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Indian Ocean dipole (IOD) is one of the dominant modes of interannual

variability in the Indian Ocean, which has global climate impacts and thus

is one of the key targets of seasonal predictions. In this study, based on

a century-long seasonal hindcast experiment from the Coupled Seasonal

Forecasts of the 20th century (CSF-20C), we show that the prediction skill for

IOD exhibits remarkable decadal variations, with low skill in the early-to-mid

20th century but high skill in the second half of the 20th century. The

decadal variations of prediction skills for IOD are caused by two factors. The

first is associated with the decadal variation of the ENSO-IOD relationship.

Although individual members of the predictions can simulate the variation of

the ENSO-IOD relationship, with amplitude close to that in the observation,

the feature is greatly suppressed in the ensemble mean due to the asynchrony

of variation phases among individual members. In the ensemble mean, the

IOD evolution shows an unrealistic stable and high correlation with ENSO

evolution. This causes the prediction to have much higher skill for those

periods during which IOD is accompanied by ENSO in the observation. The

second factor is associated with the decadal variation of IOD predictability in

the prediction system. In the prediction system, the decadal variation of IOD

signal strength closely follows that of ENSO signal strength. Meanwhile, the

IOD noise strength shows variations opposite to the IOD signal strength. As a

result, the signal-to-noise ratio greatly increases in the second half of the 20th

century due to the enhancement of the ENSO signal strength, which represents

the increase of IOD predictability in the prediction system.

KEYWORDS

Indian Ocean dipole mode, seasonal prediction, predictability, signal-to-noise ratio

(S/N ratio), El Niño–Southern Oscillation (ENSO)

1. Introduction

The Indian Ocean dipole mode (IOD), characterized by opposite sea surface

temperature anomalies (SSTA) between the eastern and western tropical Indian Ocean,

is a coupled air-sea interaction mode in the tropical Indian Ocean analogous to the

El Niño–Southern Oscillation (ENSO) in the Pacific (Saji et al., 1999; Webster et al.,

1999). The IOD shows a seasonally dependent feature, usually forming in boreal summer,

peaking in the following autumn, and decaying in the subsequent winter (Li et al., 2003).
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The IOD can influence global climate through atmospheric

teleconnections, such as the Indian Ocean monsoon (Ashok

et al., 2001; Ummenhofer et al., 2009; Cai et al., 2011), the

South African climate (Black, 2005), the East Asian monsoon

(Guan and Yamagata, 2003; Qiu et al., 2014; Doi et al., 2020), the

El Niño–Southern Oscillation (ENSO) (Annamalai et al., 2005;

Izumo et al., 2010; Luo et al., 2010), and the Antarctic sea ice

(Nuncio and Yuan, 2015).

IOD formation is associated with ENSO remote forcing

(Baquero-Bernal et al., 2002; Yu and Lau, 2004; Behera et al.,

2006; Stuecker et al., 2017). During the El Niño developing

summer and autumn, the weakened and eastward shifted

Walker circulations tend to suppress the deep convection over

the southeastern tropical Indian Ocean, and further drive the

alongshore southeasterly wind anomalies off the Sumatra-Java

coast. The wind anomalies and associated coastal upwelling and

enhanced latent heat flux can trigger IOD (Li et al., 2002).

However, some IOD events occur without simultaneous ENSO,

such as the 1961 and 1994 events. It was proposed that the

forcing factors independent of ENSO can trigger the IOD,

including the southern annular mode (Zhang et al., 2020), the

summer monsoon in the Bay of Bengal (Sun et al., 2015),

the summer monsoon in the South China Sea (Zhang et al.,

2018, 2019), the Indonesian Throughflow (Tozuka et al., 2007),

the anomalous interhemispheric pressure gradient between

Australia and the South China Sea (Lu and Ren, 2020). These

remote forcing canmodulate the equatorial wind anomalies over

the Indian Ocean and thus drive subsurface temperature and

current anomalies over the eastern equatorial Indian Ocean, the

precursor of IOD (Horii et al., 2008).

The complicated air-sea interactions responsible for the

IOD formation pose a challenge to predicting IOD skillfully

(Doi et al., 2017). The lead time of skillful IOD prediction is

about one season in current operational seasonal prediction

systems (Shi et al., 2012; Zhu et al., 2015; Liu et al., 2016;

Zhao et al., 2019; Song et al., 2022), though some recent

studies based on climate network analysis (Lu et al., 2022)

and decadal predictions (Roxy et al., 2020) reported that the

IOD can be predicted at least 1 year ahead, much shorter

than those for ENSO prediction (Luo et al., 2007, 2008;

Tang et al., 2018; Barnston et al., 2019). The prediction

skill was generally estimated by the operational hindcasts,

which usually only cover the past 20–30 years (Wang et al.,

2008; Kirtman et al., 2014; Tompkins et al., 2017). The

short hindcast periods are insufficient to answer whether the

IOD prediction skill is stable or has interdecadal variations.

Compared with diverse research about the decadal variations

of ENSO prediction skill (Kirtman and Schopf, 1998; Chen

et al., 2004; Tang et al., 2008; Liu et al., 2022; Weisheimer

et al., 2022), it still lacks research focus on the IOD until

now (Song et al., 2018). Recently, 110-year-long seasonal

hindcasts covering the period 1901–2010 were conducted by

Weisheimer et al. (2020) based on the ECMWF’s Integrated

Forecasting System (IFS) over the period 1901–2010, which

is available to the scientific community through a public

dissemination platform. This new dataset provides us an

opportunity to explore decadal variations of the IOD and

associated mechanisms.

The remainder of this paper is organized as follows. A

description of datasets and analytical methods is given in

Section Data and methods. In Section Results, we investigate

the decadal variation of IOD prediction skills and associated

mechanisms. A concluding remark is given in Section Summary

and discussion.

2. Data and methods

2.1. Data

A long-term seasonal hindcast experiment, the Coupled

Seasonal Forecasts of the 20th century (CSF-20C), covering the

period of 1901–2010 is used in this study. It was conducted

by Weisheimer et al. (2020) using the ECMWF’s IFS coupled

model version cycle 41r1. The model was initialized using the

ECMWF coupled climate reanalyses of the 20th century (CERA-

20C) (Laloyaux et al., 2018). The CERA-20C only assimilated

surface observations (surface pressure and marine winds) in the

atmosphere and subsurface temperature and salinity profiles in

the ocean. Four-month-long hindcasts initialized from the 1st

of August of each year are used in this study. They consist of

25 ensemble members. The ensemble members were generated

by a combination of stochastic perturbations to the model

physics in the atmospheric component and the 10 ensemble

members of the CERA-20C reanalysis. Time-varying historical

external radiative forcing from greenhouse gases, the solar cycle,

and volcanic aerosols was prescribed in the integrations of

the hindcasts.

Prediction skill for IOD is evaluated by comparing with

the gridded observational SST data from the NOAA Extended

Reconstructed Sea Surface Temperature Version 5 (ERSST)

at a horizontal resolution of 2◦ × 2◦ (Huang et al., 2017).

In addition, precipitation and 850hPa wind derived from the

CERA-20C is used.

2.2. Analytical method

We use the anomaly correlation coefficient (ACC) to

evaluate the deterministic prediction skill for IOD, which is

defined as

ACC =

∑N
i=1 (fi − f̄ )(oi − ō)

√

∑N
i=1 (fi − f̄ )

2
√

∑N
i=1 (oi − ō)2

(1)

where N is the number of hindcast start dates; fi and oi are the

ensemble-mean prediction and corresponding observation at
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FIGURE 1

Left: (A) The SON-mean Indian Ocean dipole mode index (DMI) in observations (black line) and the 1-month lead ensemble mean predictions

from the Coupled Seasonal Forecasts of the 20th century (CSF-20C) (red line). The red shading indicates the ensemble spread. (C, E) as in (A),

but for predictions of the SON-mean western tropical Indian Ocean index (WIO) and the SON-mean tropical southeast Indian Ocean index

(EIO). Right: the 30-year moving-window correlation coe�cients between the ensemble mean prediction and the observations for (B) the

SON-mean DMI, (D) the SON-mean WIO, and (F) the SON-mean EIO index. The correlation coe�cients have been computed for 30-year

windows moved across the period 1901–2010 by 1 year, and the correlations for each 30-year window are plotted at the central year. The

gray-shaded bands in (B, D, F) indicate the 5–95% confidence intervals.

each hindcast start date; overbar represents the average over all

hindcast start dates. The ACC is a scale-invariant measure of the

linear association between the predictions and the observations,

and the prediction skill of the phase of variability (Goddard et al.,

2013). The higher value of ACC, the higher the deterministic

prediction skill.

The signal-to-noise (SNR) ratio is used to estimate the

predictability of IOD. The strength of the predictable signal

is defined as the standard deviation of the ensemble mean

(σsignal). The strength of unpredictable noise is derived from

ensemble member spread, defined as the standard deviation

of individual prediction members from the ensemble mean

prediction (σnoise). Then the SNR can be written as SNR =

σnoise/σsignal.

We focus on the seasonal prediction for the peak phase

of IOD, boreal autumn (September-October-November, SON).

The hindcasts initialized from August are used in this

study, which is equivalent to the 1-month lead predictions.

Lead-time-dependent model drifts due to the initialization

are removed from each month of the prediction data to

produce the predicted anomalies. To reduce the influences

of long-term trends on prediction skills, anomaly fields are

calculated relative to a 30-year moving climatology. For

example, the anomalies in 1930 are relative to the climatology

of 1916–1945. The anomalies in 1901–1930 and 1981–2010

are calculated relative to the climatology of 1901–1930 and

1981–2010, respectively.

Following Saji et al. (1999), SST anomaly (SSTA) averaged

over the western tropical Indian Ocean (10◦S−10◦N, 50◦-

70◦E) is defined as the WIO index, the SSTA averaged over

the southeastern tropical Indian Ocean (10◦S−0◦, 90◦-110◦E)

is defined as the EIO index, and the Indian Ocean dipole

mode index (DMI) is calculated by the difference between

WIO and EIO indices. The Niño-3.4 index is defined as
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FIGURE 2

Regressions of monthly SSTA (unit: ◦C) onto the standardized SON-mean DMI index for the observation in the period 1926–1955: (A) August, (C)

September, (E) October, and (G) November. Only values reaching the 5% significance level are shown. Right: (B, D, F, H) as in (A, C, E, G), but for

the period 1981–2010.

the SSTA averaged over the equatorial central and eastern

Pacific (5◦S−5◦N, 170◦−120◦W).

3. Results

3.1. Decadal variations of IOD prediction
skill

The amplitude of the predicted IODs in CSF-20C is

much stronger than those in the observation, with the

standard deviation of DMI during 1901–2010 in the

predictions (observation) being 0.68–0.78 (0.45)◦C. The

model bias in IOD intensity is associated with the stronger

thermocline feedback in the eastern tropical Indian Ocean

in coupled models (Cai and Cowan, 2013). Nonetheless,

the CSF-20C show high skill in IOD prediction at 1-

month lead (Figure 1A), with the temporal correlation of

predicted DMI index with the observation reaching 0.64

for the entire period of 1901–2010. However, the skill for

the first half of the 20th century is lower than for the

second half, suggesting that the predictive skill for IOD has

decadal variations.

To demonstrate the decadal variations, the DMI correlation

is calculated on a 30-year-long moving window (Figure 1B).

The correlation skill shows significant decadal variations with

a range of 0.24–0.90. The decadal variations of IOD prediction

skill result from the decadal variation of prediction skill for

the eastern pole of the IOD (Figures 1C–F). The prediction

skill for the western pole of the IOD changes less during

the whole 20th century (Figure 1D). For the eastern pole, the

predictive skill is close to zero over the 1930–40s, rapidly

grows over 1940–60s, and maintains at about 0.7 after 1960s

(Figure 1F).

It is interesting to note that the decadal variation

of IOD prediction skill is associated with the changes

in predictive uncertainty, which can be measured by the

ensemble member spread. The ensemble spreads of the

predictions for the DMI, WIO, and EIO indices in the low-

skill period are larger than those in the high-skill period
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FIGURE 3

As in Figure 2, but for the regression of monthly precipitation (shading, unit: mm/day) and 850-hPa wind anomalies (vector, unit: m/s) for the

period (A, C, E, G) 1926–1955, and (B, D, F, H) 1981–2010.

(Figures 1A, C, E), indicating the changes in the strength of

unpredictable noise.

3.2. Variations of the ENSO-IOD
relationship

To investigate the variations of the predictive skill for IOD,

two typical periods, 1926–1955 (low-skill period) and 1981–

2010 (high-skill period), are selected. It is conceivable that the

difference in the IOD prediction skill between 1926–1955 and

1981–2010 may be associated with differences in the IOD events

themselves. For the observation, the IOD events are similar

in the tropical Indian Ocean and the tropical western Pacific

in both stages (Figures 2, 3). In August, the negative SSTA

off the coast of Sumatra-Java is coupled with the Sumatra-

Philippine Sea teleconnection pattern, negative precipitation

anomalies over the southeastern tropical Indian Ocean, positive

precipitation anomalies over the western North Pacific and

northward cross-equatorial wind anomalies (Li et al., 2006).

From September to November, the IOD grows to the peak phase

and then decays. The Sumatra-Philippine Sea teleconnection

pattern gradually evolves to an anomalous anticyclone over the

southeastern tropical Indian Ocean (Wang et al., 2003).

The main differences between the two stages are seen in

the tropical Pacific. For the low-skill period of 1926–1955,

the IOD events are less accompanied by ENSO, featured by

statistically insignificant SSTA in the equatorial central-eastern

Pacific associated with the IOD (Figure 2). The simultaneous

correlation between the DMI and Niño-3.4 indices in 1926–

1955 is only 0.23, not reaching even the 10% significance

level. In contrast, for the high-skill period of 1981–2010, the

IOD has close relationships with ENSO, with the simultaneous

correlation between the DMI and Niño-3.4 indices reaching

0.70. The result indicates that the relationship between ENSO

and IOD exhibits decadal variations in the observations.

Can the decadal variations of the ENSO-IOD relationship

explain the decadal variations of IOD prediction skill? The

correlation coefficients between the observed DMI and Niño-3.4

index calculated on a 30-year-long moving window are shown
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FIGURE 4

(A) The observed SON-mean DMI (black line) and SON-mean Niño-3.4 index (red line) for the period 1901–2010. (B) The 30-year

moving-window correlation coe�cients between the observed DMI and Niño-3.4 indices. (C) The predicted SON-mean DMI (black line) and

SON-mean Niño-3.4 index (red line) at 1-month lead from the CSF-20C. The red and gray shading indicates the ensemble spread of DMI and

Niño-3.4 index, respectively. (D) The 30-year moving-window correlation coe�cients between the predicted DMI and Niño-3.4 indices for the

ensemble mean (thick black line) and individual member (thin gray line). The observation is shown in a thick blue line. For (B, D), the correlation

coe�cients have been computed for 30-year windows moved across the period 1901–2010 by 1 year, and the correlations for each 30-year

window are plotted at the central year.

FIGURE 5

(A) The total variance (blue line), and the variance of predictable signal (black line) and unpredictable noise (red line) of the predicted SON-mean

DMI. (B) The signal-to-noise ratio (SNR) of the predicted SON-mean DMI. The variance and SNR are calculated by the 30-year moving window

for the period 1901–2010. (C, D) as in (A, B), but for the predicted SON-mean Niño-3.4 index.

in Figures 4A, B. There are remarkable decadal variations

of ENSO-IOD relationship in the observations, with their

running correlations in a range of 0.10–0.77. Generally,

the close (weak) ENSO-IOD relationship corresponds to

high (low) IOD prediction skills. However, the variations

of the ENSO-IOD relationship are not completely in

pace with the decadal variations of IOD prediction skill

(Figure 1B) (their correlation is 0.43), suggesting that
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FIGURE 6

Left: Regression of monthly SSTA (shading, unit: ◦C), precipitation (contour, unit: mm/day), and 850-hPa wind anomalies (vector, unit: m/s) onto

the standardized SON-mean DMI index from the ensemble mean predictions in the period 1926–1955: (A) August, (C) September, (E) October,

and (G) November. Only values reaching the 5% significance level are shown. Right: (B, D, F, H) as in (A, C, E, G), but for the regression in the

period 1981–2010.

there are other factors modulating the variations of the

prediction skill.

We also check the decadal variations of the ENSO-IOD

relationship in the predictions (Figure 4D). For individual

members, the simulated ENSO-IOD relationships also have

obvious decadal variations, with amplitudes being close to

that in the observation for some cases. However, the decadal

variations of the simulated ENSO-IOD relationship are not

in phase among these members. As a result, after ensemble

averaging is conducted, the decadal variation of the ENSO-IOD

relationship is greatly suppressed. Meanwhile, the ENSO-IOD

relationship becomes closer than any ensemble members. This

means that simulated IOD events in the ensemble mean are

persistently modulated by ENSO, different from IOD events in

observation, which are sometimes out of the control of ENSO.

As a result, the predictions would hit the target more easily

for the period with IOD being also coupled with ENSO in

the observation.

3.3. Predictable signal and unpredictable
noise

Both the observations and predictions contain predictable

signals and unpredictable noises. Their relative magnitudes

determine the SNR and the predictability. The ensemble

members of predictions can generally cover the observed

IOD variability (Figure 1A) and the observed ENSO-IOD

relationship (Figures 4B, D), and thus we can approximatively

see the observation as one of the ensemble prediction members.

To understand the decadal variation of IOD prediction skill and

predictability, we will investigate the formation processes of the

predictable and unpredictable components in the model world

in this section.

Under the assumption that the model is an approximate

representation of the real world, we can extract the predictable

component (signal) of IOD from the ensemble mean, and

derive the unpredictable component (noise) from the deviations
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FIGURE 7

Left: Regression of monthly SSTA (shading, unit: ◦C), precipitation (contour, unit: mm/day), and 850-hPa wind anomalies (vector, unit: m/s) onto

the standardized SON-mean DMI index from the ensemble spread in the period 1926–1955: (A) August, (C) September, (E) October, and (G)

November. Only values reaching the 5% significance level are shown. Right: (B, D, F, H) as in (A, C, E, G), but for the regression in the period

1981–2010. For the regression analysis, all 25 members with the ensemble mean removed are connected to obtain a sample size as large as

possible.

of individual prediction members from the ensemble mean

(Hu et al., 2019). The strengths of the predictable signal

and unpredictable noise of the DMI index calculated on a

30-year-long moving window are shown in Figure 5A. The
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FIGURE 8

The 30-year moving-window ACC skill of SON-mean DMI for the CSF-20C predictions (red line) and the persistence predictions (black line). The

signal-to-noise ratio (SNR) of the predicted SON-mean DMI calculated by the 30-year moving window for 1901−2010 is shown in the blue line.

The persistence predictions of SON-mean DMI derived from the observational May-June-July mean SSTA.

decadal variation of the IOD signal strength matches well with

the variation of prediction skill, with higher value in the early

and second half of the 20th century (Figure 1B). The noise

strength shows an inverse phase change with the signal strength

and prediction skill. The changes in the strengths of IOD signal

and noise result in the increase of the SNR in the second half

of the 20th century (Figure 5B). The variations of the SNR are

highly correlated with the decadal variations of IOD prediction

skill (their correlation is 0.90, Figure 1B). This result indicates

that the variations of predictive skill for IOD can be understood

from the SNR analysis.

What causes decadal variations of IOD SNR? As shown

in Section Variations of the ENSO-IOD relationship, the

predictable component (signal) of IOD derived from the

ensemble mean is largely modulated by ENSO forcing. We

first investigate the relationship in strength between the IOD

signal and the ENSO signal based on the prediction system.

The year-to-year variations of the predicted IOD index are

closely linked with the predicted ENSO index in the ensemble

mean prediction, with their correlation coefficient reaching 0.64

(Figure 4C), indicating that the decadal variations of the IOD

signal strength are partly caused by the variations of ENSO

signal strength.

To illustrate the influence of the ENSO signal on IOD

prediction, Figure 6 shows the regression of the ensemble

mean prediction of SSTA, precipitation, and 850-hPa circulation

anomalies onto the IOD signal. Although IOD is de-coupled

with ENSO variability in the 30-year low-skill period of

1926–1955 in observations, the predictable components closely

parallel that of the high-skill period of 1981–2010. It can also

be found that both the strengths of IOD and ENSO signal in

the high-skill period are higher than that in the low-skill period,

which is associated with the increase in the strength of ENSO

signal since the 1930s (Figure 5C). For both periods, the ENSO-

related warm SSTAs in the equatorial central-eastern Pacific

stimulate alongshore wind anomalies off the Sumatra-Java

coast in boreal summer via the anomalous Walker circulation,

which further trigger the IOD through both the Bjerknes and

“wind-evaporation-SST” feedbacks (Li et al., 2002; Yang et al.,

2015).

The decadal variations of IOD SNR are also modulated by

the strength of the IOD unpredictable component (noise). The

most striking feature of the variations of IOD noise is that its

strength gradually decreases during the second half of the 20th

century (Figure 5A). The increase in the strength of the IOD

signal and the decrease in the strength of IOD noise ultimately

result in the increase of the SNR in the second half of the

20th century.

To illustrate the physical picture of the unpredictable

component of IOD, we regress SST, precipitation and low-

level wind anomalies from the ensemble spread onto the

unpredictable component of DMI indices for the two typical

periods (Figure 7). Both in the high-skill and low-skill

periods, the unpredictable IODs exhibit similar evolution

characteristics, with peaks in October and November. The

unpredictable components are generally generated by the local

air-sea interactions within the tropical Indian Ocean, with no

significant correlation relationship with SSTA in other ocean

basins. It is worth noting that the variations of the ENSO

SNR are dominated by its variations of predictable signal

strength, but independent of the noise strength (Figures 5C,

D), consistent with previous studies (Tang et al., 2008;

Hu et al., 2019). This is because the strength of the

unpredictable components of ENSO keeps steady over the
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FIGURE 9

Left: the correlation coe�cient between the SON-mean DMI index and SON-mean land precipitation [red contour, the positive (negative) values

are shown in solid (dashed) lines; zero contour is not shown; interval is 0.2], and the regression of SON-mean land precipitation (shading, unit:

mm/day) onto the SON-mean DMI index for (A) observation, (C) ensemble mean prediction. Right: (B) the SON-mean East Africa rainfall index

(rainfall anomalies averaged over 10◦S-5◦N, 25◦E-45◦E) in observations (black line) and the ensemble mean predictions from the CSF-20C (red

line). The red shading indicates the ensemble spread. (D) the 30-year moving-window correlation coe�cients between the ensemble mean

prediction and the observations for the SON-mean East Africa rainfall index (black line), and the SON-mean DMI (red line). The correlation

coe�cients have been computed for 30-year windows moved across the period 1901–2010 by 1 year, and the correlations for each 30-year

window are plotted at the central year.

whole 20th century (Figure 5C). In contrast, the SNR of IOD is

modulated by both the strengths of signal and noise as noted

above. This suggests that the physical processes responsible

for the predictability of IOD may be more complicated

than that for ENSO, which involves both remote forcings

from ENSO and internal air-sea interactions in the tropical

Indian Ocean.

In this study, the decadal variations of IOD predictability

are derived from the single model ensemble predictions,

which may be model-dependent. We try to estimate the

IOD predictability based on the persistence prediction

using observational May-June-July mean SSTA (black line

in Figure 8) (Wajsowicz, 2005). The correlation skill of the

persistence prediction also shows decadal variations, though

its amplitude is smaller than that of the correlation skill of

the model dynamic prediction. This suggests that the decadal

variations of IOD predictability during the past century are a

robust characteristic.

4. Summary and discussion

In this study, we investigate the decadal variation of IOD

prediction skills based on the century-scale seasonal hindcast

experiments from the Coupled Seasonal Forecasts of the 20th

century (CSF-20C). The major conclusions are summarized

as follows.

First, for the predictions of boreal autumn IOD at the

1-month lead, the IOD prediction skill exhibits remarkable

decadal variation, with low skill in the early-to-mid 20th century

and high skill in the second half of the 20th century. The

decadal variations of IOD prediction skill result from the

decadal variation of prediction skill for the eastern pole of

the IOD.

Second, the decadal variation of IOD prediction skill is

influenced by the observed decadal variations of the ENSO-

IOD relationship. There are remarkable decadal variations of

the ENSO-IOD relationship in the observations. Although
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individual members of the predictions can simulate the

variation of the ENSO-IOD relationship, with amplitude

close to that in the observation, the feature is greatly

suppressed in the ensemble mean due to the asynchrony of

variation phases among individual members. In the ensemble

mean, the IOD evolution shows an unrealistic stable and

high correlation with ENSO evolution. This causes the

prediction to have much higher skill for those periods during

which IOD is accompanied by ENSO in the observation,

and thus partly results in the decadal variations of IOD

prediction skill.

Third, the decadal variation of IOD prediction skill is also

modulated by the IOD predictability. In the prediction system,

the decadal variation of IOD signal strength closely follows that

of ENSO signal strength. Meanwhile, the IOD noise strength

shows variations opposite to the IOD signal strength. As a

result, the SNR and predictability of IOD greatly increase in

the second half of the 20th century due to the enhancement

of the ENSO signal strength, leading to variations of IOD

prediction skills. The changes in the predictability of IOD in

observation can be indirectly verified by the prediction skill of

IOD persistence.

It is worth noting that the predictability measured by

the SNR is estimated for the CSF-20C and thus is model-

dependent. Similar long-term seasonal prediction experiments

should be conducted by more models to check the robustness of

conclusions obtained in the study.

In this study, we found that the IOD noise strength shows

decadal variations inverse to the IOD signal strength. As a

result, the total variance of IOD shows much weaker decadal

variations (Figure 5A). We speculate that the strength of IOD

variability is constrained by the intensities of local positive

feedbacks responsible for the IOD growth, such as the wind-

evaporation-SST feedback and the thermocline feedback. If the

intensities of these feedbacks changed less, the total variance

of IOD would remain unchanged, and the share of ENSO-

forced and internal IOD would show an inverse change. This

phenomenon deserves further study in the future, which may

shed light on the projection of IOD intensity change under

global warming. In addition, the warming rate in the tropical

Indian Ocean is the fastest among all the tropical ocean basins

(Roxy et al., 2014, 2020; Doi et al., 2020), The faster warming

in the western tropical Indian Ocean than the eastern basin

may modulate air-sea interactions over the tropical Indian

Ocean and thus change IOD characteristics (Cai et al., 2013).

How the zonally ununiform warming pattern in the Indian

Ocean modulates IOD predictability deserves further study in

the future.

As one of the most important variability modes at

interannual timescales, the IOD has tremendous climate

impacts. It is interesting to note that prediction skill for those

regions modulated by IOD also shows decadal variations.

Here, we take the boreal autumn precipitation anomalies over

East Africa as an example. The land precipitation anomalies

are closely linked to the IOD in both the observation and

the simulations (Figures 9A, C). The prediction skill for the

area-averaged precipitation anomalies over East Africa exhibits

decadal variation similar to that of the prediction skill for the

DMI indices (Figures 9B, D), with their correlation coefficient

reaching 0.91, consistent with a recent study (Doi et al., 2022).

This implies that it is essential to improve the prediction

skill for dominant variability modes, which would improve

the prediction skill for regional climates associated with

these modes.
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