. Wang C-J, Yu Y, Li M-Q, Gu W-R. Innate lymphoid cells in normal
pregnancy and pregnancy-related diseases. Reprod Dev Med (2020) 4:53.
doi: 10.4103/2096-2924.281858

75. Li M, Wu ZM, Yang H, Huang SJ. Nfkappab and Jnk/Mapk activation
mediates the production of major macrophage- or dendritic cell-recruiting
chemokine in human first trimester decidual cells in response to
proinflammatory stimuli. J Clin Endocrinol Metab (2011) 96(8):2502–11.
doi: 10.1210/jc.2011-0055

76. Sun F, Wang S, Du M. Functional regulation of decidual macrophages
during pregnancy. J Reprod Immunol (2021) 143:103264. doi: 10.1016/
j.jri.2020.103264

77. Duriez M, Quillay H, Madec Y, El Costa H, Cannou C, Marlin R, et al.
Human decidual macrophages and nk cells differentially express toll-like receptors
and display distinct cytokine profiles upon tlr stimulation. Front Microbiol (2014)
5:316. doi: 10.3389/fmicb.2014.00316

78. Bakos E, Thaiss CA, Kramer MP, Cohen S, Radomir L, Orr I, et al. Ccr2
regulates the immune response by modulating the interconversion and function of
effector and regulatory T cells. J Immunol (2017) 198(12):4659–71. doi: 10.4049/
jimmunol.1601458

79. Pelletier M, Maggi L, Micheletti A, Lazzeri E, Tamassia N, Costantini C,
et al. Evidence for a cross-talk between human neutrophils and Th17 cells. Blood
(2010) 115(2):335–43. doi: 10.1182/blood-2009-04-216085
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Glossary

CCL2 C-C motif ligand 2

MCP-1 monocytic chemotactic protein 1

VSMCs vascular smooth muscle cells

CCR C–C chemokine receptor type

ACKR atypical chemokine receptor

TNF-a tumor necrosis factor alpha

TAM tumor-associated macrophages

DRG dorsal root ganglia

Sarm1 sterile alpha and Toll/interleukin-1 receptor motif-
containing1

VCAM vascular cell adhesion molecule

ICAM intercellular adhesion molecule

ERK extracellular signal-regulated kinase

MAPK mitogen-activated protein kinase

vCTB villous cytotrophoblast

STB Syncytiotrophoblast

EVT extravillous trophoblast

DSC decidual stromal cell

ESC endometrium stromal cell

DIC decidual immune cell

APC antigen-presenting cell

IL-1b interleukin-1 beta

PTGS2/COX2 prostaglandin G/H synthase 2

AP-1 activator protein-1

NF-kB nuclear factor kappa B

ERΑ36 estrogen receptor Α36

TLR toll-like receptor

hCG human chorionic gonadotropin

PGF2Α prostaglandin F2Α

PTGFR PGF2Α receptor

HUSMC human uterine smooth muscle cells

PLC phospholipase C

PKC protein kinase C

PI3K phosphatidylinositol-4,5-bisphosphate 3-kinase

VIP vasoactive intestinal peptide

RANKL/
TNFSF11

receptor-activator of NF-kB ligand

(Continued)
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c-JNK c-Jun N-terminal kinase

PAR-1 proteinase-activated receptors-1

MEK mitogen-activated protein kinase kinase

InsP3 PLC-inositol 1,4,5-trisphosphate

HO-1 Heme oxygenase-1

LPA lysophosphatidic acid

GPR G protein-coupled receptor

JAK Janus kinase

IL-1Ra IL-1 receptor antagonist

IFN-g Interferon Gamma

M-MDSC Myelomonocytic myeloid-derived suppressor cell

STAT transducer and activator of transcription

SOCS Suppressor of Cytokine Signaling

TJP tight junction protein

COX cyclooxygenase

Ang angiopoietin

HUVEC human umbilical vein endothelial cells

TIE tyrosine kinase via immunoglobulin-like and EGF-like
domains

NRP neuropilin

Ets E26 transformation-specific

ECM extracellular matrix

PRL recurrent pregnancy loss

Nrf2 nuclear factor erythroid 2-related factor

PTL Preterm labor

IAI intra-amniotic infection
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