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CO2 + O2 in situ leaching has been extensively applied in uranium recovery in
sandstone-type uranium deposits of China. The geochemical processes impact and
constrain the leaching reaction and leaching solution migration; thus, it is necessary
to study the CO2 + O2–water–rock geochemical reaction process and its influence
on the physical properties of uranium-bearing reservoirs. In this work, a CO2 +
O2–water–rock geochemical reaction simulation experiment was carried out, and
the mineralogical and multiscale pore characteristics of typical samples before and
after this simulation experiment were compared by X-ray diffraction and high-
pressure mercury intrusion porosimetry (HPMIP). The results show that the CO2

+ O2–water–rock geochemical reaction has complicated effects on the mineral
compositions due to the various reaction modes and types. After the CO2 +
O2–water–rock geochemical reaction, the femic minerals decrease and the clay
minerals in the coarse sandstone, medium sandstone, fine sandstone, and siltstone
increase, while the femic minerals and clay minerals in sandy mudstone show a
contrary changing trend. The CO2 + O2–water–rock geochemical reaction
decreases the total pore volume of uranium-bearing reservoirs and then
promotes pore transformation from small scale to large scale. The fractal
dimensions of macropores are decreased, and the fractal dimensions of
mesopores, transition pores, and micropores are increased. The effects of felsic
mineral and carbonate dissolution, secondary mineral precipitate, clay mineral
swelling, and mineral particle migration are simultaneously present in the CO2 +
O2 in situ leaching process, which exhibit the positive transformation and the
negative transformation for the uranium-bearing reservoirs. The mineral
dissolution may improve reservoir permeability to a certain degree, while the
siltation effect will gradually reveal with the extension of CO2 + O2 in situ
leaching. This research will provide a deep understanding of the physical property
response of uranium-bearing reservoirs during CO2+O2 in situ leaching and indicate
the direction for the efficient recovery of uranium resources.
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1 Introduction

Nuclear energy is a type of clean and green energy, and the
development of nuclear power can increase the proportion of non-
fossil energy, which conforms to the needs of the national energy
strategy and helps achieve the “double carbon” goal in China. Natural
uranium is the vital raw material for nuclear fuel (Cui et al., 2019), and
accelerating the recovery of uranium resources has been highly valued
by uranium mining and metallurgy departments (Kim et al., 2013).
The sandstone-type uranium deposit is the main type of uranium
resource in China (Yang et al., 2009), its main mining method is in situ
leaching, and the uranium output of in situ leaching mining accounts
for 90% of China’s total natural uranium output in 2021. Long-term
technical research and field application transformed the in situ
leaching mining method from acid in situ leaching and alkaline in
situ leaching to CO2 + O2 in situ leaching. With the characteristics of
low pollution and high efficiency, CO2 + O2 in situ leaching has been
applied to low-grade, low-permeability, high-carbonate, and high-
salinity uranium deposits and has achieved good effects in uranium
resource exploitation (Zhao K. et al., 2022; Yang et al., 2022).

During the CO2 + O2 leaching process, the gas (CO2 + O2), liquid
(reservoir water), and solid (rock matrix) are coupled and coexist in
the uranium reservoir; thus, the complex geochemical reactions
generate (dissolution, precipitation, and oxidation.) (Saunders et al.,
2016) and change the internal structure and permeability of the
reservoir (Zhao et al., 2018), restricting the efficiency of uranium
resource exploitation (Zhao Y. et al., 2022).

Previous studies on gas–liquid–solid three-phase geochemical
reactions were mainly carried out in the field of CO2 geological
storage in saline water layers, oil/gas reservoirs, and deep coal
seams (Shao et al., 2011; Niu et al., 2019a; Niu et al., 2019b; Niu
et al., 2020a; Niu et al., 2020b; Niu et al., 2021a; Niu et al., 2021b). For
example, Zhou et al. found that the CO2–water–rock reaction can
induce mineral swelling, mineral precipitation, and mineral
dissolution (Zhou et al., 2021); Niu et al. (2022) discussed the
changes in the multiscale microstructure and permeability of the
bedrock caused by a supercritical CO2–water–rock reaction, and
this phenomenon can reduce the sealing property of the capping
layer; Chen et al. (2018) analyzed the pore-scale multiphase flow, mass
transport, and reactions during the CO2 dissolution trapping process
and then built a pore-scale numerical model to describe the
physicochemical processes. In terms of research on CO2 + O2 in
situ leaching of uranium, on one hand, scholars mainly focus on the
concentration, pH, and HCO3

− of the leaching solution and determine
the in situ leaching scheme of uranium deposits through on-site and
indoor tests; for example, Du et al. (2013) conducted the industrial test
of CO2 +O2 in situ leaching with seven point-type well groups, studied
the uranium concentration in the leaching solution, and validated the
feasibility of CO2 + O2 in situ leaching in the study area; Chen et al.
(2013) predicted that the uranium leaching rate of a uranium mine in
Inner Mongolia can reach about 65% based on the indoor leaching
test. On the other hand, scholars mainly focus on the reaction
mechanism of CO2 + O2 in situ leaching. Qiu et al. (2022)
simulated the hydrodynamic process of solution evolution in the in
situ leaching process, based on the numerical model of the

TOUGHREACT framework, and found that the main influencing
factors of uranium leaching concentration are the initial uranium ore
grade and O2 injection concentration. Jia et al. (2021) investigated the
in situ seepage field and geochemical reaction in a uranium reservoir
and analyzed the influencing factor and mechanism of the uranium
leaching rate based on the coupling of COMSOL-PHREEQC.

There is no doubt that the pore structure is the key factor affecting
the solution leaching reaction and gas–liquid migration of the ore bed
(Niu et al., 2017a; Niu et al., 2017b; Zeng et al., 2021; Zeng et al., 2022).
The pore morphology, pore size distribution, fractal characteristic, and
pore connectivity all affect the seepage capacity of the uranium
reservoir, and it is, thus, crucial to finely evaluate these
characteristic parameters. However, previous investigations on the
CO2 + O2 in situ leaching process is superficial and defective,
manifesting in three aspects: 1) the geochemical behavior and type
during the CO2 + O2 in situ leaching process are inadequately
cognizant, 2) the differential evolution characteristics of the CO2 +
O2–water–rock geochemical reaction on the pore structure parameters
of various uranium-bearing reservoirs are unknown, and 3) the
influence mechanism of the multiscale pore structure during the
CO2 + O2 in situ leaching process is insufficiently studied.
Therefore, this work is organized to clarify the complex
geochemical reactions that appeared in the CO2 + O2 in situ
leaching process and their cooperative control mechanism on the
multiscale pore structure.

In this study, the CO2 + O2–water–rock geochemical reaction of
samples from the Qianjiadian uranium deposit is first performed;
then, X-ray diffraction (XRD) and high-pressure mercury intrusion
porosimetry (HPMIP) are performed to analyze the mineral
composition and pore structure of samples, and finally, the
geochemical behavior, evolution law, and mechanism of the pore
structure in different uranium-bearing reservoirs are clarified. This
study can be a guide for better understanding the coupling process and
dynamically regulating the construction technique of CO2 + O2 in situ
leaching in sandstone-type uranium deposits.

2 Experiment

2.1 Geological overview of the study area

The study area of this paper is the Qianjiadian uranium deposit,
Inner Mongolia, China (Figures 1A, B). The Qianjiadian uranium
deposit is distributed in the southeast uplift belt of the Songliao Basin
(Wang Q. et al., 2022), where the main exposed strata include the
Qingshankou Formation (K2qn), Yaojia Formation (K2y), and
Nenjiang Formation (K2n) of the Upper Cretaceous and the
Quaternary (Q) (Figure 1C). The Yaojia Formation is the main
ore-bearing formation, and the Qingshankou Formation is the
secondary ore-bearing formation (Figure 1D). The thickness of the
Yaojia Formation ranges from 181.20 to 214.20 m, with an average of
197.88 m. The bottom depth of the ore formation ranges from
311.30 to 455.00 m, with an average of 420.18 m. The red and gray
fine sandstones and a small amount of medium and coarse sandstones
deposited in the fluvial phase are composed of more mudstone and
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siltstone interlayers with loose structures. The thickness of the
mudstone interlayer is highly variable, with poor continuity in
strike and tendency, and mostly lenticular. The thin mudstone is
mostly gray and grayish, and the thicker mudstone is mostly purplish-
red. Sediment grain size is mainly medium-to-fine sand, with coarse
sand and a small amount of gravel seen at the bottom and more silt
and mud at the top. Sandstone fragments of the Yaojia Formation are
relatively rich in silica and aluminum elements, and the rock types are
mainly lithic sandstone and feldspathic sandstone. The deposit has
four aquifers, of which the lithology of the mineral-bearing aquifer in
the upper section of the Yaojia Formation is mainly gray fine

sandstone, with a small amount of thin-layered gray and purplish-
red mudstone and gray muddy siltstone which are characterized by
weak water-richness and permeability. The lithology of the mineral-
bearing aquifer at the lower end is mainly light gray and light red fine-
medium sandstone, with a small amount of fine siltstone.

2.2 Sample collection

The rock samples were collected from the geological-prospecting
boreholes drilled by the Beijing Institute of Chemical Metallurgy of

FIGURE 1
Geological background and sampling location. (A) shows that the Songliao Basin is located in northeast China, (B) shows that the Songliao Basin can be
divided into six first-order tectonic units, (C) shows the exposed strata of the Qianjiadian uranium deposit, and (D) shows the comprehensive histogram of
uranium-bearing deposits.

FIGURE 2
Images of samples used in this paper. CS-bef, ZS-bef, XS-bef, FS-bef, and SN-bef represent the samples before the geochemical reaction; CS-aft, ZS-aft,
XS-aft, FS-aft, and SN-aft represent the samples after the geochemical reaction.

Frontiers in Earth Science frontiersin.org03

Zhou et al. 10.3389/feart.2022.1094880

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2022.1094880


Nuclear Industry. The selected samples originated from the middle
ore-bearing horizon (Figure 1D). According to the differences in
particle size, cementation degree, and mineral composition, the
samples were classified as coarse sandstone, medium sandstone,
fine sandstone, siltstone, and sandy mudstone (named CS, ZS, XS,
FS, and SN, respectively) (Figure 2). The bulk samples were first
prepared and dried in a constant temperature and humidity test box
for 24 h at 60°C. Then, about 30 g of the processed samples was picked
out and placed in the gas–liquid–solid high-temperature/pressure
reactor for the CO2 + O2–water–rock geochemical reaction
experiment. Finally, the deionized water and a certain proportion
of CO2 and O2 were injected into the glass container in the reactor to
conduct the CO2 + O2 in situ leaching simulation experiment.

2.2 Experimental device and scheme

The CO2 + O2–water–rock geochemical reaction experiment was
conducted in a gas–liquid–solid high-temperature/pressure reactor
(Figure 3). This device mainly consists of three subsystems: the gas
storage subsystem, the gas pressurization subsystem, and the reaction
retort. The gas pressurization subsystem elevates the pressure of CO2/
O2 from the gas storage subsystem to the design value. The pressurized
gas CO2/O2 is injected into the reaction retort for participating in the
geochemical reaction. The thermocouple, temperature sensor, and
pressure sensor are installed on the reaction retort to maintain the
required temperature/pressure conditions. The control accuracies of
the temperature and pressure are 0.01°C and 0.01 MPa, respectively.
The maximum temperature and pressure values of this device that can
be reached are 150°C and 60 MPa, respectively.

Each sample was immersed in 30 ml deionized water. During the
CO2 + O2–water–rock geochemical reaction process, the pressure of
CO2 and O2 was set as 10 MPa and 6 MPa, respectively, according to
the solution proportioning parameter field test (Yang et al., 2020). The
ambient temperature of the geochemical reaction is 40°C, and the
reaction time is 20 days.

2.3 Test method

The mineral component identification of the samples was
conducted using an X-ray diffractometer (Bruker D8 Advance).
Approximately 50-g samples were ground using a fully automatic
crusher, and 10 g of each was screened using a sieve to obtain powder
samples of less than 300 mesh. Then, the prepared powder sample was
placed on the test instrument, and a copper X-ray tube operating at
40 kV and 30 mAwas used with counts collected from 3° to 90° in steps
of 0.02° and at a speed of 3°/min to obtain the scattering curve of the
samples (Li et al., 2022a; Li et al., 2022b). After the test, the mineral
compositions were obtained by profile fitting of the scattering curve.

The mineral constituent of samples during the CO2 +
O2–water–rock geochemical reaction process was measured using
the Empyrean X-ray diffractometer (Panako, Netherlands). Original
rock blocks collected on site were first ground and sieved to obtain the
powder samples with a size of <300 mesh. Then, they were placed on
the test instrument, and the copper X-ray tube operating at 40 kV and
30 mA was used with counts collected from 3° to 90° in steps of 0.02°

and at a speed of 3°/min to obtain the scattering curve of the samples.
Finally, the mineral composition characteristics of samples were
acquired by calculating the peak area of the X-ray spectrum.

The micropore structural characteristics of the samples were
analyzed by the HPMIP method, which can measure pores of sizes
between 3 nm and 950 μm. For HPMIP, the pores are assumed to be
cylindrical, and the relationship between the mercury pressure and the
pore radius can be determined by theWashburn equation (Kumar and
Bhattacharjee, 2003):

r � −2γCOS θ
pc

, (1)

where p is the mercury pressure, γ is the surface tension of mercury, θ
is the wetting angle between mercury and the solid medium, and r is
the pore radius.

The internal microstructure of uranium-bearing sandstone is
extremely heterogeneous and has been confirmed to have fractal

FIGURE 3
Schematic diagram of gas–liquid–solid high-temperature/pressure reactor.
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characteristics (Zeng et al., 2019; Zeng et al., 2022). The fractal dimension
is usually used to characterize the irregularity of complex structures and
can be calculated from the date of HPMIP, which is defined as

N r( ) � VHg

πr2l
∝ r−Df , (2)

where N(r) is the number of units with the radius of r required to fill
the entire fractal object; D is the fractal dimension.

The relationship between the diameter and length of capillaries
follows a similar fractal scaling law (Yu et al., 2009):

l � 2r( )1−DT lDT
0 , (3)

where l is the tortuous length, r is the diameter of capillary tubes, l0 is
the representative length of a straight capillary tube, and DT is the
tortuosity dimension.

Combining Eqs 1–3 leads to

VHg ∝ p− 3−Df−DT( ). (4)
The mercury saturation SHg is defined as

SHg � VHg

Vp
, (5)

whereVHg is the mercury inlet volume andVp is the total pore volume.
By combining Eqs 4, 5 and taking the logarithm, the following

equation can be obtained (Su et al., 2018):

lgSHg ∝ Df + DT − 3( )lg pc( ). (6)

The fractal dimension can be obtained by the gradient of SHg and
pc by using the double-logarithmic coordinate.

3 Results and discussion

3.1 Influence of the CO2 + O2–water–rock
geochemical reaction on the mineral
composition

The test results of XRD show that the quartz content, the albite
content, and the micro-plagioclase content contribute 13.21%–38.23%,
19.66%–28.40%, and 27.67%–35.26%, respectively, of the total minerals
of samples without a CO2 + O2–water–rock geochemical reaction,
indicating that the felsic mineral dominates the substance
composition in the Qianjiadian uranium deposit. Moreover, a small
number of clay minerals are also developed in these samples, including
chlorite, illite, and kaolinite. The chlorite content and the illite content of
sample SN can reach 17.53% and 21.92%, displaying the typical mineral
distribution characteristic of sandy mudstone.

Equations 7–13 show the ion changes after CO2 + O2 is injected in
water and the geochemical reaction process of typical minerals. The
formed solution of CO2 + O2 and water creates an acidic-oxidation
environment, causing the occurrence of chemical reactions such as
dissolution and precipitation.

CO2 +H2O#H2CO3#H+ +HCO−
3#CO2−

3 + 2H+, (7)
Quartz: SiO2 + 2H2O ↔ H4SiO4, (8)

Micro − plagioclase:
2KAlSi3O8 + 2+ + 9H2O ↔
2K+ + Al2Si2O5 OH( )4 + 4H4SiO4

, (9)

Albite:
2NaAlSi3O8 + 2H+ + 9H2O ↔
2Na+ + Al2Si2O5 OH( )4 + 4H4SiO4

, (10)
Calcite: CaCO3 +H2O + CO2 ↔ Ca2+ + 2HCO3

−, (11)
Chlorite:

Mg, Fe( )5Al2Si3O10 OH( )8 + 5CO2 + 5CaCO3 ↔
5Ca Fe/Mg( ) CO3( )2 + Al2Si2O5 OH( )4 +H4SiO4

, (12)

Illite:
KAl2Si3AlO10 OH( )2 + 10H+ ↔
K+ + 3Al3+ + 3H4SiO4

. (13)

The changes in themineral content of samples before and after theCO2

+O2–water–rock geochemical reaction are shown in Figure 4. The mineral
composition of the original sample is complex, and the types of geochemical
reactions are various; thus, the mineral content demonstrates significantly
inconsistent change trends. The samples CS, ZS, XS, FS, and SN represent
coarse sandstone, medium sandstone, fine sandstone, siltstone, and sandy
mudstone, respectively. After the CO2 + O2–water–rock geochemical
reaction, the contents of quartz, albite, and micro-plagioclase in the
coarse sandstone decrease by 9.05%, 12.68%, and 2.99%, respectively,
while the contents of chlorite and illite in the coarse sandstone increase
by 69.68% and 97.29%, respectively; the contents of albite, micro-
plagioclase, chlorite, and illite in the medium sandstone increase by
4.29%, 8.27%, 77.45%, and 100%, respectively, and only the quartz
content in the medium sandstone decreases by 31.44%; the contents of
quartz and micro-plagioclase in the fine sandstone decrease by 54.4% and
51.13%, respectively, while the contents of albite, chlorite, and illite in the
fine sandstone increase by 2.41%, 37.88%, and 92.07%, respectively; the
contents of quartz and albite in the siltstone decrease by 54.43% and
51.13%, while the contents of micro-plagioclase, chlorite, and illite in the
siltstone increase by 29.67%, 66.50%, and 68.85%, respectively; the contents
of quartz, albite, and micro-plagioclase in the sandy mudstone increase by
81.23%, 49.34%, and 7.99%, while the chlorite and illite in the sandy
mudstone decrease by 68.63% and 48.36%, respectively. To sum up, the
felsic mineral and clay mineral exhibit an opposed change trend after the
CO2 + O2–water–rock geochemical reaction. Specifically, the felsic mineral
of coarse sandstone, medium sandstone, fine sandstone, and siltstone
reduces by 1.95 %–103.15%; the clay mineral of coarse sandstone,
medium sandstone, fine sandstone, and siltstone increases by
61.54–88.72%; and the felsic mineral and clay mineral of sandy
mudstone increase and decrease by 138.55% and 57.36%, respectively.

According to Eqs 7–13, all the quartz, albite, micro-plagioclase,
chlorite, and illite can react with the CO2 + O2 aqueous solution. For
coarse sandstone, medium sandstone, fine sandstone, and siltstone, the
dissolution of felsicmineral dominates the geochemical reaction, while the
dissolution reaction of clay mineral in sandymudstone occupies the main
position during the CO2 + O2–water–rock geochemical reaction. Thus,
the differential geochemical reaction is dramatically influenced by the
initialmineral content in the ore bed, the reactions involving clayminerals
may be unfavorable for CO2 + O2 in situ leaching, and the ore bed with
high argillaceous content always acts as the aquiclude in the solution
leaching process (Zhang T. et al., 2021).

3.2 Influence of the CO2 + O2–water–rock
geochemical reaction on the pore structure

3.2.1 Analysis of the mercury intrusion/extrusion
curve

The mercury intrusion/extrusion curves of samples measured by
HPMIP are shown in Figure 5. The mercury intrusion curves of the
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samples belong to the “S” type in general, while the mercury extrusion
curves approach the linear type. The extrusion hysteresis phenomenon
appears during the HPMIP tests; the “hysteresis loop” of mercury intrusion
and extrusion curves of coal can reflect the basic morphology of pores and
their connectivity. Asmentioned bymany scholars (Song et al., 2019; Zhang
et al., 2021; Pan et al., 2022), the open pores induce the mercury extrusion
curve to form the “hysteresis loop,”while semi-closed pores do not have the
“hysteresis loop” due to the equal inlet and outlet mercury pressures. Thus,
the sandy mudstone is mostly composed of open pores, while a given mass
of semi-closed pores with weak connectivity is developed in coarse
sandstone, medium sandstone, fine sandstone, and siltstone.

After the CO2 + O2–water–rock geochemical reaction, the shapes of
the hysteresis loop of the five samples have not changed, indicating that
the CO2 + O2–water–rock geochemical reaction cannot change the pore
morphological characteristic. However, the mercury intrusion curve
before and after the CO2 + O2–water–rock geochemical reaction shows
significant differences. The slope of the intrusion curve of coarse
sandstone, medium sandstone, and siltstone samples becomes
steepened after the CO2 + O2–water–rock geochemical reaction,
while that of fine sandstone and sandy mudstone samples exhibits
the opposite evolutionary trend. This reflects the difference in the
difficulty of mercury injection in various aperture sections, which
can be related to the influence of CO2 + O2–water–rock geochemical
reaction on the pore size distribution.

The mercury withdrawal efficiencies of coarse sandstone, medium
sandstone, fine sandstone, siltstone, and sandy mudstone are 4.53%,

4.80%, 5.47%, 6.94%, and 15.03%, respectively, while those of coarse
sandstone, medium sandstone, fine sandstone, siltstone, and sandy
mudstone reduce to 0.465%, 0.155%, 3.85%, 0.19%, and 14.52%,
respectively, after the CO2 + O2–water–rock geochemical reaction.
The decrease in mercury withdrawal efficiency indicates that part of
mercury is intercepted and hindered in the pores with poor
connectivity during the ejection process, which may be attributed
to the precipitate during the CO2 + O2–water–rock geochemical
reaction blocking the pore throats and changing the open pore to
the semi-closed pore.

3.2.2 Analysis of pore size distribution
Many researchers have made the pore size classification for the

resource and energy reservoirs, such as the classifications by Fu et al.
(2005), Liu et al. (2018), Zhang et al. (2017), and IUPAC (Everett,
1972), while Ypept (1966) divided the pores into macropore
(>1,000 nm), mesopore (100–1,000 nm), transition pore
(10–100 nm), and micropore (<10 nm) according to the pore
diameter, and this division method is more appropriate for this study.

The pore size distribution characteristics of samples before and
after the CO2 + O2–water–rock geochemical reaction are shown in
Figure 6. For the samples without the CO2 + O2–water–rock
geochemical reaction, the pore size distribution of samples is quite
uneven, showing that several pore volume peaks are distributed on the
curves. Except for the sandy mudstone, the pore volume peaks of the
other samples are within the range of the transition pore and

FIGURE 4
Change in themineral content of samples before and after the CO2 +O2–water–rock geochemical reaction: (A–E) represent the samples CS, ZS, XS, FS,
and SN.
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macropore, while the pore volume stably is distributed within the
range of the micropore and mesopore. The pore size distribution of
sandy mudstone is special, and the pore volume peaks are mainly
shown in the transition pore and mesopore. Apparently, after the CO2

+ O2–water–rock geochemical reaction, larger pore volume peaks
occur (samples CS, ZS, and FS) and more pore volume peak numbers
form (samples XS and SN). This indicates that the CO2 +
O2–water–rock geochemical reaction can change the pore size
distribution and increase the heterogeneity of pores in samples.

3.2.3 Analysis of the pore volume contribution rate
The total pore volumes of coarse sandstone, medium sandstone,

fine sandstone, siltstone, and sandy mudstone without the CO2 +
O2–water–rock geochemical reaction are 0.279 ml/g, 0.258 ml/g,
0.130 ml/g, 0411 ml/g, and 0118 ml/g, while those after the CO2 +
O2–water–rock geochemical reaction decrease to 0.115 ml/g,

0130 ml/g, 0064 ml/g, 0.131 ml/g, and 0.106 ml/g, respectively.
This means that the CO2 + O2–water–rock geochemical reaction
has an adverse effect on the total pore volume.

Considering the heterogeneity of the mineral and microstructure of
different uranium-bearing reservoirs (Sun et al., 2020), the influence of
CO2 + O2–water–rock geochemical reaction on the full-scale pore may
be inconsistent. The pore volume contribution rate is thus calculated
and compared between different-sized pores (Figure 7). For the samples
without CO2 + O2–water–rock geochemical reaction, the macropore
dominates in all pores for coarse sandstone, medium sandstone, fine
sandstone, and siltstone, followed by the mesopore and transition pore,
and the micropore is inappreciable. The mesopore and transition pore
of sandy mudstone have a larger proportion than the macropore and
micropore. This is because of the large clay mineral content (chlorite
and illite) in sandy mudstone; the particle of clay mineral is extremely
small, and thus, the formed abundant pores are also small.

FIGURE 5
Mercury intrusion/extrusion curves of samples: (A–E) represent the samples CS, ZS, XS, FS, and SN.
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Although the macropore, mesopore, transition pore, and
micropore are distributed unevenly, there exists a consistent
evolutionary law of pores after the CO2 + O2–water–rock
geochemical reaction. Evidently, the micropore, transition pore,
and mesopore decrease, while the macropore increases when the
samples undergo the CO2 + O2–water–rock geochemical reaction.
Specifically, the total pore volume contribution rates of the micropore,
transition pore, and mesopore of coarse sandstone, medium
sandstone, fine sandstone, siltstone, and sandy mudstone reduce
from 22.517%, 23.296%, 35.778%, 22.119%, 85.067% to 6.452%,
6.594%, 21.432%, 4.545%, and 75.116%, respectively, while the pore
volume contribution rate of the macropore of coarse sandstone,

medium sandstone, fine sandstone, siltstone, and sandy mudstone
improves from 77.483%, 76.703%, 64.222%, 77.881%, 14.933% to
93.548%, 93.406%, 78.568%, 95.455%, and 24.882%, respectively.
This knowledge is consistent with the studies conducted by Zhou
et al. (2021) and Geng et al. (2022) because the reaction environment
and rock lithology are analogous; however, Li H. et al (2020) found
that the supercritical CO2 treatment can increase the micropore
volume and connectivity in granite, which is contradictory to this
study because the mineral constituent in the samples shows a large
difference. This indicates that the CO2 + O2–water–rock geochemical
reaction first affects the mineral composition and spatial distribution,
and the full-scale pore structure is varied immediately.

FIGURE 6
Pore distribution characteristics of samples: (A–E) represent the samples CS, ZS, XS, FS, and SN.
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3.3 Influence of the CO2 + O2–water–rock
geochemical reaction on fractal
characteristics

The relationship between lgSHg vs. lgpc of samples in this work are
shown in Figure 8, which are fit by Eq. 6 with high correlation
coefficients (R2 > 0.90), indicating that the pores of the samples
have fractal properties and the fractal theory can be applied, as
described in this work. For the coarse sandstone, medium
sandstone, fine sandstone, and siltstone, the curves of lgSHg and
lgpc can be divided into two segments, i.e., the low-pressure stage
and the high-pressure stage, which, respectively, represent the
macropore and the mesopore, transition pore, and micropore. For
the sandy mudstone, the curves of lgSHg and lgpc can be divided into
four segments, representing the four pore types.

The fractal dimension calculation results are shown in Table 1.
The fractal dimension D1 ranges from 3 to 6 because it contains fractal
dimensions for pore space and tortuosity, and the fractal dimension
D2 ranges from 2 to 3. It can be seen that D1 is greater than D2,
demonstrating that macropores are more complicated than
mesopores, transition pores, and micropores (Jiang et al., 2016;
Peng et al., 2017; Su et al., 2018). From the fractal dimension curve
of samples SN-bef and SN-aft, it is found that there are notable
multiple inflection points, and because the pore structure of samples
SN-bef and SN-aft are more complex, four segments are divided and
compared with samples CS, ZS, XS, and FS. After the CO2 +
O2–water–rock geochemical reaction, the fractal dimensions of the
macropore in coarse sandstone, medium sandstone, fine sandstone,

siltstone, and sandy mudstone are in the range of 2.819–3.311, which
are lower than those (3.385–5.544) before the CO2 + O2–water–rock
geochemical reaction; the fractal dimensions of mesopore, transition
pore, and micropore in coarse sandstone, medium sandstone, fine
sandstone, siltstone, and sandy mudstone after the CO2 +
O2–water–rock geochemical reaction are in the range of
2.063–2.991, which are larger than those (2.023–2.468) before the
CO2 + O2–water–rock geochemical reaction; this reflects that the CO2

+ O2–water–rock geochemical reaction makes large pores more
smooth and uniform, promoting the improvement of roughness
and heterogeneity of small pores.

3.4 Reconstruction mechanism and
enlightenment of the CO2 + O2–water–rock
geochemical reaction on uranium-bearing
reservoirs

As discussed previously, the geochemical reaction types are
complex and their reconstruction effects on the pore structure are
multifarious. The sample surface of representative coarse sandstone is
relatively dense (Figure 9A), which then becomes rougher and
bumpier (Figure 9B) by the destruction and reorganization of the
pore structure. The intergranular pores are mainly developed in the
original sample, while after the CO2 + O2–water–rock geochemical
reaction, one part of the intergranular pores is dissolved and enlarged,
and another part of adjacent intergranular pores is connected and
formed to fracture. Moreover, some precipitates generated during the

FIGURE 7
Pore volume contribution rate of samples: (A–E) represent the samples CS, ZS, XS, FS, and SN.
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CO2 + O2–water–rock geochemical reaction process can block the
pore. These reconstruction effects will occur simultaneously and
influence the pore characteristics.

To clarify this reconstruction behavior, a schematic diagram
describing the different reconstruction modes during the CO2 +
O2–water–rock geochemical reaction process is shown in Figure 10.
Considering the mineral composition and its fabric mode of uranium-
bearing reservoirs, the microstructure of samples is shown in
Figure 10A; the pores with different sizes are developed between

the mineral detritus, including the connected macropores, the narrow
mesopore, transition pore, and micropore with pore throats. The
geochemical reactions between CO2 + O2, water, and rock expressed
by Eqs 7–13 appear (Mitiku et al., 2013; Cui et al., 2021; Li S. et al.,
2022), showing that 1) the quartz is dissolved weakly and its surface
becomes rough and uneven, 2) the feldspar minerals (micro-
plagioclase and albite) are resolved into the clay minerals
(kaolinite, chlorite, and illite), 3) the carbonate minerals are
completely dissolved into ions and preserved in the solution, and
4) the secondary mineral precipitates are generated during the
geochemical reactions (Figure 10B). Additionally, the physical
effects also appear in this process, such as clay mineral swelling by
water absorption and the secondary mineral particle migration driven
by the leaching solution.

The aforementioned reactions lead to the differential
transformation of the pore structure of uranium-bearing reservoirs,
which can be classified as the positive transformation and negative
transformation for CO2 + O2 in situ leaching. The positive
transformation includes the dissolution of carbonate and feldspar
minerals, which enlarges the pore space and promotes the connectivity
between pores of different sizes and types; it shows a favorable aspect
for the leaching of hosted uranium and the migration of the leaching
solution. The negative transformation includes the secondary mineral
precipitates and clay mineral swelling by water absorption. The
formed mineral precipitates and clay mineral swelling can occupy
the original space and reduce the pore volume, and simultaneously,
these small mineral particles can flow with the leaching solution and
block the pore throat, decreasing the connectivity of pores. The

FIGURE 8
The relationship between lgSHg and lgpc of samples. (A–E) represent the samples CS, ZS, XS, FS, and SN.

TABLE 1 Fractal dimension calculation results.

Sample ID D1 D2 D3 D4

CS-aft 3.311 2.087 — —

CS-bef 5.516 2.023 — —

ZS-aft 3.119 2.068 — —

ZS-bef 5.544 2.027 — —

XS-aft 3.393 2.136 — —

XS-bef 3.385 2.058 — —

FS-aft 2.918 2.063 — —

FS-bef 4.770 2.023 — —

SN-aft 2.819 2.270 2.991 2.102

SN-bef 3.171 2.186 2.468 2.146
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macropores always have a larger pore throat and are unaffected by the
blocking effect; thus, the positive transformation is stronger than the
negative transformation in the macropores. However, the pore throats
with a small size (mesopore, transition pore, and micropore) are
narrow and susceptible to the blocking effect, and then the positive
transformation is weaker than the negative transformation in the
mesopore, transition pore, and micropore, which exhibits the
disadvantageous aspect for CO 2+ O2 in situ leaching. The two
transformations are simultaneous and mutually restrictive,
depending on the mineral composition, pore size distribution, and
pore throat distribution (Li S. et al., 2020). For uranium-bearing
reservoirs in the study area, the CO2 + O2–water–rock geochemical
reaction promotes the expansion of the small pore percentage and
reduction of the large pore percentage. This effect may improve the

reservoir permeability to a certain degree, while the reservoir siltation
effect will gradually reveal with the extension of CO2 + O2 in situ
leaching (Zhao et al., 2018; Zhao K. et al., 2022); the reduction of the
total pore volume of samples during the CO2 + O2–water–rock
geochemical reaction process has confirmed this phenomenon.
Moreover, in the field tests, the clay-blocking seepage had occurred
in a part of uranium deposits (Xu, 2014; Wang et al., 2022), and there
were no particularly effective solutions because of the weak acid–alkali
solubility of clay minerals.

Therefore, only adopting the chemical enhancement permeability
can hardly solve the blocking problem of uranium in situ leaching. The
CO2 phase-change blasting method realizes reservoir stimulation
using the rapid expansion of CO2 from the liquid state to gas state,
whose technical principles are to 1) promote the fracture network

FIGURE 9
SEM images showing the reconstruction effect of the CO2 + O2–water–rock geochemical reaction on pore morphology. (A) Before the CO2 +
O2–water–rock geochemical reaction; (B) after the CO2 + O2–water–rock geochemical reaction.

FIGURE 10
Schematic diagram of the CO2 + O2–water–rock geochemical reaction and its influence on the pore structure. (A) Before the CO2 + O2–water–rock
geochemical reaction; (B) after CO2 + O2–water–rock geochemical reaction.
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generation induced by blasting shock waves and 2) extend and
increase connectivity of the pore-fracture system by the gas
wedging effect. This will provide the source power and smooth
passage for the discharge of siltation sediment, and CO2 phase-
change blasting and CO2 + O2 in situ leaching possess natural
technology intersection. The residual CO2 in uranium reservoirs
can also be used as one source of solvent for CO2 + O2 in situ
leaching. Therefore, combining the CO2 phase-change blasting and
CO2 + O2 in situ leaching method may be a potential physical-
chemical reservoir stimulation direction for uranium-bearing
reservoirs, and the mechanism and method for the dynamic
regulation of permeability enhancement and CO2 + O2 in situ
leaching are the focus of future research.

4 Conclusion

(1) The CO2 + O2–water–rock geochemical reaction has complicated
effects on the mineral compositions due to the various reaction
modes and types. After the CO2 + O2–water–rock geochemical
reaction, the femic minerals decrease and the clay minerals in the
coarse sandstone, medium sandstone, fine sandstone, and
siltstone increase, while the femic mineral and clay mineral in
sandy mudstone show the contrary changing trend. The
dissolution of femic minerals mainly appears in coarse
sandstone, medium sandstone, fine sandstone, and siltstone,
while the dissolution of clay minerals always occurs in sandy
mudstone.

(2) The mineral changes induced by the CO2 + O2–water–rock
geochemical reaction are responsible for the reformation of the
pore volume and pore size distribution. The CO2 + O2–water–rock
geochemical reaction decreases the total pore volume of uranium-
bearing reservoirs and promotes pore transformation from a small
scale to large scale. The fractal dimensions of macropores are
decreased, and the fractal dimensions of mesopore, transition pore,
andmicropore are increased, indicating that theCO2+O2–water–rock
geochemical reaction strengthens the homogeneity of large pores and
heterogeneity of small pores.

(3) The effects of felsic mineral and carbonate dissolution, secondary
mineral precipitate, clay mineral swelling, and mineral particle
migration are simultaneously present in the CO2 + O2 in situ
leaching process, which exhibit the positive and negative
transformation for the uranium-bearing reservoirs. Mineral
dissolution may improve reservoir permeability to a certain
degree, while the siltation effect will gradually reveal with the
extension of CO2 + O2 in situ leaching. To overcome this problem,

the fusion of CO2 phase-change blasting and CO2 + O2 in situ
leaching should be focused on to realize the efficient recovery of
uranium resources.
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