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Molecular design of redox-active materials with higher solubility and greater redox
potential windows is instrumental in enhancing the performance of redox flow
batteries Here we propose a computational procedure for a systematic evaluation of
organic redox-active species by combiningmachine learning, quantum-mechanical,
and classical density functional theory calculations. 1,517 small quinone molecules
were generated from the building blocks of benzoquinone, naphthoquinone, and
anthraquinone with different substituent groups. The physics-based methods were
used to predict HOMO-LUMO gaps and solvation free energies that account for the
redox potential differences and aqueous solubility, respectively. The high-
throughput calculations were augmented with the quantitative structure-property
relationship analyses and machine learning/graph network modeling to evaluate the
materials’ overall behavior. The computational procedure was able to reproduce
high-performance cathode electrolyte materials consistent with experimental
observations and identify new electrolytes for RFBs by screening 100,000 di-
substituted quinone molecules, the largest library of redox-active quinone
molecules ever investigated. The efficient computational platform may facilitate a
better understanding of the structure-function relationship of quinone molecules
and advance the design and application of all-organic active materials for RFBs.
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Introduction

Large-scale, stationary energy storage techniques are imperative for the widespread
applicability of green energy such as wind and solar power (Hasewend et al., 2020). A
redox flow battery (RFB) is an electrochemical energy storage device (Eckroad and Gyuk,
2003), in which catholyte and anolyte are stored in separate external tanks and transported to
the battery for energy conversions. The RFB power is determined by the capacity of electrodes
while its energy density depends on the volume, the composition, and the concentration of the
redox-active electrolytes (Zhou et al., 2006; Skyllas-Kazacos and Grossmith, 1987; Remick and
Ang, 271984). The complete decoupling of the power and energy density makes RFBs ideal for
high-capacity energy storage with operational flexibility.
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Several types of RFBs have been proposed, such as all-vanadium
flow batteries, Fe/Cr flow batteries, and zinc bromide flow batteries (Ye
et al., 2019). All-vanadium RFBs utilize the same electrolytes for both
half-cells and are advantageous in preventing contamination and
thereby improving the battery life cycle (Skyllas-Kazacos and
Grossmith, 1987; Hawkins and Robbins, 2001; Tsekouras et al.,
2008). The cost and energy efficiency of all-vanadium RFBs,
however, need to be improved for industrial applications (Li et al.,
2011; Ma et al., 2012). Lithium-ion flow batteries (Pham-Truong et al.,
2020) have the advantage of high current density, capacity, and
flexibility, but their performance is often compromised by the
availability of lithium conducting and storage materials. Aqueous
organic redox flow batteries (AORFBs) may overcome some of the
major hurdles of the metal ion-based RFBs by using Earth-abundant
elements such as C, H, O, N, S. (Darling et al., 2014; Huskinson et al.,
2014; Kwabi et al., 2018; Jin et al., 2019; Li J. et al., 2020; Allam et al.,
2020). The tunability of redox-active molecules offers new avenues for
engineering design and optimization by selecting materials with wider
voltage windows, higher aqueous solubility, increased electrochemical
stability, and faster electrode reaction kinetics (Sánchez-Díez et al.,
2021). For example, quinones have a backbone structure that allows
for a two-electron redox reaction in an aqueous solution. Their
electrochemical properties and solution behavior can be tuned by
substitutions at the benzene rings (Er et al., 2015). An open circuit
voltage of 1.2V was achieved by utilizing 2,6-DHAQ (Kwabi et al.,
2018) as the electrolyte under alkaline conditions, but the replacement
of 2, 6-DHAQ with PEGAQs (Jin et al., 2019) reduces the voltage to
1.0V. Given the inexhaustible types of quinone organics that can be
obtained by varying the substitution positions and substituent groups,
a high-throughput molecular design method is needed for speeding up
the development of all-quinone RFBs.

One key objective of molecular quinone design is to identify
substitutions leading to a higher redox potential difference and
higher solubility such that the RFBs can achieve a higher energy
density. Whereas physics-based models are available to predict such
properties, the direct application is often limited by their demanding
computational cost in evaluating a large library of chemical species
under diverse thermodynamic conditions. Exploring the chemical
space requires new computational strategies to improve the design
efficiency. The machine-learning (ML) methods provide
complementary alternatives with particular strength in high-
throughput screening and molecular design. To prepare the “big
data” required for training ML models, we combine quantum-
mechanical (QM) and classical density functional theory (cDFT)
calculations with quantitative structure-property relationship
(QSPR) analyses such that the physicochemical properties of
quinones can be systematically evaluated.

A number of previous studies have reported the molecular design of
redox-active materials for RFBs. (Narayan et al., 2019; Singh et al., 2019;
Zhong et al., 2020). For example, Allam et al. (Allam et al., 2020) applied
artificial neural networks (ANN), gradient-boosting regression (GBR),
and kernel ridge regression (KRR) to predict the redox potentials of
quinones based on the electron affinity and the number of bound
lithium atoms. Li J. et al. (2020) applied ML methods to predict the cost
and efficiency of all-vanadium flow batteries. Lin et al. (2017) used an
extreme learning machine (ELM) model to predict the properties of a
novel redox flow battery—the single flow Zinc-Nickle battery. However,
there is still a lack of an accurate and efficient way to screen the huge
virtual library of molecules for high-performance materials that can be

applied to RFBs. In this work, we constructed 1,517 quinone molecules
(except -SiH3 substituents) with benzoquinone, naphthoquinone and
anthraquinone as building blocks, referring to the work of Aspuru-
Guzik (Er et al., 2015). QM and cDFT calculations were performed on
our own computational platform to calculate their HOMO-LUMO gaps
and solvation free energies to quantitatively characterize the redox
potential difference and solubility of molecules, respectively.
Although the HOMO-LUMO gap and solvation free energy are not
exactly the same concept as the redox potential difference and solubility
of the active material in a battery system, they have a roughly positive
correlation in general and it is feasible for our goal of rapidly screening
potential performance molecules from a large library of molecules. We
extracted molecular features from molecular descriptors and graph
networks to build AI models to rapidly predict the above two
properties and demonstrated the effectiveness of the proposed
method with experimental results for the existing quinone
electrolytes and its potential use for the computational design of
redox-active materials by screening 100,000 di-substituted quinone
molecules.

Models and methods

The computational scheme for quinone
design

Figure 1 presents the overall computational scheme for the
molecular design of quinones that may be used as catholytes in
RFBs. Following previous work (Er et al., 2015; Li et al., 2016; Li
T. et al., 2020; Li et al., 2021), we chose benzoquinone,
naphthoquinone, and anthraquinone as the building blocks to
construct a library of 1,517 mono- or fully-substituted quinone
molecules by the addition of different substituent groups at
different substitution positions. In terms of the choice of
theoretical calculation methods, we have specifically compared the
effects of different first-principles approaches, classical force field
parameters, atomic charge distributions, and water model
combinations on the accuracy of property calculations in our
previous work (Li et al., 2016), and finally selected a combination
of Hartree-Fork, GAFF force field, AM1-BCC charge, and SPC/E
water models to calculate the solvation free energy of molecules. For
most of the virtual quinone molecules, the experimental data for the
solvation free energies and the HOMO-LUMO gaps have not been
determined. Thus, we verified the prediction accuracy of the
theoretical method on polycyclic aromatic hydrocarbons with
similar structure to quinones aromatic hydrocarbons that are
similar to quinones (Li T. et al., 2020). The calculated values agree
well with the experimental data, the average error between the
predicted and experimental values of solvation free energy obtained
using cDFT is less than .5 kcal/mol. We conduct all QM calculations
using the ORCA package (Neese, 2012). The solute structure is
obtained from energy optimization in vacuum using HF-3c QM
calculations. The molecular properties provide a quantitative
measure of the redox potential difference and solubility of the
electrolyte in RFBs, which in part reflect the capacity and
performance of the flow battery. The theoretical results are then
analyzed with the QSPR method and machine learning/graph
network models. Next, surrogate models were constructed to
reproduce the HOMO-LUMO gaps and solvation free energies of
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quinone molecules and analyze the dependence of such properties on
substituents at different backbone positions. Compared with mono-
and multi-substituted quinones, di-substituted quinones hold
advantages in terms of a balance of stability, diversity, and
synthesizability. Thus, our molecular design is focused on the
properties of all possible di-substituents with the same backbone.
Quinone molecules promising for AORFBs have been identified from
over 100,000 di-substituted quinones.

The choice of AI models

We firstly constructed 1,517 quinone molecules with
17 different substituents using benzoquinone, naphthoquinone,
and anthraquinone as building blocks (Supplementary Figure S1).
The theoretical predictions for the solvation free energies and
HOMO-LUMO gaps are used as a database for training two
models, eXtreme Gradient Boosting (Xgboost) (Chen Q. et al.,
2015) and Attentive Fingerprints (FP) (Xiong et al., 2019) because
they have shown very outstanding performance in many nature
prediction tasks (Zhang et al., 2020; Robles et al., 2021; Yang et al.,
2022). The underlying Xgboost uses multiple simple base learners
to continuously reduce the gap between the overall predicted and
actual values of the model by continuously constructing new
learners to learn the difference between the predicted value of
the previous learner and the target. The underlying Xgboost uses
multiple simple base learners to continuously reduce the gap
between the overall predicted and actual values of the model by

continuously constructing new learners to learn the difference
between the predicted value of the previous learner and the
target. Xgboost automatically assigns lower weights to features
that are highly repetitive, which allows for some transferability
when the model is applied to molecules with less similar structures,
despite some loss in training efficiency. In some traditional
molecular graph models, given a labeled atomic node, the
influence of other atoms on the target node either decays
severely with distance or defaults to the same influence of all
other nodes on the target, lacking the flexibility to change.
Attentive FP, while maintaining the intrinsic structure of the
molecule, first adds an attention mechanism at the atomic level
to learn local features of the molecule, then adds an attention
mechanism at the whole molecular Attentive FP learns features
from the molecular structure end-to-end and achieves the best
performance in a very large number of prediction tasks compared
to other similar graph neural network models (Xiong et al., 2019).
The molecular properties, along with the predicted values from
machine learning, are listed in Supplementary Table S2. In texting
the ML models, the data are divided into a training set, a validation
set, and a test set with a ratio of 8:1:1.

Results and discussion

As shown in Figure 2, Xgboost is relatively accurate than
Attentive FP for fitting both the solvation free energies and the
HOMO-LUMO gaps. We performed a total of 30 model

FIGURE 1
The computational scheme for molecular quinone design.
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constructions for the random data distribution in the training,
validation, and test samples, and obtained the average metrics of
the model on the test set, including the R2 (coefficient of
determination), MAE (mean absolute error), and MRE (mean
relative error), as listed in Table 1. In addition, the two methods
have made higher-precision predictions of the solvation free
energy, and the predicted value has a higher linear correlation
with the value calculated by the theory. Attentive FP’s model gives a
poor prediction of the HOMO-LUMO gap, in which most of the
points formed by the calculated values and the predicted values
deviated from the diagonal line. It is anticipated that the better
prediction by the Xgboost model may attribute to feature selection.

In fitting the solvation free energies and the HOMO-LUMO gaps
of quinone molecules with the Xgboost model, we have used
200 predefined molecular descriptors including molecular mass,

elemental composition, alcohol-water partition coefficients, etc., to
reflect numerically some simple properties of molecules
physicochemically. These descriptors show good correlation with
both the solubility and orbital properties of the quinone molecule.
By contrast, the Attentive FP model is based on local environmental
characteristics of individual atoms in a molecule (information about
the atoms directly or indirectly connected to the central atom)
constructed on the basis of the graph network. Such characteristics
are more derived from the surrounding environment of each atom
rather than the overall features of the molecule, which explains its
relatively poor predictive ability in comparison with Xgboost. In
general, the performance of the machine learning models depends
on the choice of hyperparameters, the quality of the data, and the
selection of features. As we can see in Figure 2, the selected features
better reflect the solvation free energies of quinone molecules than

FIGURE 2
A comparison of Xgboost and Attentive FP methods to predict the solvation-free energies and HOMO-LUMO gaps of 1,517 quinone molecules. (A)
Xgboost for predicting the solvation free energies; (B) Xgboost for predicting the HOMO-LUMO gaps; (C) Attentive FP for predicting the solvation free
energies; and (D) Attentive FP for predicting the HOMO-LUMO gaps.

TABLE 1 Various indicators of data fitting with Xgboost and Attentive FP methods.

Property Model R2 MAE MRE

Train Valid Test

Solvation free energy Xgboost .9506 .9225 .9441 .8629 6.5637 ± .0013%

Attentive FP .9466 .9566 .9307 .9984 8.2514 ± .0017%

HOMO-LUMO gap Xgboost .9013 .8744 .8860 .1794 2.7836 ± .0009%

Attentive FP .8388 .8498 .8642 .1873 4.3651 ± .0011%
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their HOMO-LUMO gaps. It appears that the latter requires a larger
data set or deeper feature engineering to have better correlations.
Moreover, it can be seen from Table 1 that the prediction errors of the
Xgboost model are acceptable for high-throughput screening.
Compared to their actual values, the average relative error of the
test set does not exceed 5%, implying that the predicted values are a
good representation of the superiority or inferiority of the molecular
properties. In the following, our analyses of quinone molecules for
RFBs are all based on the Xgboost model.

The effects of substituent position, type and
backbone

We have constructed 17 backbone molecules using benzoquinone,
naphthoquinone, and anthraquinone as the building blocks. Xgboost
also gives an assessment of the importance of molecular descriptor
features in the modeling process. In the prediction of the HOMO-
LUMO gap, the number of aromatic and aliphatic rings is the most
important feature. Although our molecule has only one to three rings,

FIGURE 3
Solvation-free energies and HOMO-LUMO gaps of different quinones. (A) Effect of different substituent types on target properties. (B) Effect of different
substituent positions on target properties.
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in agreement with the results of similar experiments (Zade et al., 2011),
the smaller the number of rings in the molecule, the larger its HOMO-
LUMO gap, i.e., the molecule obtained by using benzoquinone as the
backbone construction has a larger band gap. Some of the most
important interpretable features for predicting the solvation free
energy include TPSA (topological molecular polar surface area), the
number of nitrogen and oxygen atoms, and the number of hydrogen
bond acceptors. The lowest solvation free energy in the theoretically
calculated results are also for molecules that have been substituted
with some polar groups such as -SO3H and -PO3H2. The position of
the substituent is less important for the above two properties, but we
do not consider for the moment that it affects the stability of the
molecular structure and thus causes practical experimental difficulties.

To study the influence of substituent position and substituent type
on its molecular characteristics, we used the 1, 10-anthraquinone (AQ)
as a representative backbone and compared the difference between
theoretical results and ML correlation data according to the
substituent position and substituent type. Although, the derivatives
of 1, 10-AQ are very unstable and difficult to synthesize by chemical
means, for our work we are currently considering only the target
properties of the virtual molecule to determine whether it has potential
as a battery-active material. Moreover, although the effect of
substituents on different quinone backbones is not entirely
consistent, given their structural similarity and our ultimate goal as
described above, it does not matter which specific backbone is chosen
to explore the effect of substituents on the properties, so we visualized
the data on the properties of molecules constructed with 1, 10-AQ as a
backbone. Figure 3 shows the results, and Table 2 presents the
corresponding substituent positions.

Figure 3A shows the effects of different substituent groups at the
same substitution position. It can be found that substitution with
–PO3H2, –SO3H, –COOCH3, –COOH groups reduces the solvation
free energy regardless of the substituent positions. The ranking of
different substituents’s solvation free energy reproduces that by
quantum-chemistry calculations. For the HOMO-LUMO gaps,
different substituent groups have less influence on the target
properties at the substitution positions of R1-R7, while at the
R8 substitution position, the HOMO-LUMO gaps are sensitive
to different substituent groups. Specifically, all substitutions at the
R1 position result in a higher HOMO-LUMO gap compared to
substitutions at other positions, while substitution with groups
such as –COOCH3, –COOH, –SO3H, –NO2 at the R8 position can
greatly improve the HOMO-LUMO gap.

Figure 3B shows the molecular properties of quinones with the
same substituent group but at different substitution positions. The
results predicted by the ML model are similar to those from the
physics-based calculations. Regardless of the substitution positions,
substitution with –F, –Cl, and–CH3 groups have little impact on the
solvation free energies of the quinone molecules. On the other hand,
substitution with–PO3H2 and –SO3H groups leads to a significant

reduction of the solvation free energy. In this case, the result is highly
dependent on the position of the substituent. The lowest solvation free
energy can be obtained when the substitution takes place on positions
R2, R5, and R6. In terms of the HOMO-LUMO gaps, most of the
substituents have better performance in the substitution positions
R1 and R8. For some poorly performing substituent groups,
satisfactory target properties cannot be obtained even if they are in
the R8 substitution position. The above results indicate the
substituents at the R1 position can improve the HOMO-LUMO
gap, and the more refined selection of the substituents at the
R8 position may achieve more extraordinary effects.

The error graphs in Figure 3 suggest that the machine-learning
(ML) model has a fairly high level of fidelity in reproducing the
theoretical results. In the mono-substituted quinones with 1, 10-AQ as
the backbone, most of the prediction error of the ML model for the
solvation free energy is within 5%, and the maximum prediction error
is ranged between –3 and 2 kcal/mol. And the prediction error of the
HOMO-LUMO gap is mostly between –.2 and .2 eV. However, the
prediction error of the model for the R8 substitute HOMO-LUMO gap
is relatively significant. For a high-throughput screening tool, this
relative error is still within our acceptable range.

Screening from over 100,000 candidates

To demonstrate the high-through capabilities of our
computational framework, we used the trained Xgboost model to
predict the solvation free energies and the HOMO-LUMO gaps for
over 100,000 di-substitutions derived from the 17 quinone-based
backbones. It took about 10 s to complete the predictions and rank

TABLE 2 The positions of substituent for a few representative quinone molecules.

R1 R2 R3 R4 R5 R6 R7 R8

FIGURE 4
A score of over 100,000 virtual quinone molecules. The score is
defined as .5 × Solvation Free Energy/–30 + .5 × HOMO-LUMO gap/10.
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all molecules according to the predicted values based on an 8-core
personal computer. In contrast, it took over 3 days to complete the
QM calculation of the solvation free energy andHOMO-LUMO gap of

a single di-substituted quinone molecule with a single CPU. We see an
increase in calculation speed by 7 orders of magnitude!

The predicted results are shown in Figure 4. Here the predicted
solvation free energies for all di-substituted quinonemolecules is generally
within –25 and –10 kcal/mol, and the predicted value of the HOMO-
LUMO gap is between 5 and 9 eV. To normalize the evaluation of
molecular properties and to make comparisons more easily, the potential
of the molecule as a battery active material is scored by .5 × Solvation Free
Energy/–30 + .5 × HOMO-LUMO gap/10. The detailed calculation
results are available in Supplementary Table S3.

As shown in Figure 4, different quinone-based backbones have a
great impact on molecular properties. The di-substituents of the 1, 2-
benzoquinone (BQ) and 1, 4-BQ backbones generally yield high
HOMO-LUMO gaps. However, the optimal value of solvation free
energy they can achieve is not as good as the molecules produced by
other backbones. The backbones with better overall performance
include 1, 2-AQ, 1, 4-AQ, 1, 5-AQ. These quinone molecules can
attain low solvation-free energy and high HOMO-LUMO gap
simultaneously, and thus can be used as candidate materials for
quinone-based flow batteries for experimental verification.

To further explore the common features of quinone-like molecules
with different scores, we selected 10,000 molecules each with the highest,
lowest and medium scores from more than 100,000 molecules, and
analyzed the effects of backbones and substituents, as shown in
Figure 5. We did not perform an in-depth analysis of the relationship
between the score and the position of the substituents due to the difficulty
in unifying the positions of the substituents on different backbones.

Figure 5 shows the statistics of the backbones and substituent types
according to three different levels of di-substituted molecule populations.
As discussed above, most high-scoring molecules consist of the di-
substitutions of 1, 2-AQ and 1, 4-AQ backbones. While all
17 backbones can get medium and high scores of quinone molecules,
no di-substitutions constructed by the five backbones of 1, 2-AQ, 1, 4-AQ,
9, 10-AQ, 1, 4-BQ and 1, 2-BQ appear in the low-scoring group. In terms
of the choice of substituent types, the large-scale tests can better reflect the
influence of different substituents on molecular properties. In the high-
scoring group, substituents with –SO3H, –PO3H and–COOH groups
account for nearly half of the molecules, and the molecules obtained by
their substitution will not be given low scores. The effect of –Cl, –CH3,
–CF3, –SH, –F, –C2H3 is obviously not suitable substituents for quinone-
based electrolytes, and the scores of molecules generated by their
substitution are generally at a low level.

Combining the above two points, adjusting the –SO3H, –PO3H,
and –COOH groups on the basis of the 1, 2-AQ or 1, 4-AQ backbone
is expected to obtain battery materials with higher HOMO-LUMO gap
and lower solvation free energy. From Figure 5A, we can also see that
among all the above 100,000 quinone molecules, almost none have
achieved satisfactory performance in terms of both solvation-free
energy and the HOMO-LUMO gap at the same time. In terms of
our scoring system for the entire di-substituted quinones, based on the
statistical distribution of the two molecular properties, we believe that
for a good alternative molecule as battery active material, it must be in
at least the top 10% for each property, i.e., have a HOMO-LUMO gap
of more than 7 eV and a solvation free energy of less than −20 kcal/
mol, which means it must be in the top left corner of the scoring table
in the gap region of the current material. Unfortunately, only a very
few di-substituted molecules have been able to meet this criterion. In
addition, we also used the same model to predict the corresponding
properties of quinone-based battery materials that have been reported

FIGURE 5
Virtual molecular library scoring and analysis of results. (A) Scoring
chart for di-substituted quinones and reported quinone-based
electrode materials; (B) Backbone distribution in three types of scoring
molecules; (C) Distribution of substituent types in three types of
scoring molecules.
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in the literature (Chen T. et al., 2015; Lin et al., 2015; Kwabi et al., 2018;
Jin et al., 2019). The full cell performance data consisting of the above
material-based composition is compiled in Supplementary Table S4.
As shown in Figure 5A, all the materials that have been verified by
experiments, but not in our data set samples, get high scores under the
evaluation of this model, which means that our machine learning
model has certain accuracy for the screening ability of battery
materials. For PEGAQ {1, 8-bis [2- (2- (2- hydroxyethoxy) ethoxy)
ethoxy] anthracene-9, 10-dione}, the modification of the PEG
substitution greatly reduces the solvation free energy of the
anthraquinone (AQ) molecules, which makes the molecule obtain a
high evaluation score, but its HOMO-LUMO gap is actually in the
lower-middle position in the whole evaluation system. For 26DHAQ
(2, 6-dihydroxy-9, 10-anthraquinone), although it does not appear to
be in a dominant position, it actually has the highest predicted voltage,
except that the hydroxyl modification cannot bring a great
improvement in solubility for the backbone molecule. In fact, it
is reasonable to consider whether the modification of the molecule
in the upper right corner of the scoring diagram with PEG could
result in a new molecule that is good in both target properties. In
addition, there are a number of molecules in the sample set of di-
substituted substances that we have constructed to obtain scores
comparable to them, showing that there is still a lot of room to find
in the screening of battery materials, not to mention that the data

set we constructed is only within the limited backbone and limited
substituent types.

We also calculated the corresponding properties of the fourmolecules
mentioned above and the top 20 high-scoring molecules in the virtual
screening library using quantitative calculations (Li et al., 2016), where the
molecules ranked 5th, 12th, 16th, and 17th were not optimized during the
consistent quantitative calculations due to structural stability issues, and
the final data are listed in Table 3. The properties obtained from ML
predictions are generally highly comparable to quantitative calculations,
and the average relative errors between the predicted and theoretically
calculated values in the 20 samples are 13.73% and 11.77% for the
solvation free energy and HOMO-LUMO gap, respectively, with some
performance degradation compared to the results on the test set during
modeling, which may be caused by the limitations of the data set itself.
Since the samples used for modeling were mono-substituted quinone
molecules and eventually used for predicting di-substituted molecules,
slightly beyond the application domain of the model, resulting in a
decrease in prediction accuracy. In principle, we should supplement
the dataset by quantifying the properties of a large number of di-
substituted quinone molecules to expand the application of the model,
but the problem is that the structures of suchmolecules are not stable and
their structures are difficult to converge during quantification, resulting in
the inability to obtain the desired molecular properties, which is the
biggest difficulty we face when doing further research.

TABLE 3 Comparison of quantitative calculation results with ML predicted results.

Species QC ML

SFE HOMO-LUMO gap SFE HOMO-LUMO gap

26DHAQ −14.2380 8.127 −14.5968 7.094

PEGAQ −24.8238 7.525 −30.4485 6.456

26DBEAQ −25.0677 7.463 −24.9827 6.710

AQDS −34.7494 7.487 −25.4116 6.612

RANK1 −20.7775 7.316 −24.1964 7.001

RANK2 −21.5017 7.509 −24.6060 7.193

RANK3 −22.0098 7.374 −24.3777 7.254

RANK4 −23.1187 6.620 −24.7286 6.985

RANK6 −18.6392 7.251 −24.1190 7.086

RANK7 −19.7783 7.397 −24.8415 6.832

RANK8 −22.9966 7.130 −24.7587 6.843

RANK9 −19.0005 7.498 −24.0260 7.024

RANK10 −30.1982 5.644 −23.9843 7.022

RANK11 −30.5776 5.534 −23.8987 7.026

RANK13 −27.5477 5.435 −23.6717 7.067

RANK14 −21.9805 6.522 −23.4576 7.116

RANK15 −27.5516 5.511 −23.3352 7.144

RANK18 −24.3474 6.980 −24.1843 6.834

RANK19 −23.8734 6.006 −23.3257 7.117

RANK20 −24.1967 5.980 −24.9316 6.579

Frontiers in Chemical Engineering frontiersin.org08

Wang et al. 10.3389/fceng.2022.1086412

https://www.frontiersin.org/journals/chemical-engineering
https://www.frontiersin.org
https://doi.org/10.3389/fceng.2022.1086412


Conclusion

In this work, we constructed a virtual database of quinone small
molecules with quinone molecular backbones and predefined
substituents, and further constructed a database of their
structural properties by combining theoretical calculations. Then
we combined machine learning tools to build an artificial
intelligence model for fast prediction of target properties from
molecular structure and verified the accuracy of the machine
learning model for predicting the solvation free energy and
HOMO-LUMO gap of quinone molecules, as well as its ability
to reduce quantification and density functional theory calculation
results. Through the analysis of the calculation results, we
discussed the influence of the quinone backbone, the position of
the substituent, and the type of the substituent on the
characteristics of the quinone molecule, which proved that the
machine learning method can be used as a high-throughput
screening method for flow battery active materials with much
higher efficiency than the theoretical calculation. Based on a
model for rapid property prediction, we constructed over
100,000 virtual quinone molecules, evaluated their performance
as active substances in redox flow batteries, and compared them
with some molecules reported in the literature. Actually, all
molecules, both virtual and real, have not been able to obtain
sufficient advantages in solubility and open-circuit voltage at the
same time, which also indicates that there is still much room for
research on the development of active materials for redox flow
batteries. The predictive model of molecular target properties and
the effect of substituents and substitution positions on the
properties of the backbone molecule can quickly help us to find
the direction of molecular property improvement and assist in the
design and development of newmolecules with better performance.
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