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Abstract Performance evaluation models are used by companies to design, adapt, manage and
control their production systems. In the literature, most of the effort has been dedicated to
the development of efficient methodologies to estimate the first moment performance measures
of production systems, such as the expected production rate, the buffer levels and the mean
completion time. However, there is industrial evidence that the variability of the production
output may drastically impact on the capability of managing the system operations, causing the
observed system performance to be highly different from what expected. This paper presents
a general methodology to analyze the variability of the output of unreliable single machines
and small scale multi-stage production systems modeled as General Markovian structure. The
generality of the approach allows modeling and studying performance measures such as the
variance of the cumulated output and the variance of the inter-departure time under many system
configurations within a unique framework. The proposed method is based on the characterization
of the autocorrelation structure of the system output. The impact of different system parameters
on the output variability is investigated and characterized. Moreover, managerial actions that
allow reducing the output variability are identified. The computational complexity of the method
is studied on an extensive set of computer experiments. Finally the limits of this approach while
studying long multi-stage production lines are highlighted.

Keywords Output Variability · Production Systems · Performance Evaluation · Production
variance · Markov chains

1 Introduction

1.1 Motivation

Manufacturing systems engineering methods have been developed in the last decades for inves-
tigating the dynamic behavior of manufacturing systems, for estimating their performance and
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for supporting their efficient design, management, improvement and reconfiguration. The most
commonly adopted techniques to predict production system performance are simulation and an-
alytical methods. The main advantage of the latter is the ability of rapidly estimating the main
performance measures of the system. Moreover, analytical methods allow the user to deeply un-
derstand the dynamics of the system behavior, since the relations among the system variables are
expressed through equations. During the system configuration/reconfiguration phase [35], these
tools are used to select system solutions that profitably exploit the trade-offs between these first
order performance measures.

Higher order performance measures are generally difficult to analyze and are rarely consid-
ered. However, in the presence of random events and disturbances in the production, higher
order performance measures are relevant to correctly predict the system output. Indeed, due to
the production variability, the observed performance can be highly different from the average
performance. Output variability makes difficult to meet customer orders on time and to ensure
the required service level of the system. This problem may directly corrupt the profitability of
those systems designed only by considering the mean performance of the system, that are not
robust to disturbances. Indeed, low output variance indicates stability of the output of the pro-
duction line, less unforeseen delays and small fraction of escaped orders, which translates to lower
costs. Symmetrically, high variance means instability of the output, i.e. significant differences in
production quantity observed on a daily basis. Typical sources of variability in the production
system behavior are random failure occurrences and durations. A real case in the automotive
sector [8] reports that the weekly output of the production system composed of 22 machines and
affected by the occurrences of 144 different failure modes has a coefficient of variation, estimated
from the available field data of three months, equal to 0.263. Thus, it is highly probable that
the weekly demand will not be met if the system is designed only considering its average perfor-
mance. Similar data and considerations were given by Gershwin, who showed by simulation that
the standard deviation of the weekly production can be over 10% of its mean [12].

1.2 Literature survey

In spite of the relevance of production variability in industry, the number of papers discussing
the variability of the output in production lines is fairly limited if compared to the papers on
the prediction of first order performance measures of manufacturing systems. Moreover, the
underlying assumptions of the available methods are over-simplistic, thus preventing their wide
application in industry. Research contributions on production variability deal with both the
cumulated production of a transfer line and the interdeparture times of the output process in a
time interval.

The output variability of production lines was first studied by Miltenburg [23], who proposed
an exact numerical method to calculate the first two moments of the asymptotic measures of
the output, i.e. the throughput and the asymptotic variance rate defined as the limiting variance
of the output per time unit. The method considered small buffered production lines featuring
unreliable machines with geometric/exponential failure and repair times. His approach is based
on the state-space representation of the system and the use of the inverse of the fundamental
matrix. Since the computational complexity of this method depends on the number of states
modeling the system, only simple systems with small number of machines and buffer capacities
can be analyzed with success.

Hendricks [16] presented an approach, based on the structural properties of Markov chains, to
estimate the asymptotic variance rate of interdeparture times in production lines with exponential
processing times, perfectly reliable machines and finite buffer capacities. This work was later
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extended [17] to model machines with general processing times. He provided interesting insights
on the role of the output autocorrelation structure and the skewness of processing times on the
variance of the inter-departure. In particular, it was observed by simulation that, by increasing
the skewness of the processing times, the inter-departure variance also increases. The complexity
of Hendrick’s approach is comparable to Miltenburg’s [23], being dependent on the number of
states representing the system.

Tan made a series of studies on the output variability of production systems. The works in-
clude the analysis and calculation of the output variability for machines in isolation, multi-stage
unbuffered lines, production lines with parallel and series machines and small buffered manufac-
turing systems. He proposed both continuous time models [27, 30, 29] and discrete time models
[31–33] for the analysis. In terms of investigated machine models, the studies include reliable
machines with exponential processing times [27], unreliable machines with a single failure mode
featuring geometrically or exponentially distributed failure times [32] and unreliable machines
with Coxian distributed repair time [30]. Performance measures discussed include the asymptotic
variance rate of the output and the service level of the system.

Concerning the analysis of multi-stage systems, Tan proposed a matrix-geometric method
for the estimation of the asymptotic variance rate in two-machine lines with single failure mode
machines and a finite buffer. Compared to Miltenburg’s approach, the method proposed by
Tan is more efficient in terms of number of executed floating point operations. Tan used the
same approach for evaluating the variance of two-stage production lines with single failure mode
machines as a function of time, again by exploiting the special structure of the transition matrix
[31]. The method uses the Grassman approach [14] to iteratively obtain the performance of
interest. The complexity of the adopted procedure depends both on the length of the observed
time period and on the size of the Markov chain describing the process, thus on the buffer
capacity. Tan [33] increases the computational efficiency of his algorithm allowing evaluating the
performance of multi-stage production lines with unreliable machines and finite buffer capacity
by using an exact procedure. Moreover, he studies the variability of the output for production
lines controlled by different policies such as Kanban, Basestock and CONWIP.

Ou and Gershwin [24] obtained closed form expressions of the variance of the lead time in
a two-machine line in which machines may fail in a single mode. Gershwin proposed a method
for the calculation of the variance of the output of a single machine with a single failure mode
in closed form [12]. His method is based on the solution of the difference equation describing
the system dynamics. The developed method is then used to approximate the performance of
production lines through a decomposition approach. The effect of previous stages on the last
machine in the system is considered by adjusting the failure and repair parameters of the single
machine model. However, the method is shown to have large errors in the variance estimation
(around 20% compared to simulation results) since the adopted decomposition equations [13] did
not capture and propagate the output variability throughout the line. Carrascosa [4] extended
the method of Gershwin to the case of the isolated machine with multiple failure modes.

Li and Meerkov [19] studied the variance of the output for production lines composed of
unreliable machines and finite buffers. The most limiting assumption to the application of their
method is the Bernoulli reliability model, which assumes repair time equal to the cycle time
of the machines. The authors focused on the “due time performance” which is an equivalent
measure of the service level.

Recently, more complex machine models providing insights about the transient behavior of the
system have been studied in depth [20] and [22]. Other works that studied the transient behavior
include [11] and [5]. In fact, the work of Dincer and Deler [11] studied both the transient and
steady-state variability in the output of small buffered lines with reliable machines featuring
exponentially distributed processing times, by adopting n-fold convolution of the inter-arrival
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and the processing time distributions. Chen and Yuan [5] focused on the system output mean
and variance during the transient period. The approach models long unbuffered production lines
with unreliable machines subject to a single failure mode, with exponentially distributed failure
and repair times, by using a sample path method.

Ciprut et al [6] used a fluid Markovian model to derive an exact closed-form formula to cal-
culate the first two moments of the asymptotic output for unreliable machines with generally
distributed up and down times. An attempt to extend this approach to two-machine one buffer
dipoles was made, by approximating the dipole behavior with an equivalent single machine hav-
ing two switching operational modes. When the second machine is not starved, the equivalent
machine is exactly identical to the second machine of the dipole; when the second machine is
starved, the equivalent machine behaves as the first machine in the dipole. However, the auto-
correlation structure of the starvation times was not considered, thus this approximation may
perform poorly in specific configurations. The exact analysis in Ciprut et al [6] was recently ex-
tended by Angius et al [1] to handle any system modeled as continuous and discrete time reward
models, including machines with general Markovian structure.
Recently, other approximate methods for the analysis of the output variance in long multi-stage
lines were introduced. He et al [15] studied serial buffered multi-stage systems, with reliable
machines featuring exponential processing times. The approximate method relied on the ex-
act Markovian arrival process analysis of a simplified two-station one buffer sub-system and a
compression method that propagates the output variance along subsystems. The difference with
decomposition approaches is that the compression (also called aggregation) algorithm does not
iterate backwards, form the last subsystem to the first. The system behavior is analyzed and
it is shown that the variance of the output always increases with the buffer capacity, for this
type of systems. However, no estimation of the method accuracy towards simulation is given in
this paper. Another approximate method was proposed by Manitz and Tempelmeier [21], who
studied long assembly lines with finite buffers and general service times. Their approach used a
two-moment approximation to estimate the output variability in the assembly line, by measuring
the coefficient of variation of the inter-departure time.
Other works that studied the inter-departure time variability included [25, 18, 21, 2]. Sabun-
cuoglu et al [25] studied the effect of different factors of the assembly system on its throughput
and inter-departure time variability. Kalir and Sarin [18] proposed a method for reducing inter-
departure time in production systems using simulation. Betterton and Silver [2] proposed a
method that uses the inter-departure time variance to detect bottlenecks in open asynchronous
serial production lines with finite buffers.

Finally, the effect of the autocorrelation structure proposed by Hendricks [16] have been fur-
ther investigated by Colledani et al [7], for small systems featuring unreliable machines affected
by multiple failure modes. They also managed to evaluate approximately the asymptotic variance
rate of multi-stage production lines with machines having multiple geometric failure modes [9].
The proposed decomposition method suffers the same limitations of the decomposition method
proposed in Gershwin [12]. In summary, the methods available in the literature focus on spe-
cific systems and most of them are characterized by exponential or geometrical distributions.
Those methods dealing with general systems estimate one single performance measure of the
output variability without providing an extensive analysis of the different dimensions with which
variability emerges in manufacturing systems. This paper aims at filling this gap by propos-
ing an approach to study the variability of general manufacturing systems in a common and
comprehensive framework.
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1.3 Contribution

The main contribution of this paper is threefold. Firstly, a general approach to analyze and pre-
dict the first two moments of the main output performance measures in manufacturing systems
modeled by general Markovian structures is proposed. The approach, based on the autocorre-
lation structure of the Markovian system, allows to study within a unique framework different
performance measures such as the variance of the cumulated output, the variance of the inter-
departure time and the transient period of the system, in different system configurations. In the
case of unreliable machines with a single reward state, an interesting relationship existing be-
tween the variances of the cumulated production and the interdeparture time is derived. This last
measure of variability in manufacturing systems with unreliable machines was not investigated
in the literature yet.

Secondly, the paper proposes a new approximation to estimate the variance of the cumulated
production. Results show the proposed method is accurate enough to estimate other parameters
such as, for example, the service level. Thirdly, the impact of the main system and machine
parameters on the variability of the output is also investigated, with the objective of deriving
insights and new system design and management rules for reducing the variability and meeting
the due-time performance of the system. Indeed, very little is known on how to manage pro-
duction systems to reduce the variability of their output. Important questions like “What is the
due date to be quoted for a given order?” and “What is the probability of delivering a given
order on time, under a particular system configuration?” still remain unsolved. In this paper,
particular attention is given to two issues that do not find clear explanation and, consequently,
management guidelines in the available literature. Firstly, the impact of failure and repair times
and their distributions on the asymptotic output mean and variance of isolated machines is thor-
oughly investigated, showing that there are several counterintuitive effects generating chances for
production managers to increase the output stability (reduce the output variance) at the cost of
slightly reducing the mean production rate. Secondly, the impact of buffers on the output vari-
ability of multi-stage systems is investigated in details, providing an explanation to a complex
interaction already observed but not clearly explained in the literature [4, 32].

The approach has been applied to single failure and multiple failure isolated machines, with
Bernoulli, geometric and generally distributed failure and repair times, as well as applications to
buffered two-stage and multi-stage serial systems are discussed in this paper.

1.4 Paper Organization

The reminder of the paper is organized as follows: Section 2 defines the different output variability
measures of interest for this paper. Section 3 describes the theory and the methodology devel-
oped for analyzing the output variability of general Markovian systems. Section 4 presents the
application of the general approach to different isolated machine models. Section 5 presents the
application of the general approach to multi-stage systems. Section 6 presents numerical results
discussing possible variability reduction strategies for different systems. Finally, Section 7 sum-
marizes the main results of this work, draws the conclusions and discusses the future extensions
of this work.

2 Measures of output variability

An output variable of interest for this paper is the total amount of parts produced by the
system during the time period [1, t]. This variable, denoted with Zt, is random and nonnegative
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with expected value E[Zt] and variance var[Zt], both of them dependent on the time period of
evaluation as they are increasing functions in t.

For large values of t (i.e., that approaches infinity), Zt is approximately normally distributed
with a mean e ·t and a variance v ·t [23, 30], where e is the mean production rate or the mean
throughput of the system, and v is the asymptotic variance rate:

e =̂ lim
t→∞

E[Zt]

t

v =̂ lim
t→∞

var[Zt]

t

Performance measures e and v do not depend on the time, so they can be used as output
characteristic parameters during the system design phase. The coefficient of variation of Zt can
be approximated using e and v as:

cv[Zt] ≈
√
v

e
√
t

which approaches zero as t approaches infinity, i.e., as the time increases the dispersion of Zt
around the mean decreases. This measure is of practical value for evaluating the uncertainty of
the production in a defined time window.

Another measure of the relative output variability is the asymptotic index of dispersion [1]:

d =
v

e

Finally, approximating Zt with a normal distribution allows calculating the system service
level (SL), defined as the probability to meet a certain customer order (composed of x parts)
within a certain time t [30]:

SL(x, t) =̂ P [Zt ≥ x] ≈ 1− Φ
(
x− e · t√
v · t

)
where Φ(·) is the cumulative normal distribution function.

Another measure of interest is the interdeparture time, which is defined as the amount of
time between two consecutive departures from the system; the interdeparture time is denoted
with IDT in this paper.

3 Output variability of general Markovian systems

3.1 Assumptions

In this section, we consider a discrete time system with s different states and an underlying
transition probability matrix P. The system has a constant processing cycle time. Time is scaled
so that the processing cycle time is one time unit. The system is characterized by up states in
the set U , down states in the set D, and transitions among all possible states. Transitions from
state j1 to j2 occurring with probability (pj1,j2) follow the geometric distribution with a mean
(1/pj1,j2). By convention, transitions can happen only at the beginning of a time unit. According
to the type of states (operational or down) the elements of the transition probability matrix P
connect, four partitions can be generated, namely PU,U , PU,D, PD,U , and PD,D:

P =

[
PU,U PU,D
PD,U PD,D

]
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The system has a binary reward column vector µs×1 that governs its output. The reward µj
assumes the value 1 if j is a productive state, and 0 otherwise, with j = 1, . . . , s.

In the remainder of this section the mathematical derivation of the output variability measures
is described. Specifically, in paragraph 3.2 the mathematical analysis points out the autocorrela-
tion structure of the production output and provides an approximate evaluation of the variability
measure by series truncation. Exact closed-form formulas in matrix form are instead proposed
in paragraph 3.3.

3.2 Analysis of the autocorrelated output process

The system output is a binary random variable Yi assuming the value one if the system produces
a piece in period i and zero otherwise. The total production output Zt of the system at time t
is defined by the sum of the single outputs:

Zt =̂

t∑
i=1

Yi

The variance of Zt is defined as:

var [Zt] =̂

t∑
i=1

var [Yi] + 2

t∑
i=1

t∑
l=i+1

cov [Yi, Yl] (1)

which is the sum of two different components [16]. The first component is related to the variance
of the single random variables Yi, while the second component arises when the series Yi are not
independent but timely autocorrelated. Since we are interested in calculating the steady state
performance, we assume that the output process is stationary at the beginning of the analyzed
time interval. Thus, equation (1) can be rewritten as:

var [Zt] = tσ2
Y + 2

t−1∑
k=1

(t− k)covk [Y ] (2)

where Y is the random variable of the stationary output process, and covk[Y ] is the autocovari-
ance of lag k of the time series Y .

In order to apply equation (2), it is necessary to know the variance and autocovariances of
the process output in steady state, i.e. to calculate σ2

Y and covk[Y ]. The first is calculated as:

σ2
Y =̂ E[Y 2]− E[Y ]2 = e− e2 (3)

where e is mean production rate calculated as follows:

e =

s∑
j=1

πjµj

with πj the steady state probability of being in state j. Indeed, since Y is binary E[Y 2] is equal
to E[Y ]. The interpretation of σ2

Y is straightforward: if the system is observed in steady-state n
times independently, the variance of the observed Y values tends to σ2

Y as n→∞.
By definition, the autocovariance of Y of lag k is:

covk[Y ] =̂ E[YiYi+k]− E[Yi]E[Yi+k] (4)
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Again, since Y is binary, E[YiYi+k] reduces to the probability that the system is operational both
at periods i and i+ k. Therefore, after some manipulations, expression (4) becomes:

covk[Y ] =

s∑
j=1

s∑
g=1

πjµjP
k
j,gµg − e2 (5)

where Pkj,g is the probability of going from state j to sate g after k steps. It can be noticed that,
as the lag k increases, the autocovariance approaches zero [26].

The spectral decomposition of the Perron-Frobenius theorem can be used to formulate the
Pk matrix by means of the eigenvalues and eigenvectors of P:

Pk =

s∑
j=1

λkj ηju
′
j (6)

where λ1, ..., λs are the s distinct eigenvalues of P, u1, ..., us and η1, ..., ηs the associated sequences
of left and right eigenvectors respectively such that u′rηj = 0 if r 6= j and u′rηj = 1 for all
r, j = 1, ..., s[3]. As a consequence, the autocovariance covk[Y ] is a function of the eigenvalues of
matrix P.

By definition, the autocorrelation function of lag k is:

ρk[Y ] =̂
covk[Y ]

σ2
Y

(7)

Substituting equations (3), (5) and (7) into (2) the following equation can be derived:

var[Zt] = σ2
Y

[
t+ 2

t−1∑
k=1

(t− k)ρk[Y ]

]
(8)

which is an exact formula for calculating the total output variance in a time period [1, t]. For
small values of t this formula can be directly applied. For large values of t, the above formula
becomes not practical; however it is possible to identify a value of k after which ρk approaches
zero and the previous series can be truncated, resulting into a simplified approximate version of
the previous equation:

var[Zt] ≈ tσ2
Y + 2σ2

Y

k∗∑
k=1

(t− k)ρk[Y ] (9)

where k∗ < t is the number of significant lags. The parameter k∗ directly depends on the second
largest eigenvalue of the matrix P and it can be estimated by the following equation [26]:

k∗ =
log ε

log λ2

where ε is the desired tolerance in the numerical calculation of ρk by using the power method.
The higher the value of ε, the higher the level of the approximation introduced in the calculation
of the output variance. Thus, the parameter k∗ represents the number of autocorrelation lags that
are considered as significant, at tolerance level ε. More formally, k∗ is the minimum number of
lags such that the sum of the autocorrelation coefficients for k = k∗+1, ..,+∞ is less than ε. This
increases as the size of P also increases, indicating that more complex systems will show more
complex output autocorrelation structures. As known in literature, the second largest eigenvalue
also affects the transient behavior of the system [22, 10]. Therefore, higher values of the second
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largest eigenvalue of the transition probability matrix P result both in longer system settling
time in the transient period and more significant output autocorrelation lags.

Equation(9) can be rewritten as:

var[Zt] ≈ tσ2
Y (1 + 2ρtotal(ε))− 2σ2

Y

k∗∑
k=1

(k ·ρk) (10)

where ρtotal(ε) =
∑k∗

k=1 ρk is the total significant autocorrelation at tolerance level ε. The other
performance measures v, cv[Zt], and d can be calculated as:

v ≈ σ2
Y (1 + 2ρtotal(ε)) (11)

cv[Zt] ≈
√

(1− e)
e · t

(1 + 2ρtotal(ε))

d ≈ (1− e)(1 + 2ρtotal(ε))

This result is general and not limited to specific assumptions on the production system. Further-
more, it is also in accordance with the result of Hendricks [16] for a simplified machine model.
This analysis can be used to approximate the output variance measures at a given level of toler-
ance ε. However, since the absolute values of |ρk| ≤ 1 for each k, the geometric series is always
convergent to a sum. By exploiting the mathematical derivation of the sum of the series ρk and
kρk from 1 to t, exact closed-form formulas for the variance of the cumulated output and the
variance of the inter-departure time can be derived as described in the following section.

3.3 Exact closed-form expressions for the output variance

Starting from the result of Equation (2) a general expression to calculate the variance of Zt is
reported in the following Theorem.

Theorem 1 Given a production system represented by the transition probability matrix P and
reward vector µ, the variance of the cumulated production is:

var [Zt] = tα+ β(t) (12)

where:

α = e(1− 3e) + 2πµdiagPZµ (13)

β(t) = 2πµdiag
(
Pt+1 −P

)
Z2µ (14)

µdiag is a diagonal matrix with the rewards in the diagonal and Z is the Fundamental Matrix:

Z = (I−P + A)−1 (15)

Proof See Appendix A.

For t large enough (i.e., t > k∗) the term β(t) tends to β, expressed as:

β = 2e2 − 2πµdiagPZ2µ (16)

and the variance becomes a function linearly increasing in time with slope equal to α. Thus, the
variance rate is simply:

v = α = e(1− 3e) + 2πµdiagPZµ (17)
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By comparing equation (11) and equation (13), the total autocorrelation term can be expressed
in exact terms as:

ρtotal(ε = 0) =
πµdiagPZµ− e2

e(1− e)
(18)

while closed-form expressions for cv[Zt]
2, and d are reported on Table 1.

Under the same system assumptions and using the transition probability matrix partitions
proposed in section 3, a general expression to calculate the variance of IDT is given in the
following Theorem.

Theorem 2 Given a production system represented by the transition probability matrix P and
reward vector µ, the variance of the inter–departure time is:

var[IDT ] =
e− 1

e2
+

1

e
πUPU,D2I(I−PD,D)

−3
PD,UµU (19)

Proof See Appendix B.

4 Application to isolated machines

In this section we analyze the output variability measures for some specific isolated machine
models, namely, the single failure mode machine model [23, 12], with geometric and generally
distributed repair times, the Bernoulli machine [19], and the multiple failure modes geomet-
ric machine [9]. For these simple systems, closed form solutions can be derived for the output
variability measures by using the proposed approach.

4.1 Single failure machine

A widely analyzed case in the literature is the isolated machine with single failure mode. In
the geometric failure and repair time case, this machine can be either up (operational) or down
(failed) in a single mode [12]. While operational the machine can fail with probability p at
the beginning of the time unit. While failed, it can be restored with probability r. The mean
production rate of the machine is:

e =
r

p+ r

The expected cumulated production is:

E [Zt] =

T∑
t=1

E [Yt] = t
r

r + p

The autocovariance has a special form, as equation (5) simply becomes:

covk[Y ] = e(1− e)(1− p− r)k (20)

Equation (6) becomes:

Pk =
1

r + p

[
r p
r p

]
+

(1− r − p)k

r + p

[
p −p
−r r

]
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where λ2 = 1− r− p is the second largest eigenvalue of P. In this case only, the autocorrelation
function of lag k (i.e., ρk[Y ]) coincides with λ2 to the power k (i.e., λk2), and it is equal to:

ρk[Y ] =
covk[Y ]

σ2
Y

= (1− p− r)k = ρk (21)

where ρ = 1− p− r. Substituting equations (3), (20) and (21) into (2) and after some manipu-
lations:

var[Zt] = e(1− e)

[
t+ 2

t−1∑
k=1

(t− k)ρk

]
= e(1− e)

[
t− tρ2 − 2ρ+ 2ρt+1

(1− ρ)2

]
(22)

This result was first derived in [4] and can alternatively be written as:

var[Zt] = σ2
Y ·
[
t− tρ2 − 2ρ+ 2ρt+1

(1− ρ)2

]
(23)

The other output variability measures can be easily calculated as a function of e and ρ, as
reported in Table 1.

By using equation (19), the variance of the inter-departure time can be expressed and a simple
relation between the variance of the inter-departure time, the asymptotic variance rate and the
throughput can be found:

var[IDT ] =
e− 1

e2
+

2p

r2
=

v

e3
(24)

The output variability analysis can be reversely used to match the first two moments of the
output of a complex manufacturing system with a geometric single failure machine model. Let
us assume that a complex manufacturing system produces parts with a throughput e and a
cumulative autocorrelation coefficient of the output process ρtotal. The parameters peq and req
of the geometric single failure mode machine matching the same first two asymptotic moments
of the output can be obtained with the following equations:{

peq = 1−e
ρtotal

req = e
ρtotal

(25)

Equations (25) can be used to find an equivalent geometric machine on the basis of the estimates
for e and ρ from real field data. Alternatively, if v instead of ρ is known or estimated from field
data, the parameters peq and req can be obtained with the following equations:{

peq = 2e(1−e)3
v

req = peq
e

1−e
(26)

This equivalent machine can be used in a decomposition approach for the approximate evalua-
tion of the performance of multi–stage production lines with general machine behavior. Moreover,
this reverse analysis could also be used for propagating both the first and second asymptotic mo-
ments of the output between the different subsystems within a new decomposition technique to
analyze long production lines. These extensions will be subject of future research activities.
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4.2 Bernoulli Machine

The single failure mode geometric machine can be reduced to the Bernoulli machine when
p + r = 1 [19]. The mean production rate for the Bernoulli machine is:

e = r = 1− p

the autocorrelation among the rewards of the Bernoulli machine does not exist because the
random variables Yk are independent. Therefore, the performance indicators related to the cu-
mulated production can be calculated by setting ρ = 1 − p − r = 0. Figure 4 shows the linear
behavior of e vs p, in the Bernoulli case. The expected valued of Zt is simply calculated as:

E[Zt] = t · e = t · r = t(1− p)

and the var[Zt] becomes:
var[Zt] = r ·p ·t = (1− p)p ·t

The other output variability measures are reported on Table 1.

4.3 Multiple failure mode machine

The proposed method can be used for evaluating the output variability of an isolated multiple
failure modes machine [9]. In this case, the machine can be up (operational) in one mode or
down (failed) in different modes 1, . . . f with failure and repair probabilities equal to p1, . . . pf
and r1, . . . rf , respectively. When operational, the machine can fail at the beginning of the time
unit in one of its failure modes j, with probability pj . Failure modes are mutually exclusive, in
the sense that the machine cannot be down in two different failure modes at the same time. When
down in mode j, the machine can be restored into the operational condition at the beginning of
the time unit with probability rj . For each failure mode j, the unavailability factor Ij = pj/rj
can be defined. The transition probability matrix P for a multiple failure mode machine with
geometric times to repair is:

P =


1−

∑f
j=1 pj p1 . . . pf
r1 1− r1 0 0
...

...
. . .

...
rf 0 . . . 1− rf

 (27)

The average production rate of the machine is [34]:

e =
1

1 +
∑f
j=1 Ij

(28)

Theorems 1 and 2 hold also for this case, with the only difference that e is specifically calculated
by using equation (28) and using a binary reward vector for this machine that is a column vector
with element 1 for the operational state and element 0 for each down mode of the machine.

Given the particular structure of the underlying Markov chain, it is possible to obtain rather
simple and compact equations for the asymptotic variance rate and the variance of the inter-
departure time. The asymptotic variance rate can be expressed as:

v =

∑f
j=1 Ij

(
2−rj
rj

)
−
(∑f

j=1 Ij

)2
(1 +

∑f
j=1 Ij)

3
=

 f∑
j=1

Ij

(
2− rj
rj

)
−

 f∑
j=1

Ij

2
 e3 (29)
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The variance of the inter-departure time is:

var[IDT ] =
e− 1

e2
+ 2

f∑
j=1

pj
r2j

(30)

By substituting equations (28) and (29) into equation (30) the same simple relation between the
variance of the inter-departure time, the asymptotic variance rate and the throughput already
found for the single failure case is derived:

var[IDT ] = −
f∑
j=1

Ij

1 +

f∑
j=1

Ij

+ 2

f∑
j=1

Ij
rj

=

f∑
j=1

Ij

(
2

rj
− 1

)
−

 f∑
j=1

Ij

2

=
v

e3
(31)

Finally, the square coefficient of variation of the inter-departure time can be expressed as:

cv2[IDT ] =
v

e
= d (32)

Therefore, the coefficient of variation of the inter-departure time for a single machine with mul-
tiple failure modes in isolation is equal to the asymptotic index of dispersion of the cumulated
production quantity.

5 Application to multi–stage production lines

The method can be used for the analysis of production lines with K unreliable machines and
limited buffer capacities. The behavior of each machine is assumed to be described by a dis-
crete time Markov chain of general complexity. In particular, the number of states of ma-
chine i (with i = 1, . . . ,K) is denoted by Si and the system state is identified by the vector
x = (n1, . . . , nK−1, s1, . . . , sK), where ni indicates the level of buffer Bi. The total number of
states is S = (N1 + 1) · . . . · (NK−1 + 1) ·S1 . . . SK , where Ni with i = 1, . . . ,K− 1 is the capacity
of buffer Bi.

The approach proposed in this paper also applies in this case. The only issue to take into con-
sideration is the state-explosion phenomenon. Indeed, the size of the transition matrix describing
the dynamics of this system depends both on the number of states of the machines composing
the system and on the buffer sizes.

Focusing the attention on the last machine of the line, MK , it is assumed that the random
variable Yi is equal to 1 if the observed machine produces one piece in period i, and 0 otherwise.
In particular, Yi can be zero for different reasons: firstly, the machine MK can be in a down state;
secondly, machine MK can be starved since one of its upstream machines Mj , with j = 1, ..,K−1,
is in a down state and all the buffers in between are empty. The expected throughput of this
system is the sum of all the steady state probabilities in which the last machine is operational
and not starved [13]. To be consistent with the notation adopted in the literature, we will use e
and v for the mean production rate and asymptotic variance rate of isolated machines, and E
and V for the same performance measures calculated for the whole line.

Table 2 reports the average computational times for the analysis of 20 systems with different
number of machines and buffer capacities. In all cases, the machines are unreliable and can fail
in one failure mode, characterized by geometrically distributed times to failure and times to
repair. The average value reported for each case is calculated on the basis of 10 different lines,
with machine parameters p and r uniformly sampled between 0 and 1. The results were obtained
using an Intel Core2 Duo 1.6 GHz computer with 3 GB of RAM. The tolerance ε was equal to
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0.1. It can be seen that the evaluation of production lines can be performed by the proposed
method, within reasonable computational times (always lower than 10 minutes). It should also
be mentioned that, by using sparse matrix representation of the state space and eliminating
transient states, the speed of the method can be drastically improved. Moreover, implementation
issues that help increasing the speed of the method are reported in Appendix C.

The estimation of the computational time needed to evaluate a certain system (in seconds)
with S states has been fitted (from the experiments related to Table 2) with the following
regression model:

T̂ev = −1.096 + 0.004358S − 8.6× 10−7S2 + 4.3× 10−11S3 (33)

with R2 = 98.6%, indicating that the regression model well fits the evaluation time Tev.

Table 3 shows the results from the evaluation of thirteen different production lines, with
different lengths and machine parameters. For each line, the machines are identical. Each machine
is characterized by a single failure mode, with parameters p and r obtained by using the results
reported in equation (26), starting from the values of e and v reported in the third column of
Table 3. For each line, the asymptotic variance rate is reported, as computed with the proposed
approximate method (ε = 0.01) and the exact method. The results show that the method is
applicable also to production lines of considerable length (a case with 7 machines is reported,
where the number of states is 294912). Moreover, it can be noticed that the approximate method
always provides the result within the set tolerance level and with lower computational time with
respect to the exact method. The difference is particularly significant when the line complexity
increases. It is also worth to notice that the approximate method provides the evaluation of the
performance measures also in cases where the exact method fails to do so. The last cases are
reported to identify the applicability limit of the exact method.

Figure 1 shows the service level estimated using different methods to calculate var[Zt] for Case
24. The use of the approximation in equation (11) (with ε = 0.1) produces accurate estimates
compared with the use of the standard approximation var[Zt] ≈ vt adopted in the literature.
The accuracy of the method for the same case as a function of the tolerance level is also shown in
Figure 2. It can be seen that after a threshold value of ε the method provides stable and accurate
results.

6 Numerical analysis of the output variability measures

6.1 Single machine

The proposed method is used to derive insights on the behavior of the output variability under
changes in the main machine parameters. Firstly, the analysis of the impact of the machine
reliability parameters is carried out. Figure 3 shows the behavior of v for the single failure mode
geometric machine, with different values of e and ρ. It can be noticed that ρ impacts v more
than e does when ρ is higher than 0, i.e. when the machine output is positively autocorrelated,
as in most of the real cases.

Figure 4 shows the relationship between v and e and the machine parameters (p, r) in a contour
graph. The area in the graph is divided into three regions, namely A,B and C by the curves
p∗(r) and r∗(p). The curve p∗(r) is defined as the level set (denoted with Sp) that maximizes the
variance rate given a value of r. Similarly, the curve r∗(p) is defined as the level set (denoted with
Sr) that maximizes the asymptotic variance rate given a value of p. The curves are calculated
by partially differentiating v with respect to r and p, respectively. These level sets are general,
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Table 2: Average k∗ and computational time for the analysis of multi–stage production lines with
single failure geometric machine and equal intermediate buffer capacities, performed by using the
proposed approximate method (equation (11)), with ε = 0.1.

Case M Ni k∗ S Tev [s]
1 2 2 75.2 12 0.015
2 2 4 123.4 20 0.010
3 2 6 153.1 28 0.015
4 2 8 192.1 36 0.023
5 2 10 215.5 44 0.038
6 2 12 241.1 52 0.046
7 3 2 92.9 72 0.025
8 3 4 127.3 200 0.062
9 3 6 161.2 392 0.111
10 3 8 199.2 648 0.166
11 3 10 263.0 968 0.227
12 4 2 99.1 432 0.156
13 4 4 141.9 2000 0.596
14 4 6 190.1 5488 1.690
15 4 7 222.3 8192 2.671
16 4 8 235.5 11664 4.026
17 5 2 108.5 2592 3.857
18 5 3 163.1 8192 4.231
19 5 4 155.8 20000 88.209
20 6 2 123.3 15552 14.287

0 50 100 150 200 250 300
0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Available production time [cycle times]

S
e
rv

ic
e
 L

e
v
e
l

 

 

Approx. eq(10), ε =0.1, k
*
=114

Exact

Approx. using  v⋅ t

Fig. 1: Exact and approximate SL(x, t) for Case 24, x = 80
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Fig. 2: SL(x, t) as a function of the tolerance level ε for Case 24, x = 80, t = 120

Table 3: Variability output performances for a set of production lines with different lengths,
buffer capacities and machine parameters

Case M (e, v) Ni E[IDT ] var[IDT ] E Vexact Vapprox T exactev [s] Tapproxev [s]

21 3 (0.9,10) 3-5 1.327 40.387 0.7533 17.183 17.183 0.153 0.125
22 3 (0.95,2) 8-8 1.141 6.224 0.8768 4.114 4.115 0.309 0.309
23 4 (0.7,3) 2-2-2 2.604 32.062 0.3841 1.686 1.687 0.144 0.141
24 4 (0.9,8) 2-2-2 1.443 43.669 0.6931 14.476 14.467 0.184 0.162
25 4 (0.8,4) 4-3-2 1.924 28.648 0.5198 3.812 3.814 0.373 0.309
26 4 (0.9,8) 4-4-4 1.430 42.391 0.6994 14.324 14.324 0.829 0.786
27 4 (0.7,3) 4-4-4 2.364 27.451 0.4230 1.769 1.773 0.673 0.625
28 4 (0.8,4) 10-5-3 1.820 25.451 0.5495 3.815 3.819 1.394 1.322
29 5 (0.8,4) 2-2-2-2 2.195 37.017 0.4556 3.308 3.308 1.340 1.325
30 5 (0.8,4) 4-4-4-4 2.047 39.216 0.4883 3.37 3.374 37.226 11.598
31 6 (0.85,1.3) 2-2-2-2-2 1.943 11.166 0.5145 1.314 1.317 17.539 14.737
32 6 (0.85,1.3) 2-5-2-5-2 1.771 Out of Memory 0.5646 Out of Memory 1.346 - 94.507
33 7 (0.85,1.3) 2-3-3-3-3-2 1.914 Out of Memory 0.5223 Out of Memory 1.228 - 1104.167

they do not depend on the specific machine and are formally defined as:

p∗(r) ∈ Sp = {∀p ∈ [0, 1] : p = 1−
√

1− 4r + r2} ∀r ∈ [0, 1] (34)

r∗(p) ∈ Sr = {∀r ∈ [0, 1] : r = 2−
√

4 + p2 − 2p} ∀p ∈ [0, 1] (35)

Let us now to consider a point (p, r) in the graph belonging to region A, or B or C, the following
actions are recommended to improve the machine performance:

– Region A (∀r, p ≤ p∗(r)). Decreasing p or increasing r has a double positive effect, i.e. v
decreases and e increases. In other words, actions that increase the machine MTTF or that
decrease the MTTR have a positive effect on both e and v.

– Region B (p ≥ p∗(r), r ≥ r∗(p)). Increasing r has the same double positive effect on v
and e, while decreasing p has the positive effect of increasing e, coupled with the negative
effect of increasing v. In this region a rather counterintuitive effect is observed. If the MTTF
related of the machine is increased, for example by applying machine improvement plans,
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Fig. 3: v vs e and ρ for the single failure geometric machine

the throughput of the system is increased but the output becomes more unstable, since the
output variance is higher. On the contrary, up to a certain extend, keeping the machine down
for a longer time may be beneficial for v since the loss in the throughput is compensated by
a higher stability of the output. The global impact of this action on the machine service level
is not shown in the graph and it should be taken into consideration.

– Region C (∀p, r ≤ r∗(p)). Increasing r or decreasing p has the positive effect of increasing
e, coupled with the negative effect of increasing v. This is a trade-off region where the only
possibility of decreasing the output variability of the machine is to decrease its throughput.
Therefore, up to a certain extend, keeping the machine up for a shorter time may be beneficial
since the loss in the throughput is compensated by a higher stability of the output. Also in
this case, other performance such as the machine service level should also be considered. It
should be noticed that machines in this region can drastically affect the system performance
of a production system because of the low efficiency. Thus, it would be beneficial to implement
improvement actions that upgrade the machine to regions A or B.

This map can be used to select proper machine reconfiguration actions that improve the
performance both in terms of asymptotic throughput and variance rate, depending on the position
of the machine in the graph. After the estimation of the MTTF and MTTR of the machine, it
is possible to identify its relative position respect to the level sets Sp and Sp. This would help
machine designers and production managers identifying the best improvements actions for the
analyzed machine.
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Fig. 4: Contour graph showing efficiency and asymptotic variance rate as a function of p and r
for the geometric machine and for the Bernoulli machine (as a function of p).

Figure 5 shows the impact of ρ on the service level for certain values of e and a fixed demand
x equal to 0.7143 · t. When e is equal to x/t, the SL is always 50% regardless of the amount of
correlation in the output. When e is greater than x/t increasing ρ will cause SL to decrease, as
the probability of obtaining a long consecutive series of no output (i.e. Yi = 0) increases. When e
is smaller than x/t, increasing ρ will cause SL to increase, as the probability of having long series
of consecutive outputs (i.e. Yi = 1) is higher.

6.2 Two–machine lines

6.2.1 Impact of the buffer size on the output variability

Understanding the impact of the buffer size on the output variance in a two-machine system is a
complex task. Carrascosa [4] showed that the shape of the variance rate (V ) curve as a function
of the buffer capacity N is very sensitive to the machine parameters. In order to understand
deeper this behavior, we study a two-machine line characterized by geometric machines subject
to a single failure mode. The goal of the analysis is to identify the main factors affecting V(N). To
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Fig. 5: Service level as a function of ρ and e when the demand x is equal to 10, 000 products
within a period of 14, 000 cycle times

this purpose, a design table is constructed considering as factors the efficiency and the asymptotic
variance rate of the isolated machines. Specifically, nine set of cases are built combining the cases
with e1 >,=, < e2 and v1 >,=, < v2. This originates nine possible system classes. In each class,
we consider three specific parameter instances respecting the properties of the class and we
calculate and plot the variance rate of the two-machine line (V ) as a function of the buffer size
N , varying from 2 to 200. The results of the experiment are reported in Figure 6 and Table 4.

By analyzing equation (11) applied to the two-machine case:

V ≈ E(1− E)(1 + 2ρtotal(ε))

It is possible to notice that the behavior of the first component of V , i.e. E(1 − E) is a con-
cave parabola of the system’s throughput E. It is also well known that the throughput E is a
monotonic, non-decreasing function of the buffer capacity N [13]. Considering this first term,
two different effects of N on V can be observed: if E(N) < 0.5 any increase in N will cause E
and V to increase, while if E(N) > 0.5 any increase in N will cause E to increase, and V to
decrease.
The effect of the second term, i.e. (1 + 2ρtotal), is much more complex to analyze a priori by only
looking at the machine parameters. Indeed, the total autocorrelations ρtotal strongly depends on
the eigenvalues of the transition matrix of the system, that, unless the system is very simple, is a
complex function of the machine parameters. This term has been reported in Table 4. As it can
be noticed, there are cases in which ρtotal increases with N (for example cases 8, 9, 20 and 21);
moreover, there are cases in which it decreases with N (for example cases 2, 4, 15 and 26). More
complex cases show a combined effect, i.e. it decreases and then increases with N (for example
cases 7, 16, 18 and 19).

The result of the combined effects of these two terms is that V can be a decreasing or an
increasing function of N . This result is in accordance with [30] and [4], whereas it contradicts
with the findings of Hendricks [16] who noticed that the V always decreases when the buffer
capacity increases.

More insights can be obtained from the nine possible combinations of machine parameters
presented in Figure 6. When increasing the size of N , V approaches v of the bottleneck machine,
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for cases where machines have different efficiencies in isolation (unbalanced lines). The rate of
convergence of V when increasing the buffer size is higher for the unbalanced lines.

The counterintuitive mixed effect of the buffer on the variance rate (the buffer size decreases
and then increases the variance rate) is particularly visible for cases where the bottleneck machine
in terms of isolated throughput is not the bottleneck machine in terms of asymptotic variance
rate. For these cases, there is a specific buffer size that minimizes the variance rate. This suggest
the development of techniques for optimizing the buffer size to improve the output stability of
the system while meeting the target production rate.

In all the analyzed cases, we observed that the asymptotic variance rate of a two-machine
line and that of its reversed line, obtained by replacing machine M1 with machine M2 and vice
versa, is the same.
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6.3 Multi-stage lines

6.3.1 Conservation of the output variability in the system

In this section, a system composed of three machines with geometrical up and down times and
single failure mode is considered. Machines are identical with parameters p = 0.01 and r = 0.2.
The buffers are identical with capacity equal to 5. The goal of this experiment is to investigate
the conservation of variability throughout the machine stages. Indeed, it is well known that
the mean production rate is conserved in production lines, for the so-called ”conservation of
flow property”. This is a very important property that has been exploited by all the developed
approximate methods based on the system decomposition. To show this effect, we considered the
time dependent variance rate of the system calculated by focusing respectively on the first and
the second machine in the system. This implies considering two different reward vectors in the
two cases. Then, we plot the difference between the variance rate computed on the first machine
and the variance rate calculated on the second machine, as a function of time. The result is
shown in figure 7.
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Fig. 7: Difference in the variance rate calculated on the first and the second machine, for a
buffered three machine line, as a function of time.

As it can be noticed, the difference increases and then decreases, approaching zero for large
times. The absolute value is always relatively small (order of 10−3). The asymptotic variance
rate in this case is V = 0.7088, and is the same for the two machines. As a second experiment,
we modified the parameters of the second machine by reducing the previous values by a factor
100. This results in a second machine that has the same efficiency in isolation but much higher
output variability. Then, we repeated the previous analysis. The results for this case are reported
in Figure 8.

In this case, the difference decreases and then increases, still approaching zero for large
times. Moreover, the time required to approach zero is much higher than the previous case. The
asymptotic variance rate in this case is V = 35.0574, and is the same for the two machines.
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Table 4: The values of V , E and ρtotal for the studied 27 experiments at buffer levels N = 5, 20,
45, 100 and 200.

Case ID Instance e1 v1 e2 v2 N 5 20 45 100 200
V 2.5861 2.2286 2.0298 1.9935 1.9998

1 0.9 3 0.7 2 E 0.6585 0.6821 0.6951 0.6997 0.7000
ρtotal 5.2500 4.6385 4.2882 4.2435 4.2614

1 V 1.7589 1.3268 1.0750 1.0010 1.0000
e1 > e2 2 0.9 3 0.7 1 E 0.6591 0.6833 0.6958 0.6998 0.7000
v1 > v2 ρtotal 3.4143 2.5656 2.0395 1.8824 1.8809

V 1.4056 1.1052 1.0049 0.9996 0.9936
3 0.9 2 0.7 1 E 0.6627 0.6894 0.6985 0.7000 0.7000

ρtotal 2.6441 2.0809 1.8857 1.8798 1.8659
V 3.6200 3.1410 2.6952 2.2808 2.0313

4 0.9 3 0.9 2 E 0.8257 0.8486 0.8661 0.8806 0.8891
ρtotal 12.0775 11.7250 11.1170 10.3436 9.8006

2 V 2.2200 2.0653 1.9250 1.8124 1.7458
e1 = e2 5 0.7 3 0.7 2 E 0.5669 0.6260 0.6575 0.6780 0.6883
v1 > v2 ρtotal 4.0209 3.9107 3.7740 3.6509 3.5686

V 1.7489 1.6014 1.4979 1.4250 1.3812
6 0.7 3 0.7 1 E 0.5725 0.6348 0.6641 0.6819 0.6905

ρtotal 3.0729 2.9538 2.8573 2.7849 2.7315
V 3.0712 2.9298 2.9356 2.9941 3.0000

7 0.7 3 0.9 2 E 0.6607 0.6865 0.6974 0.6999 0.7000
ρtotal 6.3497 6.3061 6.4549 6.6277 6.6428

3 V 2.7620 2.8478 2.9705 3.0001 3.0000
e1 < e2 8 0.7 3 0.9 1 E 0.6661 0.6937 0.6995 0.7000 0.7000
v1 > v2 ρtotal 5.7090 6.2009 6.5663 6.6432 6.6424

V 1.9287 1.9294 1.9889 2.0000 2.0000
9 0.7 2 0.9 1 E 0.6679 0.6952 0.6998 0.7000 0.7000

ρtotal 3.8479 4.0525 4.2332 4.2619 4.2503
V 3.4105 3.1222 2.9749 2.9820 2.9995

10 0.9 3 0.7 3 E 0.6580 0.6809 0.6943 0.6996 0.7000
ρtotal 7.0773 6.6852 6.5086 6.5941 6.6415

4 V 2.2414 2.0244 1.9759 1.9976 2.0000
e1 > e2 11 0.9 2 0.7 2 E 0.6616 0.6879 0.6979 0.7000 0.7000
v1 = v2 ρtotal 4.5053 4.2143 4.1864 4.2558 4.2619

V 1.0807 0.9873 0.9978 1.0000 1.0000
12 0.9 1 0.7 1 E 0.6704 0.6967 0.6999 0.7000 0.7000

ρtotal 1.9455 1.8362 1.8752 1.8807 1.8809
V 4.3758 3.8805 3.3690 2.8487 2.5475

13 0.9 3 0.9 3 E 0.8246 0.8452 0.8624 0.8777 0.8872
ρtotal 14.6243 14.3311 13.6944 12.7728 12.2299

5 V 2.6787 2.5191 2.3515 2.2039 2.1329
e1 = e2 14 0.7 3 0.7 3 E 0.5628 0.6186 0.6515 0.6743 0.6862
v1 = v2 ρtotal 4.9434 4.8387 4.6785 4.5177 4.4523

V 2.8753 2.4384 2.0687 1.7566 1.6186
15 0.9 2 0.9 2 E 0.8274 0.8530 0.8704 0.8837 0.8910

ρtotal 9.5664 9.2227 8.6688 8.0448 7.8340
V 3.4105 3.1222 2.9751 2.9823 3.0005

16 0.7 3 0.9 3 E 0.6580 0.6809 0.6943 0.6996 0.7000
ρtotal 7.0773 6.6853 6.5091 6.5948 6.6440

6 V 2.2414 2.0244 1.9760 1.9978 2.0000
e1 < e2 17 0.7 2 0.9 2 E 0.6616 0.6879 0.6979 0.7000 0.7000
v1 = v2 ρtotal 4.5053 4.2143 4.1866 4.2562 4.2618

V 1.0807 0.9873 0.9978 1.0001 1.0001
18 0.7 1 0.9 1 E 0.6704 0.6967 0.6999 0.7000 0.7000

ρtotal 1.9455 1.8362 1.8752 1.8811 1.8812
V 3.0712 2.9298 2.9354 2.9937 3.0000

19 0.9 2 0.7 3 E 0.6607 0.6865 0.6974 0.6999 0.7000
ρtotal 6.3497 6.3060 6.4545 6.6267 6.6427

7 V 2.7620 2.8479 2.9703 2.9997 3.0000
e1 > e2 20 0.9 1 0.7 3 E 0.6661 0.6937 0.6995 0.7000 0.7000
v1 < v2 ρtotal 5.7090 6.2010 6.5659 6.6422 6.6428

V 1.9287 1.9294 1.9889 1.9999 2.0000
21 0.9 1 0.7 2 E 0.6679 0.6952 0.6998 0.7000 0.7000

ρtotal 3.8479 4.0525 4.2331 4.2618 4.2619
V 3.6200 3.1410 2.6954 2.2817 2.0389

22 0.9 2 0.9 3 E 0.8257 0.8486 0.8661 0.8806 0.8891
ρtotal 12.0775 11.7252 11.1178 10.3480 9.8362

8 V 2.2200 2.0653 1.9252 1.8122 1.7457
e1 = e2 23 0.7 2 0.7 3 E 0.5669 0.6260 0.6575 0.6780 0.6883
v1 < v2 ρtotal 4.0209 3.9107 3.7742 3.6506 3.5685

V 1.7489 1.6014 1.4981 1.4249 1.3812
24 0.7 1 0.7 3 E 0.5725 0.6348 0.6641 0.6819 0.6905

ρtotal 3.0729 2.9539 2.8579 2.7848 2.7315
V 2.5861 2.2286 2.0299 1.9941 1.9998

25 0.7 2 0.9 3 E 0.6585 0.6821 0.6951 0.6997 0.7000
ρtotal 5.2500 4.6385 4.2885 4.2449 4.2614

9 V 1.7590 1.3268 1.0752 1.0014 1.0000
e1 < e2 26 0.7 1 0.9 3 E 0.6591 0.6833 0.6958 0.6998 0.7000
v1 < v2 ρtotal 3.4144 2.5657 2.0398 1.8832 1.8808

V 1.4056 1.1052 1.0049 0.9999 0.9938
27 0.7 1 0.9 2 E 0.6627 0.6894 0.6985 0.7000 0.7000

ρtotal 2.6441 2.0810 1.8859 1.8807 1.8662
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Fig. 8: Difference in the variance rate calculated on the first and the second machine, for a
buffered three machine line with modified parameters, as a function of time.

We repeated this analysis for 100 cases and similar results were always observed. Therefore, by
numerical facts, we can generalize this result within the following statement:

Numerical Fact 3 The asymptotic variance rate is conserved throughout the stations of a multi-
stage production line.

This is a very important property that will be useful for the approximate evaluation of the
asymptotic variance rate of the output by applying system decomposition. Indeed, this means
that both the throughput and the asymptotic variance rate should be conserved in the different
building blocks obtained by decomposition. Further investigation is needed for a formal proof of
this statement.

7 Conclusions

This paper proposes a methodology to calculate several output variability indicators for single
and small multi-stage manufacturing systems modeled as general Markovian structure and binary
reward, including the variance of the cumulated production and the inter departure time. The
proposed method exploits the special autocorrelation structure of the output of markov-reward
systems to compute the variability measures in an approximate way. The approach is general
and it can be applied to several different system architectures.

Results show relevant relations between the output variance and the machine reliability pa-
rameters and the buffer sizes. In particular, depending on the machine parameters, reducing the
MTTR or increasing the MTTF of the machine may have a positive or negative impact on the
output variability. This counter intuitive result is important while choosing improvement options
that will have positive effect on both e and v. Moreover, the paper shows that increasing the
buffer size may reduce or increase the output variability, and an explanation for this behav-
ior is drawn. Furthermore, the paper shows by numerical experiments that the time dependent
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variance of the production is not conserved throughout the stages of a production line but the
asymptotic variance rate is conserved. This paves the way to the development of approximate
analytical methods based on system decomposition to propagate both the asymptotic first and
second moment of the cumulated output. Obviously, the problem of the complexity that increases
with the buffer sizes and line length should be taken in serious consideration. Moreover, future
research will be focused on the formulation and solution of new buffer allocation problems to
jointly meet the desired target production rate and the target service level of the system.

A Proof of Theorem 1

According to equation (2) and equation (3):

var [Zt] = te(1 − e) + 2

t−1∑
k=1

(t− k)covk [Y ] (36)

Rearranging the previous expression:

var [Zt] = te(1 − e) + 2t

t∑
k=1

covk [Y ] − 2

t∑
k=1

kcovk [Y ] (37)

where:

covk[Y ] = πµdiagP
kµ− (πµ)2 = πµdiagP

kµ− e2 (38)

The sums in the second and the third terms of equation 37 can be expressed as known geometric sums:

t∑
k=1

covk =

t∑
k=1

(
πµdiagP

kµ− e2
)

= πµdiag

t∑
k=1

Pkµ− te2 (39)

By adding and removing the term πµdiag
(∑t

k=1 A
k
)
µ, where A is a square (s x s) matrix with identical

rows formed by the transpose of the steady state probability vector π, the following can be obtained:

t∑
k=1

covk = πµdiag

t∑
k=1

(P−A)kµ + πµdiag

t∑
k=1

Akµ− te2 = (40)

= πµdiag

t∑
k=1

(P−A)kµ + tπµdiagAµ− te2 =

= πµdiag

t∑
k=1

(P−A)kµ + te2 − te2 = πµdiag

t∑
k=1

(P−A)kµ

It is worth to recall that, due to the general solution of discrete time Markov chains, PA = A and Ak = A
for each value of k > 0. By using the known sum results it is possible to write:

t∑
k=1

covk = πµdiag(P−A)(I− (P−A)t)(I−P + A)−1µ (41)

Similarly:

t∑
k=1

k · covk =

t∑
k=1

k
(
πµdiagP

kµ− e2
)

= πµdiag

t∑
k=1

kPkµ−
(
t2

2
+
t

2

)
e2 (42)

Moreover, by adding and removing the term πµdiag
(∑t

k=1 A
k
)
µ, the first term can be expressed as:

πµdiag

t∑
k=1

kPkµ = πµdiag

t∑
k=1

k(P−A)kµ− πµdiag

t∑
k=1

kAkµ (43)
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therefore, by using the known geometric sum:

t∑
k=1

k(P−A)k = (P−A)(I− (P−A)t)(I−P + A)−2 − t(P−A)t+1(I−P + A)−1 (44)

and, for the second term:

πµdiag

t∑
k=1

kAkµ =

(
t2

2
+
t

2

)
πµdiagAµ =

(
t2

2
+
t

2

)
e2 (45)

by substituting equations (44), (45) and (43) into equation (42) the following can be obtained:

t∑
k=1

kcovk = πµdiag
[
(P−A)(I− (P−A)t)(I−P + A)−2 − t(P−A)t+1(I−P + A)−1

]
µ (46)

Finally, by substituting equations (41) and (46) into equation (37) we obtain:

var [Zt] = te(1 − e) + 2tπµdiag(P−A)(I−P + A)−1µ− 2πµdiag(P−A)(I− (P−A)t)(I−P + A)−2µ (47)

This is a close form expression of the variance of the cumulated number of parts produced at time t by a
general Markovian system with transition probability matrix P and reward vector µ. It can be rewritten in the
following form:

var [Zt] = tα+ β(t)

where:

α = e(1 − e) + 2πµdiag(P−A)(I−P + A)−1µ (48)

and:

β(t) = −2πµdiag(P−A)(I− (P−A)t)(I−P + A)−2µ (49)

It can be easily shown that, since Pt approaches A as t tends to infinity, the term
β(t)
t

tails off, and the
asymptotic variance rate expression becomes:

v = α = e(1 − e) + 2πµdiag(P−A)(I−P + A)−1µ (50)

The Fundamental Matrix Z of a discrete time Markov chain with transition probability matrix P can be
expressed as:

Z = (I−P + A)−1 (51)

The properties of the fundamental matrix are such that:

AZ = AZ2 = A (52)

Therefore, more compact expressions of α and β can be obtained:

α = e(1 − e) + 2πµdiag(P−A)Zµ = e(1 − e) + 2πµdiagPZµ− 2πµdiagAZµ (53)

= e(1 − e) + 2πµdiagPZµ− 2e2 = e(1 − 3e) + 2πµdiagPZµ

and:

β(t) = 2πµdiag
(
Pt+1 −P

)
Z2µ (54)

Therefore, the final expression of the variance is:

var [Zt] = te(1 − 3e) + 2tπµdiagPZµ + 2πµdiag
(
Pt+1 −P

)
Z2µ (55)
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B Proof of Theorem 2

By referring to the partitions of the transition probability matrix P defined in section 3, the mean inter departure
time can be obtained with the following equation:

E[IDT ] =
1

e
πU

(
PU,U + PU,D

∞∑
k=2

kPk−2
D,DPD,U

)
µU (56)

The first term in brackets reflects the situation in which the inter-departure time assumes value 1 since
the system makes a transition from one operational state to another operational state or it stays in the same
operational state. The second term in brackets reflects the situation in which the system makes a transition to a
non-operational state and the inter-departure time increases of one unit for any time step it remains in the down
state, until the system goes back to an operational state. The multiplying factor is the conditional probability of
the system being in any specific operational state.

By using the results for known sums of geometric series, the following can be written:

∞∑
k=2

kPk−2
D,D =

∞∑
q=0

(q + 2)PqD,D =
(
2I−PD,D

) (
I−PD,D

)−2
(57)

Therefore:

E[IDT ] =
1

e
πU

(
PU,U + PU,D

(
2I−PD,D

) (
I−PD,D

)−2
PD,U

)
µU (58)

It can be easily proved that, for any system, the mean inter-departure time is the inverse of the throughput,
i.e:

E[IDT ] =
1

e
(59)

The variance of the inter-departure time can be expressed as a function of the second and the first moments:

var[IDT ] = E[IDT 2] − E[IDT ]2 (60)

The second moment of the inter-departure time can be expressed as follows:

E[IDT 2] =
1

e
πU

(
PU,U + PU,D

∞∑
k=2

k2Pk−2
D,DPD,U

)
µU (61)

By using the results for known sums of geometric series, the following can be written:

∞∑
k=2

k2Pk−2
D,D =

∞∑
q=0

(q2 + 4q + 4)PqD,D =
(
P2
D,D − 3PD,D + 4I

)(
I−PD,D

)−3
(62)

Therefore, the second moment of the inter-departure time can be expressed as:

E[IDT 2] =
1

e
πU

[
PU,U + PU,D

(
P2
D,D − 3PD,D + 4I

) (
I−PD,D

)−3
PD,U

]
µU (63)

By rearranging the previous equation we obtain:

E[IDT 2] =
1

e
πU

[
PU,U + PU,D

((
2I−PD,D

) (
I−PD,D

)−2
+ 2I

(
I−PD,D

)−3
)
PD,U

]
µU (64)

Therefore, it is possible to express the second moment as a function of the first moment:

E[IDT 2] = E[IDT ] +
1

e
πUPU,D2I

(
I−PD,D

)−3
PD,UµU (65)

By substituting equations (59) and (65) into equation (60) the closed form expression for the variance of the
inter-departure time for any general system can be obtained as follows:

var[IDT ] =
e− 1

e2
+

1

e
πUPU,D2I

(
I−PD,D

)−3
PD,UµU (66)
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C Implementation Issues

In this section, useful rearrangements of the proposed equations that positively contribute to reduce the compu-
tational time of the proposed approaches are proposed, both for the approximate formula and the exact formulas
proposed in this paper.

C.1 Approximate formula for the variance of the cumulated production

Equation (5) can be rearranged in order to obtain a recursive function to be evaluated for k = 1, ..,K∗.

covk[Y ] =

s∑
g=1

Ck,gµg − e2 (67)

where

Ck,g =
s∑
j=1

Ck−1,jPj,g k = 2, .., k∗, g = 1, .., s

C1,g =

s∑
j=1

πjµjPj,g (68)

In this way, Ck is a row vector that is computed by recursion at each significant time step k = 1, ..,K∗, thus
avoiding several computations of the power matrix. For a similar approach see [33]. ρtotal(ε) then becomes:

ρtotal(ε) =

∑k∗

k=1

∑s
g=1 Ck,gµg − k∗e2

e(1 − e)
(69)

C.2 Exact formula for the variance of the cumulated production

From a computational point of view, the most complex aspect of equations (13) and (14) is the calculation of the
elements of the fundamental matrix Z. A computationally efficient method to address this problem is described
in the following. Equation (13) is rewritten in the following terms:

α = e(1 − 3e) + 2Qµ (70)

where Q is a row vector of the form:

Q = πµdiagPZ = q(I − P +A)−1 (71)

where q is a row vector of s elements, easily obtained as:

q = πµdiagP (72)

The vector Q can be thus obtained by solving the following system of equations:

Q(I − P +A) = q

Qu = 0 (73)

where u is a column vector with s elements equal to 1. Similarly, for β(t):

β(t) = 2πµdiag
(
Pt+1 −P

)
Z2µ = 2Wµ (74)

where W is a row vector of the form:
W = W1Z (75)

and:
W1 = πµdiag

(
Pt+1 −P

)
Z = w(I − P +A)−1 (76)

where w is a row vector of s elements, easily obtained as:

w = πµdiag
(
Pt+1 −P

)
(77)
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The vector W1 can be thus obtained by solving the following system of equations:

W1(I − P +A) = w

W1u = 0 (78)

Finally, the vector W can be obtained by solving this second system of equations:

W (I − P +A) = W1

Wu = 0 (79)

Therefore, the variance formula reduces to:

var [Zt] = te(1 − 3e) + 2tQµ + 2Wµ (80)

C.3 Exact formula for the variance of the inter-departure time

The same procedure can be adopted for increasing the computational efficiency in the calculation of the term
(I−PD,D)−3 in equation 66.
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