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Background: Ubiquitination-related genes (URGs) are important biomarkers and
therapeutic targets in cancer. However, URG prognostic prediction models have not
been established in triple-negative breast cancer (TNBC) before. Our study aimed to
explore the roles of URGs in TNBC.

Methods: The Molecular Taxonomy of Breast Cancer International Consortium
(METABRIC) and the Gene Expression Omnibus (GEO) databases were used to
identify URG expression patterns in TNBC. Non-negative matrix factorization
(NMF) analysis was used to cluster TNBC patients. The least absolute shrinkage
and selection operator (LASSO) analysis was used to construct the multi-URG
signature in the training set (METABRIC). Next, we evaluated and validated the
signature in the test set (GSE58812). Finally, we evaluated the immune-related
characteristics to explore the mechanism.

Results: We identified four clusters with significantly different immune signatures in
TNBC based on URGs. Then, we developed an 11-URG signature with good
performance for patients with TNBC. According to the 11-URG signature, TNBC
patients can be classified into a high-risk group and a low-risk group with
significantly different overall survival. The predictive ability of this 11-URG
signature was favorable in the test set. Moreover, we constructed a nomogram
comprising the risk score and clinicopathological characteristics with favorable
predictive ability. All of the immune cells and immune-related pathways were
higher in the low-risk group than in the high-risk group.

Conclusion:Our study indicatedURGsmight interact with the immune phenotype to
influence the development of TNBC, which contributes to a further understanding of
molecular mechanisms and the development of novel therapeutic targets for TNBC.
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Introduction

Breast cancer ranks first in terms of incidence among all cancers
according to statistics from the International Agency for Research on
Cancer (IARC) (Siegel et al., 2022). Triple-negative breast cancer
(TNBC) is the most malignant and aggressive molecular subtype of
breast cancer that lacks the expression of the estrogen receptor (ER),
progesterone receptor (PR), and human epidermal growth factor
receptor 2 (HER2). Compared to other molecular subtypes of
breast cancer, TNBC exhibits highly aggressive biological behavior
including early recurrences, distant metastases, and a poor survival
rate (Waks and Winer, 2019). As endocrine therapy and anti-HER2-
targeted therapy were unsuitable for TNBC, chemotherapy and
surgery remain the first-line treatments for TNBC with limited
efficacy. Although novel therapies including targeted therapy and
immune therapy are implemented in clinical practice and clinical
trial design (Keenan and Tolaney, 2020; Vagia et al., 2020; Bianchini
et al., 2022; Tarantino et al., 2022), clinical outcomes for TNBC remain
unsatisfactory. Therefore, the identification of molecules that
contribute to risk stratification and clinical decision-making is
critical to improve prognosis of TNBC.

Ubiquitination is one of the most common and important post-
translational modifications (PTMs). The ubiquitin–proteasome
system is a highly specific, ATP-dependent pathway regulating
specific protein degradation in eukaryotes. Ubiquitination is a
reversible process that is mediated by three types of enzymes,
namely, E1 ubiquitin-activating enzyme, E2 ubiquitin-conjugating
enzyme, and E3 ubiquitin ligase (Scheffner et al., 1995).
E1 activates ubiquitin and transfers it to its activation site Cys in
an ATP-dependent manner. E2 transports ubiquitin to E2 itself by
binding E1. E3 recognizes substrate proteins and catalyzes ubiquitin
transfer from E2 to the substrate. Proteins labeled with ubiquitin are
finally taken to the proteasome for degradation. There are other
ubiquitin-like modifications, including small ubiquitin-like modifier
(SUMO) modification (SUMOylation), pupylation, and ISGlation
(Hochstrasser, 2009). The process can be reversed by using
deubiquitinating enzymes (DUBs) to cleave ubiquitin and
ubiquitin-like molecules from the substrate. In addition, ubiquitin
also has many non-degradative functions (Chen and Sun, 2009). As
reported by other studies (Ulrich and Walden, 2010; Berndsen and
Wolberger, 2014), ubiquitination plays important roles in many cell
signaling pathways and biological processes, such as protein activation
and transactivation, DNA replication and repair, cell cycle, chromatin
dynamics, transcription signaling transduction, autophagy, and
immune response, suggesting they are important biomarkers and
therapeutic targets. One study constructed a SUMO-related
prognostic classifier based on the expression of SUMO1/2/3 and
the disease-free survival of TNBC patients (Lin et al., 2021).
However, ubiquitination-related gene (URG) prognostic prediction
models have not been established in TNBC before.

In the present study, we used the Molecular Taxonomy of Breast
Cancer International Consortium (METABRIC) and Gene
Expression Omnibus (GEO) databases to screen prognostic
URGs. Based on these prognostic URGs, we identified a novel
URG-based molecular classification of TNBC. Moreover, we
constructed the 11-URG signature with good performance for
patients with TNBC. Our analysis suggests that URGs play
important roles in TNBC and are potential prognostic biomarkers
and therapeutic targets.

Materials and methods

Data collection and processing

The gene expression quantification data (HTSeq-FPKM) and
corresponding clinic data of patients with TNBC were retrieved
from the METABRIC database (http://www.METABRIC.org/) and
the GEO database (http://www.ncbi.nlm.nih.gov/geo/). We excluded
patients with a survival time of less than 30 days. The gene expression
profiles included 297 TNBC patients in METABRIC and 106 TNBC
patients in GSE58812. We combined the METABRIC and
GSE58812 and removed the batch effects using the ComBat
function in the “sva” package (Johnson et al., 2007). We applied
principal component analysis (PCA) to test the batch effects. The
URGs were downloaded from the ubiquitin and ubiquitin-like
conjugation database (Gao et al., 2013) (UUCD) (http://uucd.
biocuckoo.org). We merged the URGs and gene expression profiles
of TNBC patients to acquire URG expression in both the METABRIC
database and the GSE58812 dataset. As a result, 403 TNBC patients
with 525 URG expression data and baseline data were included for
subsequent analysis.

Classification of TNBC based on URGs

The univariate Cox proportional hazard regression analysis was
used to explore the association of URGs with TNBC patients’ overall
survival (OS) and OS time. Those URGs with p-value <.01 were
considered prognostic URGs. To identify the value of prognostic
URGs, we performed non-negative matrix factorization (NMF)
analysis to cluster the 297 METABRIC patients and
106 GSE58812 patients. The clustering number K was set as 2–10.
We determined the average profile width of a common member
matrix by using the NMF package (Gaujoux and Seoighe, 2010) in
R with the minimum member numbers of each subclass set to 10. The
optimal number of clusters was determined according to indexes
including cophenetic, dispersion, evar, residuals, rss, silhouette, and
sparseness. Then, we performed Kaplan–Meier curve and log-rank
method analysis to evaluate the survival difference between clusters by
applying the survminer package in R language. We also calculated the
human leukocyte antigen (HLA) expression of different clusters. Based
on the Estimation of Stromal and Immune cells in Malignant Tumors
using Expression data (ESTIMATE) algorithm (Yoshihara et al.,
2013), the immune score, stromal score, ESTIMATE score, and
tumor purity of different clusters were determined. Next, we
analyzed the enriched pathways between different clusters by
applying gene set variation analysis (GSVA) in R. By using
“GSEABase” and GSVA R packages (Hänzelmann et al., 2013), we
performed single-sample gene set enrichment analysis (ssGSEA) to
quantify the extent of the immune-related infiltration of each sample.
From a previous study, we collected the gene sets for the evaluation of
immune-related characteristics including different types of human
immune cell subtypes and immune-related activities (Charoentong
et al., 2017; Ru et al., 2019). The enrichment scores calculated using the
ssGSEA algorithm indicated the relative degree of each immune-
related characteristic expression in each sample. Finally, we applied
microenvironment cell populations-counter (Becht et al., 2016)
(MCP-counter) and cell-type identification by estimating relative
subsets of RNA transcript (Newman et al., 2015) (CIBERSORT)
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methods to assess the distribution of immune cell infiltration in
different clusters.

Construction, evaluation, and validation of
the URG signature in TNBC

The prognostic URGs were entered into the least absolute
shrinkage and selection operator (LASSO) method analysis to
identify the prognostic multi-gene signature by using the glmnet
(Friedman et al., 2010) package in R. Based on the corresponding
coefficients and expression of selected genes, the URG signature was
constructed as follows: risk score = (β1*Gene1Exp + β2* Gene2Exp +
β3* Gene3Exp +/ + βn* GenenExp). In this formula, β represents the
coefficients in the LASSO Cox regression analysis. Then, we
calculated the risk score for each TNBC patient and classified
TNBC patients into a high-risk group and a low-risk group
according to the median risk score. The Kaplan–Meier curve and
log-rank method were performed to evaluate the OS difference
between the high-risk and low-risk groups. The distribution of
risk scores, survival statuses of TNBC patients, and expression
profiles of prognostic URG were exhibited using R software. We
used a time-dependent receiver operating characteristic (ROC) curve
to assess the sensitivity and specificity of the URG signature by
calculating the area under the curve (AUC) (Heagerty et al., 2000;
Blanche et al., 2013). We applied PCA and t-distributed stochastic
neighbor embedding (t-SNE) analysis to explore the distribution of
11 URG expression profiles between the high-risk and low-risk
groups.

Estimation of chemotherapy drug sensitivity
in TNBC

We used the GDSC database and the pRRophetic package
(Geeleher et al., 2014) to estimate the sensitivity of TNBC patients
to chemotherapy drugs. We compared the half-maximal inhibitory
concentration (IC50) of chemotherapy drugs between high-risk and
low-risk group patients. The IC50 values of drugs were negatively
correlated with drug sensitivity.

Construction and evaluation of the
nomogram model in TNBC

To verify the independence of the prognostic value of the URG
signature and clinicopathological factors (including age, grade,
tumor size, lymph node, Nottingham prognostic index (NPI),
cellularity, tumor mutation burden (TMB), menopause status,
and breast surgery procedure), we performed univariate and
multivariate Cox regression analysis to explore their
associations with OS of TNBC patients. Factors with
p-value <.05 in the univariate Cox regression analysis were
selected to construct the nomogram model. We used the
concordance index (C-index) of 1,000-sample bootstrap and
ROC curve to evaluate the prognostic prediction ability of the
nomogram model. We also applied calibration curves to further
validate the nomogram model.

Functional enrichment analysis

In order to reveal the heterogeneity between high-risk and low-
risk group patients, we performed gene set enrichment analysis
(GSEA). Gene Ontology (GO) items of biological process (BP),
cellular component (CC), molecular function (MF), the reactome
pathway, and the hallmark gene set were selected as the reference
gene sets. The results of GSEA were visualized using the enrichplot
package in R language.

Immune infiltration and tumor immune
microenvironment analyses

To further explore the immune phenotype between high-risk and
low-risk group patients, we conducted immune infiltration and tumor
immune microenvironment analyses. The infiltrating score of
16 immune cells and the activity of 13 immune-related pathways
were determined by the ssGSEA function of the “gsva” package in R.
Based on the ESTIMATE algorithm, we calculated the tumor purity,
stromal score, immune score, and ESTIMATE score between high-risk
and low-risk group patients. In addition, we performed Spearman’s
analysis to explore the correlation of the risk score with the tumor
microenvironment.

Statistical methods

All statistical analyses were performed by R software (version
3.6.1). The Wilcoxon rank-sum test was used to compare the
difference between the two groups, and the Kruskal–Wallis test was
performed to compare the difference among the four groups. The
Kaplan–Meier curve and log-rank method were performed to evaluate
the OS difference between groups. The ROC curves were plotted to
assess the sensitivity and specificity of the URG signature and
nomogram. The correlation between two sets of quantitative data
was estimated by Spearman’s correlation test. A two-tailed
p-value <.05 was considered statistically significant.

Results

Identification of prognostic URGs in TNBC

The workflow of the present study is presented in Figure 1. Based
on the URGs and gene expression profiles of TNBC patients in both
the METABRIC database and the GSE58812 dataset, we identified
403 TNBC patients with 525 URG expression data and baseline data.
The results of PCA showed that the METABRIC database and the
GSE58812 dataset had notable batch effects (Figure 2A), which were
removed using the ComBat function in the “sva” package (Figure 2B).
These URGs were further assessed for their association with the
survival of TNBC. A total of 17 URGs were found to be
significantly associated with the OS of TNBC by univariate Cox
proportional hazard regression analysis (Figure 2C). Among these
17 URGs, UBA1, PIAS4, TRIM3, PCGF1, RNF123, LRSAM1, STC1,
GRWD1, GNB2, USP30, OTUB2, and ATXN3L were found to be the
risk factors for TNBC patients [hazard ratio (HR) > 1], and BIRC3,
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EED, STAMBPL1, and PARP11 were the protective factors of TNBC
patients (HR < 1).

Classification of TNBC based on prognostic
URGs

A total of 17 prognostic URGs were used as variables of consensus
clustering by using the NMF package. Figure 3A depicts the consensus
matrix heatmap with K from 2 to 10. According to the cophenetic,
dispersion, and silhouette curves (Figure 3B), the optimal number of
subgroups was determined as 4 (K = 4). Then, 403 TNBC patients
could be classified into four robust clusters, including 41 patients in
cluster 1, 154 patients in cluster 2, 164 patients in cluster 3, and
44 patients in cluster 4. The expressions of 17 prognostic URGs among
four clusters are significantly different (Supplementary Figure S1). The

Kaplan–Meier curve showed that patients in different clusters have
significantly different prognoses (p < .0001, Figure 4A). Cluster
2 patients had the worst OS, and cluster 4 patients had the best OS
among all clusters. To explore the mechanism of survival difference
between clusters, we analyzed HLA expression, the immune
microenvironment, and pathways between these four clusters. As
to HLA expression, 14 of 15 HLA expressions were lowly
expressed in cluster 2 and highly expressed in cluster 4. Among
these four clusters, cluster 2 patients had higher tumor purity and
lower immune and ESTIMATE scores, while cluster 4 patients had
lower tumor purity and higher immune and ESTIMATE scores
(Figures 4C, D, and Supplementary Figure S2). The enriched
pathways between different clusters are shown in Figures 4E–J.
Glycolysis, cholesterol homeostasis, hypoxia, NOTCH signaling,
and DNA repair were the mainly upregulated pathways in cluster
2, while interferon response, the IL6–JAK-STAT3 signaling pathway,

FIGURE 1
Workflow of the present study.

FIGURE 2
Identification of prognostic URGs in TNBC. (A) PCA results before removing batches between the METABRIC database and the GSE58812 dataset. (B)
PCA results after removing batches between the METABRIC database and the GSE58812 dataset. (C) Univariate Cox regression analysis of URGs with OS of
TNBC patients. PCA, principal component analysis; OS, overall survival.
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the IL2–STAT5 signaling pathway, the inflammatory response, and
the TNF α signaling pathway were the mainly upregulated pathways in
cluster 4. The immune cell infiltration and immune-related activities

among four clusters are set out in Figure 5 and Supplementary Figure
S3. T cells, CD8 T cells, NK cells, myeloid dendritic cells, cytotoxic
lymphocytes, and B lineage were significantly downregulated in cluster

FIGURE 3
Identification of TNBC subgroups based on prognostic URGs. (A) Consensus matrix heatmap with K ranging from 2 to 10. (B) Relationship between
cophenetic, dispersion, evar, residuals, rss, silhouette, and sparseness coefficients with respect to the number of clusters.

FIGURE 4
Evaluation of the characteristics of TNBC clusters. (A) Kaplan–Meier curve of patients in four TNBC clusters. (B)HLA expression in four TNBC clusters. (C)
Violin plot of tumor purity in four TNBC clusters. (D) Violin plot of tumor microenvironment score in four TNBC clusters. (E–J)Heatmap of different pathways
between four clusters.
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2, while M2 macrophage was significantly upregulated in cluster 2.
Immune-related activities including cytolytic activity, inflammation-
promoting activity, and type II IFN response were inhibited in cluster

2. Cluster 2 exhibited the immune desert phenotype, and cluster
4 exhibited the immune-enriched phenotype, which may account
for the OS difference between clusters 2 and 4.

FIGURE 5
Immune infiltration among four clusters. (A)Heatmap of immune cell infiltration and immune-related activities in four clusters. (B) CIBESORT analysis of
immune cell infiltration among four clusters. (C–L) MCP-counter analysis of 12 immune cells’ distribution among four clusters.

FIGURE 6
Construction and evaluation of the prognostic URG signature for TNBC patients. (A) LASSO coefficient profiles of URG. (B,C) Kaplan–Meier curve of
TNBC patients according to the 11-URG signature in the training and test cohorts. (D,E) PCA and t-SNE analysis between high-risk and low-risk groups in the
training cohort. (F) “Leave-one-out cross-validation” for parameter selection in the LASSOmodel. (G,H) ROC curve of the 11-URG signature for predicting 3-,
5-, and 8-year OS of TNBC patients in the training cohort and test cohort. (I,J) PCA and t-SNE analysis between the high-risk and low-risk groups in the
test cohort. LASSO, least absolute shrinkage and selection operator; PCA, principal component analysis; t-SNE, t-distributed stochastic neighbor embedding;
ROC, receiver operating characteristic; and OS, overall survival.
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Construction, evaluation, and validation of
the URG signature in TNBC

A total of 17 prognostic URGs were fit into the LASSO Cox
analysis to identify the optimal prognostic URGs in the training
group (METABRIC). We identified 11 URGs (HECTD3, PCGF1,
RNF123, STC1, GRWD1, USP30, OTUB2, ATXN3L, BIRC3,
STAMBPL1, and PARP11) using LASSO Cox analysis and
constructed a prognostic signature by integrating the 11 URG
expression profiles and corresponding Cox regression coefficients
(Figures 6A, F). We calculated the risk score for each patient in the
training group and ranked them into a high-risk group (n = 148)
and a low-risk group (n = 149) according to the median risk score.
The Kaplan–Meier curve showed that patients in the high-risk
group have significantly worse OS than patients in the low-risk
group (p < .001, Figure 6B). The prognostic power of the 11-URG
signature was evaluated by calculating the AUC. The results
showed that the AUC of the 11-URG signature for predicting
3-, 5-, and 8-year survival of TNBC patients was 0.708, 0.702, and
0.744, respectively, which indicated good performance
(Figure 6G). PCA and t-SNE analysis showed that TNBC
patients between the high-risk and low-risk groups can be
distinguished well according to this signature (Figures 6D, E).
To verify the reliability of the 11-URG signature in TNBC, we
applied this signature to the test set (GSE58812). We calculated the
risk score for each patient in the test group and ranked them into a
high-risk group (n = 46) and a low-risk group (n = 60). As
presented in Figure 6C, patients in the high-risk group have
significantly worse OS than patients in the low-risk group (p =
.002). The AUC of the 11-URG signature for predicting 3-, 5-, and
8-year survival in the test set was 0.662, 0.738, and 0.720,
respectively (Figure 6H). The results of PCA and t-SNE
analysis in the test group also showed that patients in the high-
risk and low-risk groups were distributed in two directions

according to this signature (Figures 6I, J). The distribution of
risk score, survival status of TNBC patients, and the expression
profiles of 11 prognostic URGs in the training and test sets are
displayed in Figure 7. The mortality was much higher for patients
with a high risk score than those with a low risk score, and patients
in the high-risk group have a tendency toward higher expression of
HECTD3, PCGF1, RNF123, STC1, GRWD1, USP30, OTUB2, and
ATXN3L and lower expression of BIRC3, STAMBPL1, and
PARP11.

Construction and evaluation of the
nomogram model in TNBC

Univariate Cox regression analysis suggested that the 11-URG
signature-based risk score, lymph node status, NPI, menopausal
status, and breast conserving surgery were significantly associated
with patients’ survival (Figure 8A). We further performed
multivariate Cox regression analysis using these factors. The
results revealed that the 11-URG signature was the only factor
related to the OS of TNBC patients (Figure 8B). Using age,
menopausal status, lymph node status, tumor size, surgery, NPI,
and risk score, we constructed a prognostic nomogram model to
predict the OS of individual TNBC patients (Figure 9A). The AUC
of this nomogram for predicting 1-, 3-, and 5-year OS was 0.695,
0.733, and 0.760, respectively (Figure 9B). We applied calibration
curves to further assess the predictive effect of the nomogram
model on the OS of TNBC patients. As shown in Figure 9C, the
nomogram-predicted OS of TNBC patients had good consistency
with the actual OS of TNBC patients. The C-index of the
nomogram model and 11-URG signature-based risk score were
higher than other clinicopathological factors (Figure 9D),
suggesting the favorable predictive ability of the nomogram
model and 11-URG signature-based risk score.

FIGURE 7
Distribution of risk score, survival status, and expression profile of 11 URGs in the training group and test group. (A,B) Distribution of risk score in the
training and test cohorts, respectively. (C,D) Survival status, survival time, and risk score in the training and test group cohorts, respectively. (E,F) Expression
profile of 11 URGs between the high-risk and low-risk groups in the training and test cohorts, respectively.
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Gene set enrichment analysis between high-
risk and low-risk group patients

As shown in Supplementary Figure S4, high-risk group patients
were more sensitive to A-443654, JW-7-52-1, NSC-87877, and PF-
4708671 therapy, while low-risk group patients were more sensitive to
the remaining chemotherapy drugs such as AZD2281 (olaparib),
gefitinib, and nilotinib. The AZD2281 target is at PARP1/2 to
influence genome integrity, gefitinib target at the EGFR signaling
pathway, and nilotinib target at the ABL signaling pathway. The PI3K/
mTOR signaling pathway is the target of A-443654, JW-7-52-1, and
PF-4708671, which indicates that high-risk group patients may benefit
from therapy targeting at the PI3K/mTOR signaling pathway. To
explore the difference in biological characteristics between high-risk
and low-risk group patients, we performed GSEA. The GSEA results
are presented in Figure 10. The BP of immune response, T-cell

activation, and differentiation were enriched in the low-risk group,
while the BP of DNA repair, DNA replication, and meiotic cell cycle
were enriched in the high-risk group. The CC of genes in the low-risk
group was mainly enriched in endocytic vesicles, while the CC of genes
in the high-risk group was mainly enriched in chromosomal regions
and microtubules. Chemokine and cytokine activities were the enriched
MF in the low-risk group; however, ATP hydrolysis activity and catalytic
activity were the mainly enriched MF in the high-risk group. Interferon
α response, IL6–JAK-STAT3 signaling, complement, and inflammatory
response were the mainly enriched hallmark gene sets in the low-risk
group, while E2F target, G2M checkpoint, glycolysis, and MYC target
were the mainly enriched hallmark gene sets in the high-risk group. As
for the reactome pathway, chemokine receptors that bind chemokines
and complement cascades were themainly enriched pathways, while the
cell cycle-related pathway and DNA repair were the mainly enriched
pathways.

FIGURE 8
Univariate and multivariate Cox regression analyses of the association of the risk score and clinicopathological factors with the OS of TNBC patients. (A)
Univariate Cox regression analysis. (B) Multivariate Cox regression analysis. OS, overall survival.

FIGURE 9
Construction and evaluation of the nomogram model in TNBC. (A) Construction of a nomogram model based on the risk score and other
clinicopathological factors. (B) ROC curve analysis of the nomogram model for predicting 1-, 3-, and 5-year OS in TNBC patients. (C) Calibration curve
validation of the nomogrammodel for predicting 1-, 3-, and 5-year OS in TNBC patients. (D) C-index of the nomogram model, 11-URG signature-based risk
score, and other clinicopathological factors. ROC, receiver operating characteristic; OS, overall survival; and C-index, concordance index.
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FIGURE 10
Gene set enrichment analysis between the high-risk and low-risk groups. (A–E) Biological process, cellular component, molecular function, hallmark
gene set, and reactome pathways enriched in the high-risk group. (F–J) Biological process, cellular component, molecular function, hallmark gene set, and
reactome pathways enriched in the low-risk group.

FIGURE 11
Immune infiltration and tumor immunemicroenvironment analyses. (A,B) ssGSEA scores of 16 immune cells and 13 immune-related functions between
the high-risk and low-risk groups. (C–F) Violin plot of tumor purity, stromal score, immune score, and ESTIMATE score between the high-risk and low-risk
groups. (G–J) Scatter plot of the correlation of the risk score with tumor purity, stromal score, immune score, and ESTIMATE score. *p < .05; **p < .01;
***p < .001.
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Immune infiltration and tumor immune
microenvironment analyses

To further identify the potential mechanism of the heterogeneity
between high-risk and low-risk group patients, we conducted tumor
immune microenvironment and immune infiltration analyses. All of
the immune cells and immune-related pathways were higher in the
low-risk group than in the high-risk group (Figures 11A, B).
Compared with the low-risk group, the high-risk group exhibited
higher tumor purity (Figure 11C) and lower stromal score
(Figure 11D), immune score (Figure 11E), and ESTIMATE score
(Figure 11F). In addition, the risk score was positively correlated with
tumor purity (Figure 11G) and negatively correlated with the stromal
score (Figure 11H), immune score (Figure 11I), and ESTIMATE score
(Figure 11J). As shown in Supplementary Figure S5, the MCP-counter
analysis showed that most immune cells (except fibroblasts and
neutrophils) are enriched in the low-risk group, which is consistent
with ssGSEA. The CIBERSORT analysis (Supplementary Figure S6)
showed that B cells, plasma cells, CD4 T cells, and DC cells are
enriched in the low-risk group, and M2 macrophage is enriched in the
high-risk group. Therefore, both CIBERSORT and MCP-counter
analyses are consistent with ssGSEA and ESTIMATE analyses.

Discussion

In the present study, we identified 17 prognostic URGs and
constructed four molecular classifications of TNBC. The immune
signatures were significantly different among distinct TNBC clusters.
Then, we developed the 11-URG signature with good performance for
patients with TNBC. According to the 11-URG signature, TNBC
patients can be classified into a high-risk group and a low-risk
group with a significantly different OS. The predictive ability of the
11-URG signature was validated in the test set (GSE58812). Univariate
and multivariate Cox regression analyses showed that the 11-URG
signature was an independent risk factor for TNBC patients.
Moreover, we constructed a nomogram comprising the risk score
and clinicopathological characteristics with favorable predictive
ability. GSEA showed that enriched GO terms, hallmark gene sets,
and reactome pathways were evidently different between the high-risk
and low-risk groups. In addition, tumor immune microenvironment
and immune infiltration analyses also exhibited a significant
difference.

TNBC is a heterogeneous cancer. Tailored treatment based on
molecular subtypes is meaningful for improving the outcomes of
TNBC. In our study, we constructed four clusters of TNBC
patients, including 41 patients in cluster 1, 154 patients in cluster
2, 164 patients in cluster 3, and 44 patients in cluster 4. As cluster
2 patients had the worst OS and cluster 4 patients had the best OS
among all clusters, we conducted further analysis to reveal the
mechanism. GSVA of the pathway showed that glycolysis,
cholesterol homeostasis, hypoxia, and DNA repair pathways were
the mainly upregulated pathways in cluster 2, while interferon
response and inflammatory response were the mainly upregulated
pathways in cluster 4. As is known, metabolic reprogramming is one of
the hallmarks of cancer. Metabolic reprogramming is used by TNBC
to fulfill bioenergetic and biosynthetic demands; maintain the redox
balance; and further promote oncogenic signaling, cell proliferation,
and metastasis (Wang P et al., 2020). Metabolic reprogramming

mainly consists of glycolysis, amino acid metabolism, and lipid
metabolism. It has been reported that TNBC cells predominantly
use glycolysis for energy production regardless of abundant oxygen
availability (Wu et al., 2020). The upregulation of enzymes involved in
the glycolytic pathway including hexokinase (Lucantoni et al., 2018),
phosphofructokinase (Coelho et al., 2011), pyruvate kinase (Wahdan-
Alaswad et al., 2018), and lactate dehydrogenase (McCleland et al.,
2012) contributes to the “Warburg effect” in TNBC. The glycolytic
phenotype favors TNBC to synchronize with an accelerated rate of
proliferation, migration and invasion, and chemotherapy resistance
(Arundhathi et al., 2021; Wiggs et al., 2022). Cholesterol, a component
of cell membranes, also serves as a precursor for steroid hormones, bile
acids, and vitamin D. As a critical molecule for cell growth and
function, cholesterol has been recognized as a characteristic of
some malignancies (Tosi and Tugnoli, 2005). Statins and
hypocholesterolemic drugs that selectively inhibit
hydroxymethylglutaryl coenzyme A reductase (HMGCR) also show
anticancer activity (Clendening and Penn, 2012). Nevertheless, the
function of cholesterol in breast cancer is conflicting (Nelson, 2018;
Garcia-Estevez and Moreno-Bueno, 2019). Some researchers found
that cholesterol has a protective effect, while other authors concluded
that cholesterol is a risk factor, and some found no effect. Importantly,
deregulation of cholesterol homeostasis leading to an imbalance of
intracellular cholesterol is a crucial regulator for breast cancer (Nazih
and Bard, 2020). Hypoxia has long been considered one of the
hallmarks of cancer (Gilkes et al., 2014). Several studies (Kapinova
et al., 2018; Zheng et al., 2020; Sun et al., 2021; Yang et al., 2021) have
systematically analyzed the hypoxia-related gene and constructed
prognostic models based on hypoxia-related genes in TNBC. As a
result, the difference in enriched pathways between clusters 2 and
4 may be one of the reasons that cluster 4 patients have better OS than
cluster 2 patients. We further analyzed the immune
microenvironment in four clusters. First, we found that cluster
2 TNBC patients had high tumor purity, a low immune score, and
low expression of HLA. In addition, the results of infiltration analysis
showed that T cells, CD8 T cells, NK cells, myeloid dendritic cells,
cytotoxic lymphocytes, and B lineage were significantly downregulated
in cluster 2 and upregulated in cluster 4, while M2 macrophage was
significantly upregulated in cluster 2. Finally, immune-related
activities including cytolytic activity, inflammation-promoting
activity, and the IFN response were also inhibited in cluster 2.
Taken together, cluster 2 exhibited the immune desert phenotype,
and cluster 4 exhibited the immune-enriched phenotype, which may
account for the OS difference between clusters 2 and 4. Our analysis
provides new insight into the molecular classification of TNBC
patients.

To the best of our knowledge, there are numerous specific gene-
based prognostic prediction models for TNBC such as the hypoxia-
related gene signature (Zheng et al., 2020), immune-related gene
signature (Wang Z et al., 2020; Sun and Zhang, 2022), and
autophagy-related gene signature (Yan et al., 2022). However, few
have considered the integrated roles of URG set in TNBC. Herein, we
developed the 11-URG signature with good performance for patients
with TNBC. Of the 11 URGs, HECTD3, PCGF1, RNF123, STC1,
GRWD1, USP30, OTUB2, and ATXN3L are the risk factors of TNBC,
and BIRC3, STAMBPL1, and PARP11 are the protective factors of
TNBC. We further discuss the functions of these URGs. In reviewing
the literature, no data were found on the association of breast cancer
with PCGF1, RNF123, GRWD1, USP30, ATXN3L, and PARP11. The
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remaining five URGs were reported to be implicated in breast cancer.
HECTD3 is an oncogene and could promote breast cancer cell survival
(Li et al., 2013; Jiang et al., 2020), which is in line with the result of our
study that HECTD3 is a risk factor for TNBC. Our study supports the
evidence that STC1 is a biomarker of breast cancer and promotes
tumor growth and metastasis (Chang et al., 2015; Avalle et al., 2022).
OTUB2 was reported to promote the progression of gastric cancer and
colorectal cancer (Ouyang et al., 2022; Yu et al., 2022). As for breast
cancer, a recent study reported that OTUB2 deubiquitinated and
activated YAP/TAZ to promote cancer stemness and metastasis
(Zhang et al., 2019), which confirms the reliability of our results.
Interestingly, BIRC3 can play a tumor-suppressing role or act as an
oncogene in different types of cancer (Frazzi, 2021). As for breast
cancer, the function of BIRC3 has not yet been fully characterized. Our
results corroborate the findings that BIRC3 functions as a tumor
suppressor. The study by Liu et al. (2022) found that
STAMBPL1 interacts with MKP-1 and stabilizes MKP-1 via
deubiquitination, further promoting breast cancer cell resistance to
cisplatin. Moreover, STAMBPL1 could regulate snail stability by
deubiquitination mechanisms in breast cancer (Ambroise et al.,
2020). The aforementioned studies showed that STAMBPL1 is a risk
factor for breast cancer, which is contrary to our result. Nonetheless,
whether STAMBPL1 influences the prognosis of breast cancer patients
is unclear and requires further research. Although the 11 URGs have
been suggested to be involved in multiple cancers, studies concerning
the effects of these URGs on TNBC are lacking. Therefore, the roles of
these URGs in TNBC remain unexplored.

According to the 11-URG signature, TNBC patients can be
classified into a high-risk group and a low-risk group with
significantly different OS. We first analyzed the sensitivity of TNBC
patients to chemotherapy drugs. Low-risk group patients are more
sensitive to the majority of the chemotherapy drugs than patients in the
high-risk group, which may partially explain the preferable OS of low-
risk group patients. Then, we conducted GSEA to explore the
mechanism. What stands out in the GSEA is the pathway difference
between the high-risk and low-risk groups. Cell cycle- and glycolysis-
related pathways were the mainly enriched pathways in the high-risk
group, while chemokine receptors that bind chemokines, the
inflammatory response, and complement cascades were the mainly
enriched pathways in the low-risk group. As discussed earlier, the
glycolytic phenotype promotes the proliferation, migration, and
invasion of TNBC cells. Deregulation of the cell cycle is also a
hallmark of cancer that enables limitless cell division and is
frequently observed in breast cancer (Thu et al., 2018; Sofi et al.,
2022). Therefore, the pathway difference may also explain the
prognosis difference between the high-risk and low-risk groups.
Furthermore, all of the immune cells and immune-related pathways
were higher in the low-risk group than in the high-risk group. The OS
difference between the high-risk and low-risk groups could be attributed
to the immune infiltration difference between the two groups.

Conventional clinicopathological predictors such as age, gender,
and the TNM staging system are insufficient to predict the prognosis
of breast patients due to molecule complexity and biological
heterogeneity of breast cancer. To provide a quantitative tool for
predicting the survival rate of TNBC patients, we constructed a
nomogram comprising the 11-URG signature-based risk score and
clinicopathological characteristics. The ROC curve and calibration
curve suggested that the nomogram is a stable and reliable predictor
for OS of TNBC patients.

Admittedly, our study has some limitations because it was based
only on high-throughput RNA-sequencing, array profiles, and data
analysis. The roles of these prognostic URGs require further in vitro
and in vivo studies because of their strong relevance to the
prognosis of TNBC. In conclusion, we identified four novel
URGs based on the molecular classification of TNBC and
constructed the 11-URG signature with good performance for
patients with TNBC. Our analysis suggests that URGs play
important roles in TNBC and are potential prognostic
biomarkers and therapeutic targets.
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SUPPLEMENTARY FIGURE S1
Heatmap of ubiquitination-related gene expression among four clusters
of TNBC.

SUPPLEMENTARY FIGURE S2
Immune microenvironment analysis of TNBC clusters. Violin plot of (A)
ESTIMATE score, (B) immune score, (C) stromal score, and (D) tumor purity.
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SUPPLEMENTARY FIGURE S3
Immune infiltration analysis of TNBC clusters. Violin plot of immune cell
infiltration and immune-related activities among four clusters.

SUPPLEMENTARY FIGURE S4
Sensitivity of TNBC patients to chemotherapy drugs between the high-risk and
low-risk groups.

SUPPLEMENTARY FIGURE S5
MCP-counter analysis of immune cell infiltration between the high-risk and
low-risk groups.

SUPPLEMENTARY FIGURE S6
CIBESORT analysis of immune cell infiltration between the high-risk and low-
risk groups.
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