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Background: Acute myeloid leukemia (AML) is a heterogeneous malignant disease.
SLC25A1, the gene encoding mitochondrial carrier subfamily of solute carrier
proteins, was reported to be overexpressed in certain solid tumors. However, its
expression and value as prognostic marker has not been assessed in AML.

Methods: We retrieved RNA profile and corresponding clinical data of AML patients
from the Beat AML, TCGA, and TARGET databases (TARGET_AML). Patients in the
TCGA cohort were well-grouped into two group based on SLC25A1 and differentially
expressed genes were determined between the SLC25A1 high and low group. The
expression of SLC25A1was validatedwith clinical samples. The survival and apoptosis
of two AML cell lines were analyzed with SLC25A1 inhibitor (CTPI-2) treatment. Cox
and the least absolute shrinkage and selection operator (LASSO) regression analyses
were applied to Beat AML database to identify SLC25A1-associated genes for the
construction of a prognostic risk-scoring model. Survival analysis was performed by
Kaplan-Meier and receiver operator characteristic curves.

Results: Our analysis revealed that high expressed level of SLC25A1 in AML patients
correlates with unfavorable prognosis. Moreover, SLC25A1 expression was positively
associated with metabolism activity. We further demonstrated that the inhibition of
SLC25A1 could inhibit the proliferation and increase the apoptosis of AML cells. In
addition, a panel of SLC25A1-associated genes, was identified to construct a
prognostic risk-scoring model. This SLC25A1-associated prognostic signature
(SPS) is an independent risk factor with high area under curve (AUC) values of
receiver operating characteristic (ROC) curves. A high SPS in leukemia patients is
associated with poor survival. A Prognostic nomogram including the SPS and other
clinical parameters, was constructed and its predictive efficiency was confirmed.

Conclusion: We have successfully established a SPS prognostic model that predict
outcome and risk stratification in AML. This riskmodel can be used as an independent
biomarker to assess prognosis of AML.
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Introduction

Acute myeloid leukemia (AML) is a malignant clonal disease, characterized by massive
proliferation of abnormal blasts and naive cells and inhibition of normal hematopoiesis
(Khwaja et al., 2016). AML is the most common type of acute leukemia in adults (Newell
and Cook, 2021). This type of cancer usually progressed quickly if not treated (Stanchina et al.,
2020). Approximately 20240 children and adolescents in the United States develop acute
myeloid leukemia in 2021. Despite advancements in the therapy of AML, the treatment effect
remains unsatisfactory (Pulte et al., 2020). The relative 5-year survival rate of AML is merely
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29.3% and is associated with a poor prognosis and a high relapse rate,
requesting better predictive model for risk stratification and precision
medicine. Increasing attention has been paid on the dysregulated
metabolism underlying the differences between AML and normal
compartments (Ye et al., 2016; Jones et al., 2019; van Gastel et al.,
2020). Drugs targeting key regulatory genes inmetabolism, Enasidenib
and Ivosidenib, isocitrate dehydrogenase (IDH) inhibitors as a case in
point, have been developed to treat AML more effectively than
conventional regimen (DiNardo et al., 2018; Stein et al., 2019).
Therefore, it is necessary to select appropriate metabolic reference
genes for disease management, personalized therapy, diagnosis and
prognosis of AML patients.

Solute carrier (SLC) family genes are strongly correlated with
metabolism. SLC transporters is a family of more than 300 membrane-
bound proteins that maintain the integrity of cellular membranes and
transport a variety of different substrates including nutrients and
xenobiotics (Lin et al., 2015; Rives et al., 2017). The mitochondrial
carrier family is the largest solute transporter family in humans
(Ruprecht and Kunji, 2020). The mitochondrial citrate transporter
gene, SLC25A1, belongs to mitochondrial carrier family SLC25 and
maps on chromosome 22q11.21 (Nota et al., 2013). Citric acid
transporter regulates citric acid transport bidirectionally between
the mitochondria and cytoplasm (Kang et al., 2021). Citrate is one
of the intermediates in the tricarboxylic acid cycle (TCA cycle)
accompanied by NADPH generation. Therefore, it promotes tumor
growth and survival by affecting tumor metabolism. SLC25A1 plays an
essential role in the initiation and progression of cancer. The
overexpression of SLC25A1 promotes tumor growth and survival,
such as colorectal cancer and non-small cell lung cancer (Fernandez
et al., 2018; Yang et al., 2021). However, the potential prognostic value
of SLC25A1 expression in AML remains unclear.

In this study, high expression level of SLC25A1 indicated a poor
prognosis. We constructed a prognostic risk model based on SLC25A1
and demonstrated that our prognostic risk model is efficient in
predicting the prognosis of AML patients. Different cohorts were
used to validate this prognostic model by survival analysis,
independent prognostic analysis, and receiver operating
characteristic (ROC) curve analysis. Moreover, we refined the
2017 European Leukemia Net recommendations for the genetic
risk stratification of AML (ELN 2017) classification by adding
SLC25A1-associated prognostic signature (Döhner et al., 2017). In
addition, a clinical model was constructed that consisted of clinical
predictors only (age, risk score, ELN 2017), which has a higher
prediction accuracy than ELN2017 and provides a potential
theoretical basis for clinical application.

Materials and methods

Data sources

The RNA-seq and matched clinical data of the Beat AML (n =
341) were downloaded from the cBio Cancer Genomics Portal
(https://www.cbioportal.org/). The transcriptomic and clinical
data of AML samples (n = 151) from The Cancer Genome Atlas
(TCGA) database, the normal control obtained from GTEx Whole
Blood (n = 337). TARGET_AML datasets (log2 (fpkm+1), n = 132)
were collected from the University of California Santa Cruz
database (UCSC Xena, https://xenabrowser.net/datapages/).

RNA count data were transformed into log2 (TPM+1). The
normalized microarray data of GSE63270 (n = 104), GSE13159
(n = 579) and GSE71014 (n = 208) were downloaded from the Gene
Expression Omnibus (GEO) official website (http://www.ncbi.nlm.
nih.gov/geo).

Patients and ethics

The BM samples were obtained from 12 AML patients and
5 healthy donors at The First Affiliated Hospital of Jinan
University from March 2019 to April 2022. The
French–American–British (FAB) classification of AML patients was
determined according to the 2016World Health Organization (WHO)
criteria. This study was approved by the Ethics Committee of The First
Affiliated Hospital of Jinan University in accordance with the
principles of the Declaration of Helsinki. All participants offered
their written informed consents.

LinkedOmics database

The LinkedOmics database (http://www.linkedomics.org/login.
php) is acknowledged as a web portal that analyses multi-omics
data from TCGA datasets (Vasaikar et al., 2018). We used
LinkedOmics to study the SLC25A1-associated genes.

GO and KEGG of SLC25A1-associated
prognostic signature

R packages “limma” (https://bioconductor.org/packages/release/
bioc/html/limma.html) was used to identify the differentially
expressed genes (DEGs) between low-risk and high-risk groups
within Beat AML cohort at adjusted p-value <.05 and |
log2Foldchange (FC)| ≥2. Then the pathway enrichment analysis,
including the Gene Ontology (GO) for “Biological Processes (BP)”
category and the Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment analysis were analyzed using R package
“ClusterProfiler” (version 4.2.2).

Construction and validation of the a SLC25A1-
associated gene prognostic risk-scoring
model

First, the “limma” package was used to identify the
differentially expressed genes (DEGs) between AML and healthy
donors in the TCGA dataset at p-value <.05 and |log2FC|≥1. A total
of 4297 DEGs were intersected with SLC25A1-related genes
obtained from Linkedomics with a criteria of the Spearman
coefficient |R|≥.3 and p-value <.05. Next, we conducted the least
absolute shrinkage and selection operator (LASSO) Cox regression
model to screen prognostic signature in the Beat AML training set
based on the SLC25A1-related intersection DEGs. The optimal
lambda (λ) was selected by cross-validation error curve through the
minimum 10-fold cross validation within the training set. Finally, a
multivariate Cox regression analysis was conducted to establish a
multi-genes classifier for predicting the overall survival (OS) of
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AML patients, and the risk score was calculated as the following
formula:

Riskscore � ∑
n

i�1
Coef i × xi( )

Coefi, coefficient. xi, z-score-transformed relative expression value
of each gene.

After constructing the riskmodel, AML patients from the Beat AML
dataset were divided into high- and low-risk groups using the optimal
cutoff value computed by the “surv_cutpoint” function of R package
“survminer”. The survival outcome between these groups was analyzed
by Kaplan-Meier, and 1-, 3-, and 5-year receiver analysis were
performed by the “time-ROC” R package. To examine the predictive
accuracy of the model, two more AML cohorts from the TCGA and
TARGET databases (TARGET_AML) were used for validation using
the same risk score algorithm followed by risk subgrouping, survival
analysis and ROC curves. Optimal cutoff value were determined by the
‘surv_cutpoint’ function of R package “survminer”.

Prognostic independence of the risk-scoring
model

We extracted clinical information from Beat AML database, and
the univariate and multivariate Cox regression analysis were used to
identify the independent prognostic factors.

Construction of the predictive nomogram

We generated a nomogram to predict the 1-year, 2-year and 3-year
overall survival of AML patients from the Beat AML cohort using
“rms” R package. Calibration curves were applied to assess the
predictive accuracy with self-validation done every 80 patients
itinerantly for better stability.

Cell count kit (CCK8) assay

AML cell with different pretreatments were plated (1 × 104 cells/
well) into 96-well plates and cultured in growth medium at 37 °C for
48 h. 10 µL Cell Counting Kit-8 (CCK-8, MedChemExpress, Shanghai,
China) reagent was added into each well for 1–2 h incubation.
Absorbance was determined at 450 nm. The viability of cells was
calculated as following: Viability = (ODtest group-ODblank group)/
(ODcontrol group-ODblank group) × 100%, and IC50 (half maximal
inhibitory concentration) was calculated from the dose–response
curves. Each experiment was performed in triplicate.

Apoptosis analysis

Cells were seeded into 12-well plates at a density of 2 × 105cells/mL
with or without SLC25A1-specific inhibitor CTPI-2 for 48 h. Cells
were harvested, washed with PBS and staining was performed with the
Annexin-V/PI Apoptosis Detection Kit (BD Pharmingen, 556547,
United States) following the manual. After incubation for 15 min,
the samples were analyzed for apoptotic proportions using a BD
FACSCanto II flow cytometer (BD Biosciences, Bedford, MA).

Apoptotic percentages of the treated cells were analyzed and
plotted with FlowJo software (Version10.4).

Quantitative real-time PCR

Total RNA of AML patients and health donor was extracted using
TRIzol (Life Technologies). Evo M-MLV RT Premix for qPCR (AG,
AG11706, China) was used to synthesize cDNA. Quantification of
transcripts was performed via the SYBR® Green (Accurate Biology)
according to the manufacturer’s instructions. Real-time PCR results
are presented as the mean of three independent experiments
normalized to β-actin internal control gene expression. The
sequences of PCR primers as SLC25A1 forward: 5′-CCCCATGGA
GACCATCAAG-3′, reverse: 5′ -CCTGGTACGTCCCCTTCAG-3′,
Relative gene expression was calculated using the 2−ΔΔCT method.

RNA sequencing

Lineage depletion was performed with biotin-lineage cocktail
(CD2, CD3, CD4, CD8a, CD10, CD19, CD20, CD235a) and anti-
biotin microbeads (Miltenyi Biotec, Germany). RNA was extracted
from these 12 bone marrow samples of AML patients using TRIzol
reagent. Sequencing library construction and sequencing was
performed by Novel Bioinformatics (Shanghai, China). A total of
12 samples were sequenced using the Illumina NovaSeq
6000 platform.

Statistical analysis

All statistical analysis were performed in R (version 4.0.3). Survival
analysis were performed the “survival” and “survminer” packages. The
“survivalROC” package in R was used to calculate area under the curve
(AUC) values and construct ROC curves. The “rms” R package
constructed nomogram and the consistency between observed and
predicted risk was analyzed using Harrell’s C-statistic. Univariate and
multivariate Cox regression analysis were performed using SPSS
software version 26.0. All tests were two-sided, and
p-value <.05 was considered as statistically significant.

Results

SLC25A1 expression was elevated and
correlated with worse survival in AML patients

To compare the expression level of SLC25A1 in AML patients and
healthy donors, we extracted the SLC25A1 expression values of these
groups from the TCGA x GTEx datasets, GSE63270 and
GSE13159 respectively. The p-values calculated from Wilcoxon test
are shown. We observed that SLC25A1 had a significantly higher
expression level in AML patients compared to healthy donors (p < .01)
(Figures 1A–C). Next, we examined whether elevated expression level
of SLC25A1 was associated with poor prognosis. We set the value as
cut off by the “survminer” package and separated each dataset into two
groups, SLC25A1 high and low expression. Firstly, we analyzed the
correlation of gene expression profiles of SLC25A1 and overall survival
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(OS) from TCGA dataset. AML patients with high expression level of
SLC25A1 gene had shorter overall survival (OS), indicating a poor
prognosis than those with low expression level of SLC25A1 gene (p =
.00027) (Figure 1D). Additionally, similar results could be obtained in
both GSE71014 and Beat AML datasets (p = .018, p = .049,
respectively) (Figures 1E, F). Collectively, our analysis results
indicated that SLC25A1 expression level was elevated in AML
patients and this expression signature significantly associated with
poor OS.

SLC25A1 is positively correlated with
oxidative phosphorylation in AML

The functions of SLC25A1 in AML is poorly understood. To gain
insights into the potential molecular mechanisms underlying function
of SLC25A1 in AML, we performed transcriptomic analysis of TCGA
database between SCL25A1 high and low subgroups. AML patients
were separated into these two subgroups according to median value of
SCL25A1. We obtained 901 upregulated genes and
2175 downregulated genes between SLC25A1hi and SLC25A1low

subgroup (Supplementary Table 1). GO analysis of these
differentially expressed genes (DEGs) showed activation of glucose
metabolism-related pathways, respiratory electronic transport chain,
oxidative phosphorylation and so on in SLC25A1hi subgroup
(Figure 2A). To identify potential signaling pathways downstream
of SLC25A1, we performed the Gene set enrichment analysis (GSEA)

of DEGs. As shown in Figure 2B and Supplementary Table S2,
metabolic pathways such as Oxidative phosphorylation, carbon
metabolism, fatty acid metabolism, were remarkably enriched in
SLC25A1hi subgroup (FDR <.05). Taken together, these results
suggest that SLC25A1 is positively correlated with oxidative
phosphorylation in AML.

Inhibition of SLC25A1 suppresses the growth
and induces apoptosis in AML cells

To further validate SLC25A1 expression, we collected bone
marrow samples from 12 AML patients for qPCR. Our results
showed that SLC25A1 expression was significantly higher in newly
diagnosis (ND) AML group than the healthy donor (HD) (p < .05)
(Figure 3A). The expression of SLC25A1 was also further validated
with another lymphocyte-depleted transcription dataset of AML
samples generated in Department of Hematology of the First
Affiliated Hospital of Jinan University. We found FPKM of both
ND patients and relapsed/refractory (RR) patients were
significantly higher than that of complete remission patients
(CR) (p < .05) (Figure 3B). Next, we tested whether inhibition
of SLC25A1 with its inhibitor CTPI-2 would suppress growth of
AML cells. CCK8 assay results indicated that cell viability of AML
cells was significantly reduced with CTPI-2 treatment for all
concentrations (20 μM, 60 μM, and 80 μM) in MV-4-11 and
MOLM13 cells (Figures 3C, D). Consistently, apoptosis was

FIGURE 1
SLC25A1 expression patterns and Kaplan-Meier survival analysis. (A–C) The SLC25A1mRNA expression level between AML patients and healthy donors in
the TCGA-GTEx cohort, GSE63270 cohort andGSE13159 cohort, respectively. (D–F) Kaplan-Meier survival analysis of SLC25A1mRNA expression grouping by
optimal cutoff value using “survminer” package in the TCGA, GSE71014 and Beat AML datasets.
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effectively induced in MOLM13 cells, MV-4-11 (Figures 3E, F).
Taken together, we demonstrated that the upregulation of
SLC25A1 in AML bone marrow samples was validated and

inhibition of SLC25A1 could efficiently suppress the growth and
induce apoptosis of AML cells. Therefore, SLC25A1may be an ideal
candidate for the construction of prognostic model in AML.

FIGURE 2
Gene ontology (GO) and Gene Set Enrichment Analysis (GSEA) associated with SLC25A1 expression (A). Top 10 GO terms of BP category enriched in
SLC25A1 high-expression groups compared with low-expression (B). KEGG functional enrichment analysis of the same genelist in (A).
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Construction and validation of prognostic
model based on SLC25A1

To construct the prognostic model, we firstly identify 4297 DEGs
between AML patients and healthy people from TCGA-GTEx dataset
(Supplementary Table S3). In addition, a total of 3735 SLC25A1-

associated genes were obtained using LinkedOmics, including both
positive and negative associations (Supplementary Table S4). These
differential genes of TCGA-GTEx dataset and SLC25A1-associated
genes were used to construct a Venn diagram for intersection, and
787 DEGs in common were obtained (Supplementary Figure S1). To
further identify SLC25A1-associated genes for model construction,
LASSO Cox regression analysis was performed on these 787 genes to
find out the prognostic genes in the training set. The LASSO algorithm
and stepwise multivariate Cox regression analysis were applied. At the
minimum of λ value (λ = .05692), thirty-two prognostic signature genes
were selected from 787 genes (Figure 4A), and their LASSO coefficient
curves were shown in Figure 4B. Eventually, twelve prognostic signature
genes related SLC25A1 were selected after multivariate regression
analysis. Mevalonate Diphosphate Decarboxylase (MVD),
BCL2 Associated Agonist Of Cell Death (BAD),BCL2 Associated X
(BAX), PWP2 Small Subunit Processome Component (PWP2), SERTA
Domain Containing 1 (SERTAD1), Sphingosine-1-Phosphate Receptor
4 (S1PR4), Copine 7 (CPNE7), Zinc Finger AN1-Type Containing 1
(ZFAND1), UTP23 Small Subunit Processome Component (UTP23),
Zinc Finger Protein 124 (ZNF124), Nudix Hydrolase 13 (NUDT13),
Zinc Finger Protein 107 (ZNF107) were selected to compose the
SLC25A1-associated prognostic signature (SPS) gene set, and their
LASSO coefficients were listed. According to the expression levels
and regression coefficients, the downregulated BAX, PWP2,
SERTAD1, S1PR4, ZFAND1, NUDT13 and ZNF107 with HR <
1 were considered as tumor suppressors, whereas the MVD, BAD,
CPNE7, CPNE7, UTP23 and ZNF124 upregulated with HR > 1 were
regarded as oncogenes (Supplementary Figure S2). We calculated a risk
score as follows:

Risk Score � 0.51643*MVD( ) + −0.58074*BAD( ) + 0.53567*BAX( )
+ −0.49648*PWP2( ) + −0.34582*SERTAD1( )
+ 0.08634*CPNE7( ) + −0.31038*S1PR4( )
+ −0.54617*ZFAND1( ) + 0.94536*UTP23( )
+ −0.37781*ZNF124( ) + 0.35928*NUDT13( )
+ −0.29836*ZNF107( )

In the training set, patients in the Beat AML dataset can be
stratified into low- and high-risk subgroups by the cutoff value of
the risk scores (Figure 4C, Supplementary Table S5). We run time-
dependent ROC analysis to evaluate the prediction efficiency of the
SPS. The area under curve (AUC) of 1, 3 and 5 years was .744, .744,
.739, respectively (Figure 4D). Moreover, Kaplan-Meier analysis
showed that high-risk group of AML patients had a shorter overall
survival outcome compared with the low-risk group (p < .001)
(Figure 4E). This SPS model were further validated using TCGA
dataset (Supplementary Table S6) and another validation set
TARGET_AML (Supplementary Table S7). In the TCGA dataset,
the cutoff value of risk score was -.07 (Figure 4F). The 1-, 3- and 5-year
AUC values were .612, .697 and .683, respectively (Figure 4G). The
high-risk group had poor OS (n = 100 for low-risk group, n = 56 for
high-risk group) (Figure 4H). In the other validation set, similar
pattern was observed in TARGET_ AML dataset with -.14 as cutoff
value (Supplementary Figure S3A). The 1-, 3- and 5-year AUC values
were .642, .541 and .541, respectively (Supplementary Figure S3B).
High-risk score patients demonstrated much shorter OS compared to
low-risk group in TARGET_ AML dataset (Supplementary Figure

FIGURE 3
Inhibition of SLC25A1 suppressed the growth and induced apoptosis in
AML cell lines (A). SLC25A1 mRNA expression of AML patients and healthy
donors from the First Affiliated Hospital of Jinan University (B). Expression
pattern of SLC25A1 among various disease status in AML (C,D). CCK-8
assay was used to investigate the IC50 of MOLM13 and MV-4–11 after
treating with CTPI-2, a SLC25A1 antagonist for 48 h (E,F). Annexin-V/PI
apoptosis analysis of MOLM13, MV-4–11 treated with CTPI-2 or DMSO by
flow cytometry. Cells were treated with CTPI-2 for 48 h at indicated
concentrations. *p < .05, **p < .01, ***p < .001.
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S3C). As noted above, these results collectively indicated that SPS had
highly accurate prediction value.

Clinical impact and application of SPS in
stratification of AML patients

To further assess whether our SPS model has an impact and
further application on clinical outcomes, we collected
clinicopathological data from Beat AML database. We compared
the mutation patterns between these two risk score groups

(Figure 5A). The analysis of the mutational status of AML SPS-
based subgroups revealed that FLT3-ITD, TP53, NRAS mutations
were more common in high-risk score subgroup samples. Mutations
of these three genes in Beat AML dataset were 66%, 21% and 33%,
compared to 20%, 9% and 15% for the low-risk score subgroup
(Figure 5B). ELN2017 risk stratification system is widely accepted
in a wide range of AML. However, classified patients by ELN2017 still
demonstrate substantial prognostic heterogeneity. Therefore, we
constructed a refined AML risk stratification model with SPS. By
incorporating the SPS, AML patients stratified by the
ELN2017 classification could be further divided into six subgroups.

FIGURE 4
Prognostic implications of SLC25A1-associated prognostic signature in AML dataset (A). LASSO coefficient profiles for the SLC25A1-related differentially
expressed genes (B). 32 candidate genes were screened out by LASSO regression with tenfold cross-validation using minimum lambda value (C).
Establishment of the SLC25A1-associated prognostic signature (SPS)model dividing patients into high and low risk groups in the training set (D). The 1-, 3-, and
5-year ROC curves of risk score of the Beat AML training set (E). Kaplan-Meier curves showing percentages of surviving patients of two risk groups (F).
Establishment of the SLC25A1-associated prognostic signature (SPS) model dividing patients into high and low risk groups in the TCGA validation set (G,H).
The 1-, 3-, and 5-year ROC curves of risk score and Kaplan-Meier curves in TCGA validation set. p-value was calculated using the log-rank test.
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FIGURE 5
Clinical impact of SLC25A1-associated prognostic signature in AML patients (A). Heatmap depicting the distribution of frequently somatic mutation
between low and high risk groups (B). Distribution of the percentage of different mutation between high and low-risk groups (C,D). Kaplan-Meier analysis of
re-stratification of AML patients by refined SPS-ELN2017 model. Six categories were obtained in the Beat AML dataset and TCGA dataset, respectively (E,F).
Predictive value of SPS was compared to conventional ELN2017 risk category for Beat AML dataset and TCGA dataset. Red line and blue line indicated
refined SPS-ELN2017 and ELN2017 model, respectively.
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Notably, patients with high SPS risk scores had markedly worse
outcomes than low SPS risk scores for both the ELN-favorable and
ELN-poor groups in the Beat AML dataset (Figure 5C) (p < .0001).

Moreover, for TCGA dataset, patients with high SPS risk scores had
markedly worse outcomes than low SPS risk scores for ELN stratified
intermediate group (Figure 5D). We then compared AUC of our

FIGURE 6
SLC25A1-associated prognostic signature is an independent prognostic factor (A). Forrest plots of univariate andmultivariable Cox proportional hazards
of the SLC25A1-associated prognostic signature associated with OS (B). Nomogram for predicting the probability of 1-, 2-, and 3-year OS integrating SPS,
ELN2017 and age (C,D). Calibration plots of the nomogram for agreement test between 1-, 2-, and 3-year OS prediction and actual outcome in the Beat AML
dataset and TCGA dataset.
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refined SPS-ELN2017 prognostic model with ELN2017 in these two
different datasets. We find AUC of refined SPS-ELN2017 model (red)
were significantly higher than that of ELN 2017 (blue) (Figures 5E, F).
Taken together, we found that a refined SPS-ELN2017 model could
more accurately predict prognosis of AML patients.

SPS is an independent prognostic factor

To evaluate whether SLC25A1-associated prognostic signature was an
independent predictive factor of AML, both univariate and multivariate
analyses were conducted. In the univariate analysis, age, ELN2017 and
risk score were identified to be significantly correlated with prognosis (p <
.001, p < .001, p < .001 respectively) in the Beat AML cohort (Figure 6A,
left). Notably, the SPS risk score level accounted for adverse overall
survival (HR = 3.89, p < .001). In addition, multivariate Cox regression
also indicated that the SPS risk level was an independent predictor of poor
OS (HR, 3.091; 95% CI, 1.424–2.624; p < .001) after considering the age
(HR, 1.933; 95% CI, 2.26–4.229; p < .001), ELN 2017 (HR, 1.667; 95% CI,
1.084–2.592; p = .02) (Figure 6A, right). Based on these prognostic factors,
a prognostic nomogram was constructed to facilitate clinical prognostic
prediction for AML patients with SPS. By assigning a score to each item
based on the actual condition, patients could get a total score for
predicting their survival rate within 2- and 3-year (Figure 6B). The
c-index of the nomogram in the Beat AML dataset was .727. It was
higher than that of the 2017ELN risk stratification (.583), indicating that
the nomogram embraced better fitting efficacy. The calibration plot for
the probability of 1-, 2- and 3-year OS showed a good linear relationship
between prediction by the nomogram and actual observations in this
dataset (Figure 6C). In addition, the c-index value for the nomogram in
the TCGA dataset was .72, which is higher than that of the 2017 ELN risk
stratification (.428). Similarly, the prediction by the nomogram and the
observed survival rate showed a satisfactory fitting in the TCGA dataset
(Figure 6D). Collectively, SPS is an independent prognostic factor and the
new nomogram integrating this SPS risk score represents an improved
model to predict the outcome of AML.

Discussion

Acute myeloid leukemia (AML) is the most common type of acute
leukemias in adults (Sung et al., 2021). It exhibits high mortality and
poor prognosis (Estey, 2020). With the extensive research on the
pathogenesis of AML, it has been confirmed that multi-gene
biomarkers become a promising prognosis tool for AML (Prada-
Arismendy et al., 2017).

Metabolic reprogramming is generally regarded as a hallmark of
AML cells (Castro et al., 2019). SLC25A1 belongs to a large family of
nuclear-encoded mitochondrial transporters and exerts the
fundamental function of allowing the transit of citric through the
impermeable mitochondrial membrane (Catalina-Rodriguez et al.,
2012). Citric is the central hub of the mitochondrial metabolism
and respiration (Nakhle et al., 2020). For the past few years, the
research of SLC25A1 focused on its functions andmechanisms in solid
tumors progression (Im et al., 2014; Fernandez et al., 2018; Yang et al.,
2021). In this study, we found that the SLC25A1 is highly expressed in
AML patients and high SLC25A1 expression is correlated with worse
prognosis of AML patients. Next, we found that inhibition of SLC25A1
reduced the proliferation and promote apoptosis of AML cells. These

results indicated that SLC25A1 may be a factor for predicting the
prognosis and a potential therapeutic target of AML patients. Further
investigation on the function and mechanism of SLC25A1 in AML
in vitro and in vivo would provide evidence and new insights on
whether it can serve as a therapeutic target to treat AML.

We built a robust prognostic signature based on SLC25A1 associated
genes by LASSO regression and validated it with two independent
cohorts. Our SPS-prognostic model might be a promising candidate
for predicting prognosis of AML patients. This prognostic model involves
twelve SPS genes including mevalonate pyrophosphate decarboxylase
(MVD), BCL2Associated Agonist Of Cell Death (BAD), BCL2Associated
X (BAX), PWP2 Small Subunit Processome Component (PWP2), SERTA
Domain Containing 1 (SERTAD1), Sphingosine-1-Phosphate Receptor 4
(S1PR4), Copine 7 (CPNE7), Zinc Finger AN1-Type Containing 1
(ZFAND1), UTP23 Small Subunit Processome Component (UTP23),
Zinc Finger Protein 124 (ZNF124), Nudix Hydrolase 13 (NUDT13), Zinc
Finger Protein 107 (ZNF107).

These twelve genes were reported to participate in many essential
cellular processes, including metabolism, apoptosis, cell cycle and signal
transduction. AML cells altersmetabolic pathways tomeet the increased
biosynthetic and energy needs to support enhanced cell growth and
survival. The reprogramming of cellular metabolism is a fundamental
characteristic of AML. For example, isocitrate dehydrogenase (IDH) is
the key enzyme responsible for Tricarboxylic Acid Cycle (TCA) that is
one of the most important processes in central metabolism. In AML
patients, IDH1/IDH2 somatic mutation frequencies were about 6%–
16% and 8%–19%, respectively. With the understanding of biological
and clinical properties of mutated isoforms of IDH 1 and IDH2,
inhibitors ivosidenib and enasidenib have been developed to teat
AML (Platt et al., 2015; Halik et al., 2022). This suggest that
targeting aberrant pathways of metabolism might be a promising
strategy for antileukemia therapy. Among the twelve genes we
identified, MVD has an important role in cholesterol biosynthesis
(Mazein et al., 2013). S1PR4 is the Sphingosine-1-phosphate (S1P)
receptor that is one of G-protein-coupled receptors (Cartier and Hla,
2019). Cholesterol biosynthesis and sphingolipid metabolism is the
central metabolic hub for numerous biological processes in cancer.
Therefore, they may be of potential value as new target for AML
treatment. Moreover, apoptotic genes are reported to be associated
with the development of AML (Roberts et al., 2021). The Bcl-2 family is
a key apoptosis regulator in the apoptosis signal transduction pathway,
and they participate in a very complex interaction mechanism to
regulate apoptosis. Bcl-2 is a well-recognized target in AML and its
inhibitor Venetoclax is already widely used for the treatment of AML in
clinic practices (Garciaz et al., 2021). Therefore, it is not surprising that
Bcl-2 family members, BAD and BAX were among this prognostic gene
signature (Gayle et al., 2019; Mann et al., 2019). In addition, resistance
and relapse of AML are associated with the aberrant regulation of the
cell cycle. SERTAD1 plays an important role in cell cycle progression.
ZFAND1 enables proteasome binding activity and the SERTAD1 gene is
highly expressed in some solid tumors. ZFAND1 loss causes clearance of
stress granules aberrated. stress granules have been proposed to form
important signaling hubs (Kedersha et al., 2013),which subsequently
affect the survival of tumor cells (Turakhiya et al., 2018). Thus, it may
also worth exploration as a potential target for AML treatment. Through
other genes within the twelve-gene signature have not been reported
previously in AML, these were reported to play important roles in some
solid tumors. PWP2 promoted invasion and migration of Gastric
Adenocarcinoma (Zhou et al., 2021). Expression of UTP23, NUDT13

Frontiers in Genetics frontiersin.org10

Liu et al. 10.3389/fgene.2022.1081262

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1081262


and CPNE7 are associated with poor prognosis in tumors including
ovarian cancer, gastric cancer, oral squamous cell carcinoma
(McLennan, 2006; Fu et al., 2019; Ji et al., 2021). Since these twelve
gene SPS could improve the accuracy of prognosis analysis, they may
represent new vulnerability of AML cells and their function and
potential as therapeutic targets are worth further investigation.

Based on this twelve-gene signature, AML patients were divided
into the high- and low-score groups accordingly in the training set. We
found that the survival of the two risk groups was significantly
different. There was an evident prolonged OS time and lower
mortality rate of the low-risk group. For ROC analysis of TCGA
dataset as validation set, the AUC values of 1-,3- and 5-year survival
were .612, .697 and .683, respectively, indicating accuracy of this SPS
risk assessment model. Although the AUC value in another validation
cohort of TARGET_AML is lower than that in the Beat AML training
cohort and the TCGA validation dataset, the prognostic signature still
exhibited satisfactory predictive power demonstrated by the Kaplan-
Meier survival analysis (p < .001). This could be due to TARGET_
AML is composed of pediatric AML patients and they might exhibit
different metabolic characteristics with adult patients. Nevertheless,
the prediction accuracy of our model was adequately enough for valid
prediction of independent prognostic factor.

The 2017 European Leukemia Net (ELN 2017) guidelines for the
diagnosis and management of AML becomes fundamental guidelines
concerning the treatment and estimation of prognosis. In this study,
the SPS can further stratify the heterogeneous ELN-favorable,
intermediate and poor subgroups. Moreover, we further validated
that the SPS was an independent prognostic factor in addition to some
clinical factors. In the Beat AML cohort, we found the risk score most
significantly affected the survival of AML patients, which can
effectively usher prognostic prediction. Calculation of c-index
identified that nomogram was higher than .7. As a retrospective
study, our study of this new prediction model is still limited.
Large-cohort prospective studies collecting transcriptomic data and
with extended follow-up of AML patients would further help to
evaluate the power of this SPS integrating new model. In summary,
due to high degree of accuracy of our combined SPS-ELN2017 model
integrating SPS, it is worth consideration for its application to predict
prognosis of AML in clinical settings.
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