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Introduction: South Asian refugees experience a high risk of obesity and

diabetes yet are often underrepresented in studies on chronic diseases and

their risk factors. The gut microbiota and gut permeability, as assessed

through circulating lipopolysaccharide binding protein (LBP), may underlie

the link between chronic inflammation and type 2 diabetes (T2D). The

composition of the gut microbiota varies according to multiple factors

including demographics, migration, and dietary patterns, particularly fiber

intake. However, there is no evidence on the composition of the gut

microbiota and its relationship with metabolic health in refugee populations,

including those migrating to the United States from Bhutan. The objective

of this study was to examine glycemic status in relation to LBP, systemic

inflammation fiber intake, and gut microbiota composition in Bhutanese

refugee adults residing in New Hampshire (n = 50).

Methods: This cross-sectional study included a convenience sample of

Bhutanese refugee adults (N = 50) in NH. Established bioinformatics

pipelines for metagenomic analysis were used to determine relative genus
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abundance, species richness, and alpha diversity measures from shallow

shotgun sequences. The relationships between inflammatory markers, gut

microbiota composition, dietary fiber, and glycemic status were analyzed.

Results: We identified a substantial chronic disease burden in this study

population, and observed a correlation between glycemic status, LBP, and

inflammation, and a correlation between glycemic status and gut microbiome

alpha diversity. Further, we identified a significant correlation between

proinflammatory taxa and inflammatory cytokines. SCFA-producing taxa were

found to be inversely correlated with age.

Conclusion: To date, this is the most comprehensive examination of

metabolic health and the gut microbiome in a Bhutanese refugee population

in NH. The findings highlight areas for future investigations of inflammation

and glycemic impairment, in addition to informing potential interventions

targeting this vulnerable population.

KEYWORDS

type 2 diabetes, gastrointestinal microbiome, inflammation, metabolic endotoxemia,
Bhutanese refugee adults

Introduction

The gut microbiota has been identified as a key mediator
of cardiometabolic health with implications in inflammation
and glycemic control. Moreover, alterations in human gut
microbiota composition, known as dysbiosis, are associated with
increased risk for type 2 diabetes (T2D) (1). Gut dysbiosis
often leads to intestinal hyperpermeability and increased
plasma levels of lipopolysaccharide (LPS), defined as metabolic
endotoxemia (2, 3). This pathway is likely responsible for low-
grade inflammation exhibited in T2D (4), which is characterized
by increased secretion of pro-inflammatory cytokines, including
tumor necrosis factor alpha (TNF-α) and interleukin (IL) 6,
and acute phase proteins such as C-reactive protein (CRP)
levels into systemic circulation (2). Fiber intake has been
highlighted as a key modulator of gut microbiota composition
and its production of metabolites, which can impact intestinal
permeability, inflammation, and glycemic control (5). However,
more evidence is necessary to fully elucidate specific microbe-
host interactions that contribute to the pathology of metabolic
diseases and potential modifiable risk factors, specifically
in human models.

Microbial composition is population-specific and varies
drastically across ethnic groups, demographics, lifestyles (6),
environmental factors, and migration (7, 8). Chronic disease
risk tends to be higher for refugee populations in the US
compared to non-Hispanic White (NHW) populations (9). The
Bhutanese refugee population in NH not only faces higher
rates and risk of T2D (10–12) but is underrepresented in
current research on the gut microbiome. Moreover, South Asian
adults, including those from Bhutan and Nepal, experience

a higher prevalence of prediabetes and T2D as compared to
non-Hispanic White, African American, and Hispanic/Latino
adults (13). The objectives of this article were to quantify
the cross-sectional associations between glycemic status and
inflammatory markers (IL-6, TNF-α, and LBP), fiber intake, and
the microbiome (richness, diversity, and composition) among
Bhutanese refugee adults. We hypothesized that T2D and poor
glycemic control are characterized by higher inflammation and
LBP concentrations, lower microbial richness, and lower fiber
intake in this population. This work addresses the significant
burden of metabolic diseases among vulnerable populations
and shows unprecedented results on the associations between
the gut microbiota, inflammation, and glycemic status in this
refugee population.

Materials and methods

Study population

Participants were recruited in collaboration with a non-
profit community-based organization, Building Community in
New Hampshire (BCNH), in the areas of Manchester and
Concord, New Hampshire (Figure 1). Fifty-four individuals
from a convenience sample of culturally insulated adult
Bhutanese refugees were recruited as part of a previously
completed study led by one of the co-authors (Bigornia).
The original study criteria included Bhutanese refugee adults
that were 18 years or older and resource limited. The latter
was determined by eligibility to receive SNAP (Supplemental
Nutrition Assistance Program) benefits. Participants were
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FIGURE 1

Participant recruitment and data collection in coordination with
Building Community in New Hampshire (BCNH).

excluded if they indicated moving within 2 months, being
pregnant or trying to become pregnant, or prescribed antibiotics
within the past 6 months. After screening, 50 participants were
included in this cross-sectional study. All the participants signed
informed consent. Recruitment, consent, and data collection
were conducted by a trained community health worker who
identified as Bhutanese refugee and spoke Nepali fluently. The
research protocol was approved by the University of New
Hampshire Institutional Review Board (IRB #8042).

Dietary intake

Three supervised 24-h recalls were conducted on non-
consecutive days by a bilingual and bicultural community health
worker trained to collect dietary information. Participants were
instructed in person on how to report their dietary intake and
estimate portion sizes. The community health worker directly
entered 24-h recall data into Nutrition Data System for Research
(NDSR) (version 2019, Minneapolis, MN, USA). This software
package and nutrient database was used to estimate nutrient
intakes based on 24-h recall food weights. Fiber consumption as
well as other nutrients and foods were averaged across the three
24-h recall days.

Blood sampling, processing, and
biomarker assessment

After a 12-h fast, a sample of approximately 35 ml of
blood was collected by a trained phlebotomist, using EDTA

(14 ml total), lithium heparin (10 ml), and serum (10 ml)
vacutainers. All vacutainer samples were transported on ice
to the University of New Hampshire (UNH) and centrifuged
at 3,000 RPM for 10 min. Post centrifugation, samples were
aliquoted into 0.5 ml portions into six 2 ml cryotubes and frozen
at −80◦C. TNF-α, IL-6, and insulin were measured via enzyme-
linked immunosorbent assays (ELISA). High-sensitivity CRP
was calculated using a clinical chemistry analyzer. Glycosylated
hemoglobin (HbA1c) was measured from whole blood samples
using a Siemens DCA Vantage analyzer. Fasting glucose was
measured using a clinical chemistry analyzer. Homeostasis
model assessment-estimated insulin resistance (HOMA-IR), a
measure of insulin resistance, was calculated by fasting serum
insulin (µIU/ml) × fasting plasma glucose (mg/dL)/405, with
a higher value indicating a higher degree of insulin resistance.
Participants were classified as having T2D if they met any of
the following criteria: self-reported diabetes, HbA1c of 6.5% or
higher, or use of a diabetes medication. Prediabetes was defined
as 6.5% ≥ HbA1c ≥ 5.7% (14). LBP was measured using an
electrochemiluminescence technology (MesoScale Discovery).
Briefly, carbon electrodes of the assay plates bind biological
reagents attaching biomarkers from participant serum samples.
Biomarker concentrations are measured as light intensity
emitted from electrochemiluminescence labels conjugated with
detection antibodies as electricity is applied to the assay plate.
This method allows for high sensitivity, broad dynamic range,
and reduced time compared to the traditional ELISA method.

Fecal sampling and processing

Fecal samples were collected in DNA preservation solution
and transported at room temperature. DNA from fecal samples
was extracted using Zymo Research Quick-DNA Fecal/Soil
Microbe kits. Extracted DNA was sequenced by the Hubbard
Center for Genome Studies (University of New Hampshire)
using shallow shotgun metagenomic sequencing (Illumina
NovaSeq) (15).

Raw sequences were processed using the Metagenome-atlas
snakemake workflow (16). The workflow conducted quality
control processes using the BBtools package. PCR duplicates
were removed (clumpify). Adapters were removed and reads
were trimmed and filtered (BBduk). Host contamination
was removed (BBsplit) based on a masked HG19 reference.
Quality controlled sequence files (fastq files) were used in
subsequent components of the atlas workflow and in further
pipelines. Sourmash gather (scaled 1000) was used to generate
FracMinHash sketch from the samples and the GTDB rs207
full reference database (17). Sourmash taxonomy provided
taxonomic lineage information for Sourmash gather results (18).
Results were then converted into a phyloseq object for further
analyses and processing using the pipeline by Callahan et al.
(19). Rarefying or proportions were not used to normalize data
for sequencing depth (20). All richness and diversity measures
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were calculated using the raw, unfiltered taxa data. The observed
species richness was calculated by counting the number of
unique species in each sample. Only phyla prevalent in 5% or
more samples were kept in filtered count data. To calculate
the relative abundance of a particular genus and species, the
metagenomic species table was further filtered to only include
species with a mean greater than 10−5 and two data frames were
agglomerated, one to the species and one to the genus levels.
Counts were converted to relative abundance and normalized
to the median sequencing depth. Relevant taxonomic groups
were identified, and the relative abundance of given groups
was extracted. The species Clostridium coccoides, Ruminococcus
productus, Clostridium cocleatum, Bifidobacterium catenulatum,
Eubacterium hallii, and Akkermansia municiphila were excluded
as they were not present in the filtered dataset.

Other variables

Demographics and additional health information were
collected via an in-person survey. Participants self-reported
having a history of heart attack, heart disease (other than
heart attack), and or stroke. Those who reported experiencing
any of these health conditions were categorized as having
cardiovascular disease (CVD). Validated methods were followed
for calculating physical activity (PA) score and food security
score (FSS) (21). PA scores are interpreted as low (<30),
moderate (30–39), or high (40+) (21). FSS was dichotomized
into <3 food secure and ≥3 food insecure. Anthropometrics,
height and weight, were obtained during the study visit, and
body mass index (BMI) was calculated as kg/m2. Overweight
was defined as a BMI > 23 kg/m2 and obesity as a
BMI ≥ 25 kg/m2 (22). Medication use, smoking status, years
in the US, household size, and high school completion were
all obtained via in-person survey. Differences in age, sex,
cardiovascular disease (CVD), BMI, smoking status, medication
use, years in the US, PA score, household size, FSS, and high
school completion were compared according to T2D status. Age
and sex were used as covariates in all analyses.

Statistical analysis

Analyses were conducted using SAS 9.4 (Cary, NC) and
R. Between-group differences were assessed using parametric
(ANCOVA, t-test) and non-parametric (Wilcoxon, Fishers
Exact) analyses depending on data normality. HOMA-IR
and HbA1c followed non-normal distributions and were
log transformed for linear regression analyses. Spearman
correlations were used to examine continuous variable
associations. The Benjamin Hochberg method was used
to adjust for multiple testing in the microbiome analysis.
All models included the covariates age and gender. The

TABLE 1 Regression models predicting T2D and glycemic impairment.

Logistic regression models

Model 1 T2D = CRP + IL6 + TNF-α + LBP + Age + Sex

Model 2 T2D = Total fiber + Insoluble fiber + Soluble fiber + Whole
grains + Age + Sex

Model 3 T2D = Observed species richness + Age + Sex

Linear regression models

Model 4 Log transformed HOMAIR = LBP + Observed richness + Age + Sex

Model 5 Log transformed HbA1c = LBP + Observed richness + Age + Sex

rationale for this is that the adult gut is relatively stable
until the process of aging and disruption of homeostatic
control diminishes the stability. Older age is accompanied
by increased proinflammatory status and decreasing adaptive
immunity. Aging can influence the gut microbiota through
its various impacts of gut function including gastric motility,
hypochlorhydria, and changes in the enteric nervous system
(23). Further, risk factors of chronic disease and microbiota
composition vary by sex (24). Additionally, fiber consumption
levels often vary between sexes (25). Further, linear regression
was used to assess predictors of diabetes markers and logistic
regression was used to predict T2D, with age and sex as
covariates (Table 1).

Alpha diversity was compared according to T2D status
using the Wilcoxon rank-sum test. Spearman correlation
analysis was used to quantify the relationship between observed
species richness and other markers of glycemic status and
inflammation. The relative abundance of fecal pro-and anti-
inflammatory bacteria and SCFA-producing bacteria, identified
through a literature review, was compared by glycemic
status. Additionally, the relative abundance of fecal pro-
and anti-inflammatory bacteria and SCFA-producing bacteria
was correlated to multiple biomarkers and demographic
characteristics using a spearman correlation matrix. All
correlations were subsequently corrected using the Benjamini-
Hochberg method.

Results

Population characteristics and health
behaviors

The median (interquartile range, IQR) age of the 50
participants (82% female) was 49.5 (24.0) years (Table 2). Forty-
two percent of the participants were classified as having T2D
and 10% as having cardiovascular disease (CVD), excluding
hypertension. The prevalence of prediabetes was 34% in the
non-T2D group, with individuals having a median (IQR) HbA1c
of 5.6 (0.5)%. The median BMI was 27 (5.4) kg/m2 and 92%
of participants were categorized as being overweight or having
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TABLE 2 Demographics by type 2 diabetes status.

All participants No-T2D T2D

n Median
or %

Min Max IQR n Median
or %

Min Max IQR n Median
or %

Min Max IQR P-value

Clinical

CVD (% with CVD)† 5 10.0 1 3.5 4 19.1 0.148†††

BMI (kg/m2) 50 27.1 20.0 38.9 5.4 29 27.1 20.0 38.9 4.4 21 27.0 20.1 35.9 7.7 0.891††

BMI category (% overweight/obese) 46 92.0 26 90.0 20 95.2 0.630†††

Smoking status (% smoker) 4 8.0 1 3.5 3 14.3 0.297†††

Physical activity score 49 27.0 24.2 38.3 3.3 28 27.3 25.2 37.6 2.8 21 26.8 24.2 38.3 3.3 0.620††

Metformin (% use) 14 28.0 0 0.0 14 66.7 <0.0001*

Statin (% use) 15 30.0 4 13.8 11 52.4 0.003*

NSAID (% use) 4 8.0 1 3.5 3 14.3 0.297†††

PPI (% use) 13 26.0 5 17.2 8 38.1 0.097

Demographic

Age (y) 50 49.5 18.0 72.0 24.0 29 45.0 18.0 71.0 22.0 21 58.0 31.0 72.0 21.0 0.014*††

Sex (% female) 41 82.0 25 86.2 16 76.2 0.464†††

Years in US (y) 49 8.0 2.0 28.0 4.0 28 8.0 4.0 28.0 4.0 21 8.0 2.0 12.0 6.0 0.654††

Household size 50 4 1 8 2 29 4 1 7 2 21 4 1 8 2 0.279††

Food security (% food secure) 45 90.0 26 89.7 19 90.5 1.000†††

High school completion (% completed) 7 14.0 4 13.8 3 14.3 1.000†††

Dietary intake

Total dietary fiber (g) 50 20.3 6.2 40.5 11.23 29 18.9 6.2 36.4 8.3 21 20.9 13.1 40.5 10.8 0.065†††

Insoluble fiber (g) 50 16.0 3.9 34.0 9.4 29 15.0 3.9 30.3 7.6 21 18.3 9.7 34.0 6.7 0.062††

Soluble fiber (g) 50 3.9 1.4 9.4 1.8 29 3.6 1.4 5.6 1.32 21 4.1 2.0 9.4 1.8 0.035*††

Whole grains (oz equivalents) 50 0.6 0.0 4.0 1.1 29 0.4 0.0 3.0 0.8 21 1.1 0.0 4.0 1.5 0.028*††

Daily caloric intake (kcal) 50 1245 586 2535 382 29 1207 586 2535 417 21 1251 696 2193 185 0.709††

*Statistically significant at alpha level 0.05.
†CVD excluding hypertension.
††Wilcoxon used to generate p-value.
†††Fisher’s exact test used; assumptions were not met for chi-squared.
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obesity. Eight percent of participants reported habitual smoking.
At the time of data collection, participants had spent a median
of 8 (4) years in the US and 14% completed high school. The
median physical activity score was calculated as 27 (3.3) (i.e.,
moderate, on average). Although all participants were SNAP-
eligible, 90% of them reported a food security score of <3, which
corresponds to food security (21).

The prevalence of overweight and obesity for participants
with T2D was 90 and 95.2% for participants without T2D,
but the median BMI was not significantly different between
both groups. The median age of the T2D group, 58 (21) years,
was notably higher than the non-T2D group, 45 (22) years
(p = 0.014) (Table 2). Both groups showed comparable years
lived in the US and physical activity level. Fiber intake and
whole grain consumption were significantly higher in the
T2D group (p = 0.035 and p = 0.028, respectively). No
misreporters were identified upon application of the Mifflin
equation or cutoffs for implausible dietary intake (data not
shown) (26).

Glycemic status and its correlation
with inflammation and LBP

Although the T2D group had significantly higher median
HbA1c and glucose compared to the non-T2D (both
p < 0.001), 34.5% of participants without T2D qualified as
having prediabetes (Table 3). Among all participants, 28,
30, 8, and 26% reported taking metformin, statins, non-
steroidal anti-inflammatory drugs (NSAIDs), or proton pump
inhibitors (PPIs), respectively. Metformin and statin use were
higher in the T2D group, 66.7 and 52.4%, respectively, as
compared to the non-T2D group 0 and 13.8%, respectively
(Table 2).

Lipids, excluding triglycerides, were lower in the T2D
group, potentially as a result of pharmacological therapy.
Even though there were no differences in inflammatory
cytokines, CRP, or LBP between the T2D and non-T2D
groups (Table 3), CRP had a weak positive correlation with
HbA1c (Rho = 0.39, p = 0.006) and FPG (Rho = 0.31,
p = 0.033) (Table 4). LBP was also moderately correlated
with HbA1c (Rho = 0.42, p = 0.003) and FPG (Rho = 0.42,
p = 0.003), and only weakly correlated to HOMA-IR (Rho = 0.35,
p = 0.016) (Table 4). Inflammatory cytokines and dietary
intake measures were not associated with glycemic status
(Table 4).

Regression models used to assess predictors of T2D are
shown in Table 5. Age was the only significant predictor of T2D
in any of the logistic regression models (Table 5). A one unit
increase in LBP was associated with a 27% increase in HOMA-
IR (p = 0.004) in model 4 and a 4% increase in HbA1c (p = 0.010)
in model 5 (Table 6). Both models included observed species
richness, age, and sex as covariates.

Association between gut microbiota
composition and glycemic status

Observed species richness and alpha diversity measures
were significantly higher in the non-T2D group than in the
T2D group (Figure 2). Specifically, observed species richness,
Shannon, and Fisher diversity measures were statistically
significant (Table 7).

The most abundant phyla were Firmicutes, Bacteroidetes,
and Actinobacteria. No significant differences in relative
abundance of proinflammatory or SCFA-producing species were
identified according to T2D status. Age was positively correlated
with Lactobacillus (Rho = 0.333, p = 0.018), Veillonella
(Rho = 0.325, p = 0.021), and Bacteroides (Rho = 0.306,
p = 0.031) and negatively correlated with Clostridium
(Rho = −0.292, p = 0.040), Faecalibacterium (Rho = −0.386,
p = 0.006) (Figure 3A), and the species Faecalibacterium
prausnitzii (Rho = −0.374, p = 0.007) (Figure 3B). Given
the differences in fiber intake, microbiome composition, and
glycemic status according to age, a partial correlation analysis
adjusting for age was conducted (Supplementary Figure 1).

Pro-inflammatory genera Parabacteroides (Rho = 0.339,
p = 0.017) and Bacteroides (Rho = 0.363, p = 0.010) were
positively correlated with the inflammatory cytokine TNF-α,
while anti-inflammatory Prevotella was negatively correlated
(Rho = −0.320, p = 0.010) with TNF-α. After adjusting
for age, all associations with TNF-α remained significant.
Observed species richness was negatively correlated with FPG
(Rho = −0.280, p = 0.049), and HbA1c was positively correlated
with Phascolarctobacterium (Rho = 0.293, p = 0.039). These
correlations between glycemic status and taxonomic groups
remained significant after adjusting for age.

When considering dietary fiber, positive correlations were
identified between Lactobacillus and whole grains (Rho = 0.307,
p = 0.030), Bacteroides and whole grains (Rho = 0.364,
p = 0.009), and Clostridium and insoluble fiber (Rho = 0.295,
p = 0.037). Furthermore, Clostridium was negatively correlated
to FPG (Rho = −0.293, p = 0.039) and HbA1c (Rho = −0.300,
p = 0.035). However, after adjusting for age, Clostridium became
positively correlated to insoluble fiber (Rho = 0.356, p = 0.013)
and total fiber (Rho = 0.323, p = 0.025).

Discussion

This work shows the characterization of glycemic status
in relation to clinical risk factors, with an emphasis on
inflammation and metabolic endotoxemia, dietary intake, and
gut microbiota composition which, to our knowledge, is
unprecedented in Bhutanese refugee adults in the US. The
chronic disease burden of this study population was substantial,
with particularly high rates of overweight/obesity, prediabetes,
and diabetes. Glycemic impairment (e.g., higher HOMA-IR
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TABLE 3 Clinical factors, dietary intake, and inflammatory markers.

All participants Non-T2D T2D

n Median Min Max IQR n Median Min Max IQR n Median Min Max IQR P-value

Glycemic status markers

HOMA-IR 50 4.3 0.2 28.3 5.7 29 3.8 0.2 27.1 5.6 21 6.6 1.2 28.3 5.4 0.195

HbA1c (%) 50 5.9 4.9 10.4 1.2 29 5.6 4.9 6.1 0.5 21 6.9 5.6 10.4 1.5 <0.001*

FPG (mg/dL) 50 120.0 88.0 274.0 36.0 29 108.0 88.0 141.0 17.0 21 155.0 97.0 274.0 49.0 <0.001*

Insulin (µIU/ml) 50 14.4 0.9 81.4 14.9 29 15.2 0.9 81.4 14.9 21 13.4 5.1 58.8 13.9 1.00

Inflammatory markers

CRP (mg/L) 50 2.8 0.1 29.0 3.8 29 2.4 0.1 29.0 3.6 21 3.2 0.5 18.6 4.5 0.568

IL6 (pg/ml) 49 2.0 0.0 6.9 2.6 29 2.0 0.0 6.8 3.2 20 1.9 0.0 6.9 2.5 0.745

TNFα (pg/ml) 49 8.1 0.0 51.1 5.6 29 7.7 0.0 51.1 8.2 20 8.3 0.0 19.7 5.3 0.919

LBP (µg/ml) 50 4.2 1.3 8.4 2.3 29 4.0 1.5 5.9 2.3 21 4.6 1.3 8.4 1.6 0.398

Leptin (pg/ml) 50 8638.9 360.9 93520.6 13691.3 29 8700.2 360.9 93520.6 12802.6 21 7232.6 514.2 67876.1 17672.1 0.479

Lipid profile

Total cholesterol (mg/dL) 50 179.5 87.0 281.0 57.0 29 190.0 129.0 281.0 39.0 21 162.0 87.0 247.0 71.0 0.053

LDL cholesterol (mg/dL) 50 80.0 28.0 143.0 41.0 29 90.0 47.0 143.0 26.0 21 65.0 28.0 137.0 41.0 0.028*

HDL cholesterol (mg/dL) 50 41.5 22.0 64.0 13.0 29 43.0 31.0 55.0 10.0 21 39.0 22.0 64.0 15.0 0.154

Triglycerides (mg/dL) 50 134.0 35.0 454.0 112.0 29 113.0 35.0 454.0 72.0 21 158.0 65.0 338.0 114.0 0.004*

*Statistically significant at alpha level 0.05.
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TABLE 4 Partial spearman correlation analysis of diabetes markers, inflammatory markers, and dietary intake.

HOMA-IR HbA1c FPG Insulin

n Rho P-value n Rho P-value n Rho P-value n Rho P-value

Inflammatory markers

C-reactive protein (mg/L) 50 0.23 0.111 50 0.39 0.006* 50 0.31 0.033* 50 0.18 0.230

Interleukin-6 (pg/ml) 49 0.22 0.132 49 −0.02 0.883 49 0.19 0.206 49 0.21 0.166

Tumor necrosis factor alpha (pg/ml) 49 0.22 0.142 49 0.16 0.294 49 0.13 0.375 49 0.17 0.266

Liposaccharide-binding protein (µg/ml) 50 0.35 0.016* 50 0.42 0.003* 50 0.42 0.003* 50 0.24 0.105

Leptin (pg/ml) 50 0.27 0.068 50 0.12 0.398 50 0.07 0.645 50 0.27 0.063

Dietary intake

Total dietary fiber (g) 50 0.06 0.708 50 −0.03 0.847 50 0.01 0.943 50 0.04 0.806

Insoluble fiber (g) 50 0.04 0.798 50 −0.04 0.798 50 0.00 0.978 50 0.01 0.934

Soluble fiber (g) 50 0.08 0.587 50 0.02 0.882 50 0.01 0.971 50 0.08 0.611

Whole grains (oz equivalents) 50 0.12 0.427 50 0.14 0.347 50 −0.06 0.672 50 0.12 0.406

Daily caloric intake (kcal) 50 −0.06 0.664 50 −0.06 0.678 50 −0.04 0.781 50 −0.08 0.590

Partial spearman correlation adjusted for age and sex.
*Statistically significant at alpha level 0.05.

and HbA1c) was characterized by higher levels of CRP and
LBP, while diet and inflammatory cytokines were unrelated to
glycemic markers. Observed species richness, Shannon, and
Fisher alpha diversity were higher in the non-T2D group than
in the T2D group.

There is a strong impetus to better characterize the
gut microbiota in relation to health outcomes in vulnerable
populations that are underrepresented in research. Many
Nepalese-speaking Bhutanese individuals have resettled in the
United States due to political, social, and economic restrictions
in the 1990s and a lack of successful integration in Nepal
(27). This population qualified as living in an isolated social
enclave. Eighty-six percent of the convenience sample had not
completed high school and all participants qualified for SNAP
benefits based on household income. This situation has placed
this population, and other similarly vulnerable populations
in the US, at a particularly higher risk for malnutrition and
chronic disease.

Limited studies exist on obesity and related chronic health
conditions in Bhutanese refugee adults in the United States.
Previous studies focused primarily on infectious diseases and
dietary deficiencies (28). This study identified a substantial
chronic disease burden among this convenience sample
of Bhutanese refugees, with an alarming prevalence of
overweight/obesity comparable to the US national average
(29). To compound the comparable weight status measures,
South Asian populations have a higher risk of cardiometabolic
diseases at lower BMIs than other ethnic groups (28).
Furthermore, the prevalence of overweight/obesity in this study
(92%) was higher than other studies in Bhutanese refugee
communities in the US (11). Given the high prevalence of
obesity, greater attention to culturally relevant, economically

TABLE 5 Logistic regression models 1–3 predicting T2D status.

Model Variable Coefficient Odds
ratio

95% CI P-value

Model 1 CRP 0.00 1.00 (0.86, 1.13) 0.985

LBP −0.17 0.84 (0.52, 1.34) 0.462

Age −0.06 0.95 (0.90, 0.99) 0.019*

Sex 0.44 1.55 (0.33, 7.36) 0.585

Model 2 Soluble fiber −0.30 0.74 (0.46, 1.20) 0.226

Whole grains −0.45 0.64 (0.29, 1.42) 0.272

Age −0.04 0.96 (0.92, 1.01) 0.104

Sex 0.23 1.26 (0.24, 6.69) 0.785

Model 3 Observed
species
richness

0.01 1.01 (1.00, 1.02) 0.174

Age −0.05 0.95 (0.91, 1.00) 0.022*

Sex 0.39 1.48 (0.32, 6.92) 0.619

*Statistically significant at alpha level 0.05.

feasible interventions and education are warranted in the
Bhutanese refugee community, specifically for those who are
among SNAP eligible groups. Evidence emphasizes the need
for relevant lifestyle and dietary change education programs
and interventions to address the overweight/obesity prevalence
among this vulnerable population (28).

The proportion of diabetes was higher among the study
participants (42%) than the general US population (8.2%), and
surpassed prevalence measures in other US Bhutanese refugee
communities (6–14%) (9, 30). Additionally, a high prevalence
of prediabetes was identified in the non-T2D group. South
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Asian populations are at a higher risk of insulin resistance
and T2D than non-Hispanic white populations, yet to our
knowledge, this is the first study to have explored inflammatory
markers in relation to diabetes in the Bhutanese refugee
population (22). Consistent with previous findings, CRP, an
indicator of systemic inflammation, was correlated with diabetes
markers (31). Additionally, LBP was associated with HbA1c

TABLE 6 Linear regression models 4–5 predicting T2D status.

Variable Coefficient SE P-value

Model 4 HOMAIR LBP 1.27 0.08 0.004*

Observed
species richness

1.00 0.00 0.587

Age 1.00 0.01 0.620

Sex 1.13 0.30 0.691

Model 5 HbA1c LBP 1.04 0.02 0.010*

Observed
species richness

1.00 0.00 0.795

Age 1.00 0.00 0.144

Sex 0.99 0.06 0.875

*Statistically significant at alpha level 0.05.

and FPG and weakly with HOMA-IR. LBP was also found
predictive of HOMA-IR and HbA1c, replicating trends in
previous studies exploring LBP and diabetes (4). It is unclear
whether LBP increases as a result of endotoxemia or systemic
inflammation present in chronic diseases, but it is often used as
a proxy for endotoxemia or impaired gut barrier integrity (4).
Findings suggest a potential connection between gut function,
inflammation, and glycemic markers. The variation in LBP
concentrations in our study was small, which could be attributed
to an insufficient number of metabolically healthy participants
and high proportion of prediabetes in the non-T2D group.
Studies with a greater range of metabolic profiles may find
stronger correlations between inflammation indicators and
diabetes markers.

Inflammatory cytokine concentrations were unexpectedly
not associated with diabetes markers. Given that obesity
is associated with low-grade inflammation, characterized by
elevated inflammatory cytokines, which in turn may induce
systemic insulin resistance (32), a potential explanation for these
findings may be that the high proportion of overweight and
obesity in both the non-T2D group and T2D group, and the high
prevalence of pre-diabetes in the non-T2D group (33, 34) may

FIGURE 2

Diversity measures according to T2D status. *Statistically significant at alpha level 0.05. Observed species richness, Shannon, and Fisher diversity
were significantly higher in the non-T2D group compared to the T2D group. Other alpha diversity measures, Simpson and inverse Simpson
were higher in the non-T2D group but did not reach statistical significance.
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TABLE 7 Wilcoxon rank sum test of alpha diversity measures by T2D
status.

W P-value

Observed species richness 407 0.045*

Shannon 405 0.049*

Simpson 400 0.061

Inverse Simpson 400 0.061

Fisher 409 0.040*

*Statistically significant at alpha level 0.05.

have attenuated expected differences in cytokines according to
glycemic status.

Dietary intake, including fiber and whole grain
consumption, was not associated with glycemic impairment.
Specific dietary components, including red meat consumption,
have been shown to influence chronic disease in Bhutanese
refugee adults in the US (28). Increasing fiber intake has been
suggested to reduce the risk of T2D; however, this relationship
has not been studied extensively within the US Bhutanese
refugee population (35). Median fiber intake and whole grain
consumption were higher in the T2D group (p = 0.0354 and
p = 0.0279, respectively). However, higher fiber intake may be
due to reverse causality of a T2D diagnosis, which may translate
into high motivation for nutrition and health education,
providing a pivotal opportunity for nutrition interventions (27).

Studies suggest that at least 5 years after resettlement
and subsequent acculturation precede higher risk of chronic
disease (36). The median time spent in the US for the study
population was 8 (4) years, providing sufficient time to see the
impact of US acculturation among this population. However,
previous studies, such one including Ohio Bhutanese refugee
women, have failed to find associations between chronic diseases
and length of time in the US (28). Our findings indicate no
correlation between years in the US and T2D prevalence. Kumar
et al. suggest that chronic disease risk factors may develop at
refugee camps and associated lifestyle changes before relocation
to the US (11). Irrespective of the origin of such chronic
diseases, interventions are needed to address the significant
proportion of Bhutanese refugee adults succumbing to risk
factors of chronic disease and those already suffering from
various chronic diseases.

Utilizing the strengths of shallow shotgun metagenomic
sequencing, this study provided a thorough characterization
of the gut microbiota composition and its capabilities
in relation to T2D and inflammation. The T2D group
was expectedly characterized by lower average observed
species richness and alpha diversity measures. Although
inconsistently observed, low microbial richness has been
associated with obesity, insulin resistance, and low-grade
inflammation (37). Low richness and diversity have been
mostly identified as markers of gut dysbiosis. However,
we did not observe an association between richness,

inflammation, or LBP (2, 3). The underlying explanation
for these unexpected results could be also attributed to the high
prevalence of overweight, obesity, and glycemic impairment in
this population.

Additional outcomes were aligned with the hypothesis that
inflammation and glycemic impairment are correlated with gut
microbiome composition in this population. Bacteroides has
been suggested to dominate gut profiles in chronic disease
and inflammatory states, which is consistent with our observed
correlation between the genera Parabacteroides and Bacteroides
and TNF-α (37).

Age appeared to be the strongest characteristic associated
with gut microbiota composition in this population. This
study observed negative correlations with SCFA-producing
genera and species (Faecalibacterium and Faecalibacterium
prausnitzii). SCFA-producing potential typically decreases
as individuals age and the gut composition alters over
time (38). Additionally, Bacteroides and Lactobacillus
were positively correlated with age (38). However, in
this study, the T2D was significantly older than the non-
T2D group. Given that over a third of the participants
in the non-T2D group have prediabetes, age may mask
differences in composition attributed to the disease
progression of T2D.

While culturally competent health treatments are often
inaccessible to Bhutanese refugee communities in the US
(27), Krause found that yoga and mindfulness activities were
perceived as medicinal and therapeutic by US Bhutanese refugee
adults (27). Stress and physiological states have been shown
to influence the gut microbiota bidirectionally, suggesting
a potential role for mindfulness interventions to influence
this bidirectional relationship (39). Exercise broadly has also
been well-documented to influence the gut microbiota (39).
Bhutanese refugee populations could benefit from these types
of interventions, which would also support the cultural
identity and social support of these communities (27, 39).
Further, studies highlight a need for culturally appropriate and
feasible dietary interventions that recognize the importance
of dietary practices as part of cultural identity (28). An
emphasis on the mind–body connection is essential in
supporting the ideas and values that are the foundation of the
Bhutanese refugee community (27). Thus, culturally appropriate
interventions that emphasize mind–body connections should
be explored in this and other underrepresented populations,
particularly ones that value the synergies among the body,
mind, and health.

Strengths and limitations

To date, this study has been the most comprehensive
examination of fiber intake, inflammation, and glycemic status
in Bhutanese refugee adults in NH. Three 24-h recalls,
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FIGURE 3

Spearman correlation matrix heatmap of inflammatory associated taxonomic groups with clinical biomarkers and dietary data. (A) Spearman
correlation matrix of inflammatory associated genera and observed species richness with clinical biomarkers and dietary data. (B) Spearman
correlation matrix of inflammatory associated species with clinical biomarkers and dietary data. ∗Statistically significant at alpha 0.05. P-values
were adjusted using the Benjamini–Hochberg method. All significance was lost after BH correction.

the gold standard for dietary assessment, were utilized to
assess fiber intake, reducing the chance of misclassification
errors. Additionally, participant facing interactions and data
collection were conducted by a bilingual and bicultural
community health.

Despite the strengths of our study, several limitations should
be noted. Utilizing a convenience sample was necessary for the
feasibility of this study, however, it may limit the generalizability

of results. Further, the relatively small sample size of n = 50,
could have contributed to type 2 error. A larger and more
representative sample is recommended for future studies on
the Bhutanese refugee population. Another limitation to this
study was the inability to account for medication use in our
statistical analysis, which may explain some unexpected findings
and potentially confounded the analysis of the microbiome.
Medication use was not an exclusionary factor in this study
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thus many participants were on a variety of medications
targeting their chronic diseases or risk factors, including
Metformin, Statins, NSAIDs, and PPIs. Unexpected results in
lipid profiles are likely attributable to medication use, as a
large proportion of the participants with T2D were taking
statins, which lower lipid levels (40). In addition to clinical
biomarkers, medication use may have also confounded gut
microbiome composition and function. Metformin, Statins,
NSAIDs, and PPIs are known to potentially influence the gut
microbiome and glycemic impairment (31, 40, 41). Accounting
for medication use in the future is warranted to reduce any
confounding and simplify interpretation of results. Shallow
sequencing introduced additional bias in microbial analyses
results through elimination of rare taxa and a focus on only
the most abundant taxonomic groups (15). Utilization of
deeper whole genome sequencing is recommended for future
analyses of the gut microbiome composition and functional
potential.

Conclusion

To date, this is the most comprehensive examination
of metabolic health, diet, and the gut microbiome in a
Bhutanese refugee population in NH. Bhutanese refugee adults
are at an increased risk of chronic diseases, such as T2D,
and population-specific interventions are necessary to mediate
the risk. Findings from this study highlight the need to
investigate culturally relevant interventions to address chronic
diseases and their risk factors. Future studies and interventions
should focus on approaches to reduce chronic inflammation
among this population with culturally tailored dietary and
lifestyle changes.
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