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In view of the limitations of the current code based on the equivalent beam-column
method with the “rod mode” instead of the “arch mode” for the calculation of
concrete-filled steel tube arch bridges, this paper takes the real bearing mechanism
of the arch as the starting point and analyzes the different bearingmechanisms of the
arch and eccentric pressurized column. The concrete-filled steel tube arch model
test was carried out to analyze the deformation state and damage mode, and the
geometric non-linear bending moment of the measured arch was compared with
the bending moment value calculated by the eccentricity increase coefficient of the
“rod mode.” The results showed that the transfer of internal force is from the axial
force to the arch axis, causing the vertical reaction force and horizontal thrust.
However, the eccentric compression column only produced the vertical force at the
bottom and combines with the lateral deformation indirectly generated by the
eccentric distance. In addition, the deformation stage of the arch is basically the
same as that of the eccentric compression column. The final failuremode of the arch
is 4-hinge damage, and the final failure mode of the eccentric compression column
is single-hinge damage. The preliminary geometric non-linear bending moment
value obtained by the two modes accords well. Therefore, the main factors for the
difference in the bearing mechanism between the two modes are different force
structures, force transmission routes, and sources of deformation. Due to the
difference in the bearing mechanism, the final failure mode is different, and the
deformation ability of the arch is weakened by using the “rod mode” instead of the
“arch mode.” The geometric non-linear bending moment of the control section
calculated by the eccentricity increase coefficient is conservative, but the influence
of the geometric non-linearity of other sections is not considered enough.

KEYWORDS

concrete-filled steel tube arch, arch mode, geometric non-linearity, coefficient of
eccentricity increase, equivalent beam and columnmethod, eccentric compression column

1 Introduction

The concrete-filled steel tube (CFST) arch bridge having good span performance, superior
bearing capacity, and graceful shape has been widely used. The CFST arch is restrained by the
steel tube which significantly improves the compression resistance and spanning ability of the
arch ribs, and the current braceless construction method of the arch bridge has matured, so the
strong spanning ability, convenient construction method, and the ultra-high requirements for
the foundation make the CFST arch bridge especially suitable for mountain and river canyons
with treacherous terrain. However, large-span arch bridges are often affected by geometric non-
linearity, and the damage rules are similar to those of eccentrically stressed columns (beam
columns) due to the presence of both bending moments and axial forces in the arch cross-
section. Therefore, the current specification (Ministry of Transport of the People’s Republic of
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China, 2015) usually equates the arch to a straight beam and column
under eccentric compression for relevant calculation and takes the
second-order effect of the arch into account by introducing the
coefficient of the eccentricity increase coefficient to simplify the
calculation. Although the eccentric compression column can
basically reflect the failure law of the arch, the transverse
deformation of the eccentric straight beam and column is
produced by bending moment or transverse force. In contrast, the
deformation of the arch is directly produced by the vertical load on the
arch. The two deformation sources are different. In addition, the arch
axis will generate additional internal forces including additional
bending moments after compression. Also, the real internal forces
of the arch are difficult to calculate, which is also different from the
eccentrically compressed straight rod beam column (Chen, 2016).
Therefore, several scholars have conducted the following relevant
studies for the CFST arch structure with a special combination of
forces:

Liu and Sun (2021) carried out six uniform load tests on CFST
arches and studied the ultimate bearing capacity and deformation and
failure characteristics of CFST round arch specimens. The results
showed that the circular arch yields first at the inside of the arch
foot, and the curvature at different positions of the specimen is no
longer consistent. The steel tube at the arch foot will uplift obviously
and the hoop action of the steel pipe on the concrete will fail when the
CFST arches reach the ultimate bearing capacity. Li and Lei (2022)
studied the influencing factors of the bearing capacity of CFST arches
by numerical simulation and found that the arch had a great limitation
on displacement in the elastic stage, and the ultimate bearing capacity
was relatively high. The bearing capacity decreases obviously after
reaching the peak value, but it showed good elongation performance.
Zhao et al. (2021) used the fibermodel technology to define the element
bearing ratio by homogeneous generalized yield function and proposed
the elastic modulus reduction method to evaluate the stable bearing
capacity of the dumbbell-type CFST arch by strategically reducing the
elastic modulus of the high-stress element. The results showed that
stability had a significant impact on the CFST arch. The elastic modulus
adjustment method has higher accuracy and efficiency than the
incremental non-linear finite element method. Zhang et al. (2022)
designed some concrete-filled steel tubular CFST columns and studied
the influence of constraint effect coefficient and eccentricity on their
mechanical properties. The results showed that the ultimate bearing
capacity increases approximately linearly, and the ultimate deflection
slightly decreases with the increase in the CFRP constraint effect
coefficient. The ultimate bearing capacity of the specimen with large
eccentricity decreases obviously, and the deflection corresponding to
the ultimate bearing capacity is lower. Huo and Han (2014) compiled a
program to analyze the non-linear behavior rules of five special-shaped
arch bridges with their characteristics and revealed that the beam-
column effect was the most critical factor affecting the essence of the
arch and beam composite butterfly arch bridge. The non-linearmethod
was used to calculate the tensile force of the cable by considering the
vertical effect of the cable. Zou et al. (2023a) and Zou et al. (2023b)
investigated composite and lattice web-concrete combination
structures with hollow steel pipes and UHPC combinations and
carried out load bearing tests on both combinations, and the results
showed good load bearing performance, which can be used in pre-
buried sections of CFST arch bridges to improve the load bearing
capacity. Bradford and Pi (2014) investigated the effects of geometric
non-linearity on the long-term in-plane performance of crown-pin

CFST arches under the sustained central concentrated loading, and the
analytical solutions for their non-linear response and buckling loads
were derived, and the results showed that the long-term deformation
predicted by the non-linear analysis resulted in a significant reduction
in the serviceability limit state reserve of crown-pin CFST arches. Guo
et al. (2022) deduced the calculation formula of the eccentricity increase
coefficient based on the basic principle of the variational method and
the interaction characteristics of the tie arch structure after
deformation. The calculation results were compared with the finite
element and the standard, and the results showed that the standard
calculation results were large. The finite element calculation results
were small, and the method calculation results adopted were moderate.
Wang (2009) used the theory of the Updated Lagrangian (U.L.) finite
element formulation, and the incremental equation of the virtual work
of a three-dimensional (3D) beam for a geometric non-linear analysis
of the space structure is established. The eccentric bearing capacity of
CFST members is studied, and the results show that the larger the
eccentric distance is, the lower the ultimate bearing capacity is, but with
better ductility. Liu et al. (2011) andWang and Guo (2020) studied the
load carrying capacity and stability of a CFST arch bridge with fly-bird-
type, calculated linear and non-linear stability coefficients, and
analyzed the damage modes and load–displacement curves, and the
results showed that the linear elastic buckling method does not reflect
the true damage mode of this structure, and the effects of both
geometric and material non-linearity cannot be ignored. Yang et al.
(2020) proposed an adaptive strategy of the elastic modulus adjustment
for the ultimate bearing capacity of the CFST arch, and the effectiveness
of themethod was proven by a large number of tests. Ye (2013) andWu
et al. (2015) studied the effects of length-to-slenderness ratio and
sagittal-to-span ratio on the bearing capacity and suggested the
essential difference between the arch and column. Wei et al. (2010),
Wei et al. (2009), and Chen et al. (2004) used the equivalent beam-
column method to calculate the ultimate bearing capacity of the CFST
parabolic arch, and the comparison results with finite elements showed
that this method is more accurate. Yuan et al. (2020), Jiang et al. (2018),
and Zhang and Yu (2013) studied the out-of-plane stability of CFST
arches, explored the effect of non-linearity on the stability coefficients,
and proposed a method for calculating the correlation coefficients for
stability calculations. Bradford and Pi (2014) investigated the effects of
geometric non-linearity on the long-term in-plane behavior of crown-
pinned circular CFST arches under a continuous central concentrated
load and showed that geometric non-linearity has a significant effect on
the long-term behavior of crown-pinned CFST arches.

The research on the ultimate bearing capacity and the
eccentricity increase coefficient of the CFST arch is abundant,
but the research foundation is still built based on the ideas of the
“rod mode.” The research on the calculation pattern of the CFST
arch based on the “arch effect” is deficient. In view of this, this
paper discussed the differences between the bearing mechanism of
the “arch mode” and the “rod mode” and proposed a new
calculation model for the real geometric non-linear internal
forces of the arch after force deformation. In this paper, we
carried out model tests on the single-pipe arch of steel pipe
concrete; analyzed the load–displacement curves, strains, and
damage modes of the whole process damage of two single-point
loading conditions; and verified the difference between the “arch
mode” and “rod mode” damage modes. The comparison of model
test and regulation was based on the equivalent beam-column
method for non-linear bending moments in arch geometry, and
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the analysis of the differences between the two calculation results
and the advantages of the calculation mode was carried out based
on the arch effect. The regulation of using the “rod mode” instead
of the “arch mode” in the calculation of CFST arch bridges is
discussed. Based on the differences of the two modes in the bearing
mechanism, this paper proposes the real internal force calculation
mode of each section after the deformation of the arch. The mode
provided new ideas for the future calculation mode of the bearing
capacity and stability of large-span arch bridges. Also, it can help
optimize the arch axis, arch rib section form, and structure.

2 The bearing mechanism of the “arch
mode”

If the branch buckling mode of the unhinged arch is anti-
symmetric, as shown in Figure 1A, the horizontal thrust will be
generated at the support, and the axial pressure will be generated
in the section under the vertical load of the arch. Therefore, the actual
internal force of any section can be calculated as Formula 1, after the
arch deformation reaches a new equilibrium state.

Mg � MA + VA xm + δ( ) −HA ym − ω( ) −∑P xm − xpi( ). (1)

According to the theory of deflection, the calculation of the axial
force in the arch section can be expressed approximately as

Ng � HA

cosθ
� VA −∑Pi

sinθ
. (2)

Type: Mg—real bending moment of any section of the arch;
Ng—arch section axial force; θ—angle between the tangent line
and horizontal direction at any position of the arch axis;MA—arch
foot bending moment; VA—vertical reaction of the arch foot;
HA—horizontal reaction of the arch foot; xm—x coordinate of
section; ym—y coordinate of the section; δ—horizontal
displacement of the section; ω—vertical displacement of the
section; Pi—acting external load on the arch; xpi—x coordinate
of the external load Pi.

It is not difficult to see that the presence of the horizontal thrust
reduces the bending moment in the arch, and the arch axis will
produce additional internal forces including the additional bending
moment after compression under the action of pressure, which is
ΔMg � Ngωcosθ.Therefore, the bearing mechanism of the unhinged
arch can be summarized as follows: under the action of external load,
the axial force in the arch is transferred to the arch foot through the
arch axis, generating horizontal thrust and vertical reaction force at the
arch foot, and the external load directly produces deformation. In the
new equilibrium state after deformation, the section bending moment
is mainly composed of the linear bending moment, which is Mr �
MA + VAxm −HAym −∑Pi(xm − xpi) and the non-linear bending
moment, which is ΔMr � VAδ +HAω. The axial force is not
affected by non-linearity. Therefore, the failure of the bearing
capacity of the arch mainly comes from the linear bending
moment generated by the internal force of the arch foot and the
external load and the non-linear bending moment directly generated
by the external load.

However, based on the principle of the equivalent beam-column
method, the current domestic standard equates the arch ring to a
simply supported eccentric compression column with a length of .36 S
(S is the arc length of the arch axis), as shown in Figure 1B (Lin and
Chen, 2016). The internal force of the section is as follows:

Mc � N e + f( ), (3)
Nc � N . (4)

Type: Mc—real bending moment of the eccentric compression
column section; Nc—eccentric compression column axial force
N—eccentric force; e—Eccentricity, and f—transverse deformation
of the cross section.

It can be found from the analysis of the real internal force of the
eccentric compression column that the eccentric force transfer to the
fixed end along the axis directly forms the vertical reaction force. The
axial force is equal to the eccentric force. The cross-section bending
moment is produced by the eccentricity, and thus it indirectly leads to
lateral deformation. So, the bearing capacity of eccentric compression
column destruction mainly comes from the vertical force produced by
the linear bending moment and transverse deformation and
eccentricity of the additional bending moment.

In view of the differences in the bearing mechanisms of the “arch
mode” and “rod mode,” the load-bearing capacity model test of the
CFST single-pipe arch was carried out from the real force mode of the
arch. By analyzing the load–displacement state, the damage mode and
the real internal force in the arch in the geometrically non-linear stage,
the difference between the “arch mode” and “rod mode” is verified,
and a new calculationmodel of the CFST arch bridge based on the arch
effect is proposed.

FIGURE 1
Stress characteristics of the “archmode” and “rodmode”: (A) Forces
in “arch mode”; (B) Force in “rod mode“.
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3 Single-tube model test of the “arch
mode”

3.1 Model design and production

A catenary steel tube single-tube arch bridge with a calculated span
of 95 m was used as the prototype. The ratio of the sagittal span was 1/
3.5, the calculated sagittal height was 27.143 m, the arch axis
coefficient was 1.5, the diameter of the steel tube was 1.55 m, the
wall thickness of the arch foot was 26 mm, and the rest was 22 mm,
and C60 concrete was poured into the tube.

The test arch was scaled down at 1:16, with a reduced span of
5.938 m and a calculated height of 1.696 m. Due to the limitation of
market steel pipe specifications, the pipe wall was too thin
according to the actual scale ratio, so the full-span diameter and
wall thickness of the steel pipe were set at 89 mm and 4 mm,
respectively, according to the existing market specifications, as

shown in Figure 2. Scale parameters and scale deviation values are
shown in Tables 1, 2.

The steel pipe material was Q345, and the arch was perfused with
C80 fine-grain concrete. After curing for 28 days, the compressive
strength of six concrete blocks was tested. The compressive strength of
the cube was 51.85 MPa, the compressive strength of the prismatic
core was 32.4 MPa, and the elastic modulus was 3.4834 × 104 MPa.
Steel tube yield strength was 361 MPa, tensile strength was 540 MPa,
and the elastic modulus was 2.1 × 105 MPa.

The vault and L/4 loading conditions were designed to test the in-
plane deformation state, strain distribution, and failure mode of the
whole process of the arch. The overall design is shown in Figure 3.

3.2 Designs of the test device and measuring
point

A 50-t hydraulic jack was adopted. The top of the jack was a
pressure sensor, and the bottom design disk was in contact with the
arch rib loading block to ensure uniform force. The skewback reaction
device was a triangular steel structure. The test was mainly conducted
to study the load bearing capacity of the arch under vertical load in-
plane deformation. In order to avoid out-of-plane deformation
causing out-of-plane instability damage to the structure, the whole
arch set five transverse limits to ensure that the arch was only in-plane
free deformation during the loading process. The contact surface
between the limit and the arch was coated with a tetrafluoro plate
to reduce friction. The main device configuration is shown in Figure 3
and Figure 4A. Percentage gauges and strain gauges were used to test
the displacement and strain in the whole process. Two percentage
gauges were set at each L/8 to measure the horizontal and vertical
displacement, and four percentage gauges were set at each skewback to
monitor whether deflection occurred, as shown in Figure 4B. Strain
gauges are set at the L/8 and the section of the two arch feet. The upper
and lower edges of the section are arranged in annular and
longitudinal directions, respectively, while only longitudinal
directions are arranged on the side. Fifty-four strain gauges are
arranged in the whole arch, as shown in Figure 5.

FIGURE 2
Cross-section of the arch rib.

TABLE 1 Parameters of the scaled section.

Project Span (m) Rise (m) String pipe diameter (m) Wall thickness (m) Inner diameter of chords (m)

Original bridge 95 27.143 1.55 .026 1.498

Ideal scale value 5.938 1.696 .0969 .00163 .09364

Actual scale value 5.938 1.696 .089 .004 .081

TABLE 2 Scale size deviation.

Project Ideal scale value Actual scale value Percentage deviation (%)

Area (m2) .00048786 .00106814 118.95

In-plane moment of inertia (m4) 5.5366E-07 9.67E-07 74.62

Compressive stiffness (N/m) 100498797 220037149 118.95

Bending stiffness (N·m2) 114053.946 199161.125 74.62
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3.3 Measurement method for internal force

According to Eq. 1, the real internal forces of any section can be
calculated if the internal forces of the arch foot, section
displacement, and external load are known, based on the
calculation principle of the real internal forces in the arch. The

section displacement and external load can be directly measured by
the test, while the actual measurement of the internal forces of the
arch foot is difficult to measure. In this paper, the separation
skewback method in Li (2012) was used to measure the internal
force of the arch foot. Four sensors were installed on the back and
bottom of the skewback to measure the horizontal thrust and

FIGURE 3
Overall diagram of the model.

FIGURE 4
Real diagram of local construction: (A) Main test equipment; (B) Structural diagram of the skewback.
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vertical reaction force, as shown in Figure 8. Due to the effect of the
arch foot bending moment, the skewback will have a trend of in-
plane rotation. It was found in finite element analysis that the arch
foot at both ends of the vault loading has a negative bending
moment, and the skewback rotates clockwise. In four-point
loading, there is a negative bending moment at the arch foot
close to the loading point, and the skewback rotates clockwise,
while there is a positive bending moment at the arch foot far away
from the loading point, and the skewback rotates counterclockwise.
To accurately measure the horizontal thrust of the arch foot and

limit the rotation of the skewback, two sensors are set at the front of
the top of the vault loading base (Figure 4B). Two sensors are set at
the front of the top and the front of the bottom of the skewback
near and far from the loading point of the four-point loading
(Figure 6; Figure 4B). Then, the bending moment, horizontal
reaction force, and vertical reaction force of the arch foot are
calculated according to the static equivalence principle. The
calculation principle is shown in Figure 7.

Through force analysis, the actual calculation formula of the arch
foot bending moment, horizontal reaction force, and vertical reaction
force can be obtained as follows:

FIGURE 5
Placement of displacement and strain measurement points.

FIGURE 6
Four-point loading skewback.

FIGURE 7
Schematic diagram of calculation of the internal force of the arch
foot.
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HA � H1 +H2 −H3

VA � V1 + V2

MA � H1h1 −H2h2 −H3h3−
V1v1 + V2v2

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

. (5)

Type: HA—horizontal reaction force; H1, H2, H3—net force value of
each drainage smooth reaction force sensor; h1, h2, h3—vertical
distance from each drainage reaction sensor to the center of the
arch foot; V1, V2—net force value of each row of the vertical
reaction sensor; v1, v2—horizontal distance from each row of
vertical reaction sensors to the center of the arch foot.

3.4 Test steps

First, the reaction tower and skewback should be precisely
positioned. It was necessary to pre-push it to eliminate the anchor

hole clearance after the reaction tower was installed. Then, the arch
ribs were erected and the hanging hammer was used to ensure that the
arch was in a vertical state without initial transverse deviation. Finally,
the loading device and test device are installed. The initial state after
the preparation is shown in Figure 8. Formal loading needs to be
graded according to the results of finite element ultimate bearing
capacity analysis, that is, the ultimate force of 0%–3% or so average
.5 kN/level, 3%–5% or so average 1 kN/level, 5%–10% or so average
2 kN/level, and 10% after the average 5 kN/level until failure, with each

FIGURE 8
Initial state: (A) A-1 arch; (B) A-2 arch.

TABLE 3 Hierarchical loading value (Unit: kN).

Vault loading condition Quarter section loading condition

Classification Load value Classification Load value Classification Load value Classification Load value

1 .500 11 30.891 1 .400 11 24.713

2 1.000 12 35.891 2 .800 12 28.713

3 1.750 13 40.891 3 1.400 13 32.713

4 2.875 14 45.891 4 2.300 14 36.713

5 4.563 15 50.891 5 3.650 15 40.713

6 7.094 16 55.891 6 5.675 16 44.713

7 10.891 17 60.891 7 8.713 17 48.713

8 15.891 18 63.391 8 12.713 18 50.713

9 20.891 19 64.641 9 16.713 19 50.838

10 25.891 20 65.266 10 20.713 — —

TABLE 4 Description of working conditions.

Model number Loading condition

A-1 Vault loading condition

A-2 Quarter section loading condition
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static loading level of 2 min after the stability of the reading. Full-arch
graded loading values are shown in Table 3. The test designed two
loading conditions. The arch top loading arch rib was named A-1 and
4-point loading condition arch rib was named A-2. The description of
the conditions is given in Table 4 and the actual loading figure is
shown in Figure 8.

3.5 Analysis of test results

3.5.1 Load–displacement curve
According to Table 3, the load–displacement curves of each

section of the A-1 arch and A-2 arch are shown in Figures 9, 10
(vertical displacement is “+” downward and horizontal displacement
direction of shear wall side arch is “+”). The whole deformation
process of the arch can be roughly divided into three stages:

(1) Elastic deformation stage. When the A-1 arch was loaded to
4.563 kN (.07 Pu) and the A-2 arch was loaded to 3.65 kN
(.073 Pu), the load–displacement curves of each section
basically changed linearly, and the arch was in the stage of
linear elastic change, almost unaffected by non-linear
influence.

(2) Elastic–plastic deformation stage. With the increase in the load,
the slope of the curve gradually decreases, and the arch enters the
stage of elastic–plastic deformation. The sections, especially the
sections at loading points, are gradually affected by geometric
non-linearity. At this stage, the upper critical load limit for arch A-
1 was about 45.891 kN (.71 Pu), and the upper critical load limit
for arch A-2 was about 40.713 kN (.81 Pu).

(3) Plastic deformation stage. With the increase in the load, the
deflection of the loading point increases continuously, the slope
of the curve increases faster, and the curve gradually tends to be
horizontal. Under the double non-linear action, the arch has a
slight change in load, a sharp increase in displacement, and a

reduction in load value. The load could not be increased
continuously when the A-1 and A-2 arches were added to
65.012 kN and 50.275 kN, respectively.

The results of failure load–displacement curves under two
working conditions showed that the ultimate bearing capacity of
the A-1 arch was Pu = 65.012 kN, the maximum vertical
displacement of the loading point was 76.31 mm, and the
maximum horizontal displacement of the L/4 section was
20.53 mm. The ultimate bearing capacity of the A-2 arch was
Pu = 50.275 kN, and the maximum vertical displacement and
horizontal displacement of the loading point are 108.96 mm and
84.96 mm, respectively. The comparison between the test results
under the ultimate load and the preliminary FEM calculation is
shown in Table 5. The comparison results showed that the
difference between the test ultimate bearing capacity value and
the preliminary calculation was less than 2%, and the displacement
difference was about 10%. It indicated that the ultimate bearing
capacity test values of the two working conditions are accurate. The
real CFST arch shows superior deformation capacity compared
with the theoretical calculation.

3.5.2 The strain state under ultimate load
All steel tube surfaces in L/8 and two arch feet were decorated

with a strain gauge, as shown in Figure 5. As the deformation of the
test arch was mainly in-plane deformation, only the edge of the
steel tube on the longitudinal strain under the ultimate load was
analyzed. It is given in Section 3.1 that the measured yield strength
of the steel pipe was 361 MPa, the modulus of elasticity was 2.1 ×
105 MPa, and the steel pipe yield strain was εy � σy/E � 1719. The
whole arch strain and tube concrete crack distribution are shown in
Figure 11. The positive direction of the transverse coordinate axis
indicates gate side arch seat to shear wall side arch seat. The specific
analysis of concrete cracks will be shown in the next section. The
strain distribution results showed that the steel pipe at the location

FIGURE 9
A-1 arch of the load–displacement curve: (A) Vertical displacement; (B) Horizontal displacement.
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where the concrete cracks appear had yielded. The tensile and
compressive strain values of the upper and lower edges of the steel
pipe were basically symmetric, and the strain at the upper and
lower edges of the loading site reached the peak. The strain
distribution and the location of cracks corresponded with each
other.

3.5.3 Damage state
The initial state of two loading conditions and the overall

deformation state under the ultimate load are shown in
Figure 12. The concrete in the tube after destruction is shown in
Figure 13.

It can be seen that the vault has obvious vertical sag in the
ultimate state of the bearing capacity of the A-1 arch. There are
several small vertical micro-cracks perpendicular to the arch axis
extending upward to the lower edge of the concrete in a certain area
at both ends of the loading point. There was an obvious bulge near
the L/4 section, and a macroscopic crack on the upper edge of the
concrete extends downward perpendicular to the axis of the arch.
There was a slight depression near the cross-section of the two arch
feet, and a macroscopic crack on the lower edge of the concrete
extends upward perpendicular to the axis of the arch.

In the ultimate state of the bearing capacity of the A-2 arch, the
L/4 section was inclined to sag, and there was a macroscopic crack
at the lower edge of the concrete perpendicular to the arch axis
extending upward. The arch foot section of the gate side was
slightly raised, and there was a macroscopic crack on the upper
edge of the concrete that was perpendicular to the arch axis
extending downward. There was an obvious bulge near the 3L/
4 section, and a macroscopic crack on the upper edge of the
concrete extends downward perpendicular to the axis of the
arch. There was a slight depression near the section of the arch
foot on the shear wall side, and a macroscopic crack at the lower
edge of the concrete extends upward perpendicular to the arch axis.

Combined with Figure 10 and the aforementioned failure
states, it can be seen that the four crack positions of the
concrete in the tube after failure under the two working
conditions all appear near the extreme point of the tensile strain
of the steel tube, which was a tensile failure. At this time, the
concrete at the crack stops working, indicating that plastic hinges
are formed at the four positions in the arch and that the structure
cannot continue to bear. Therefore, the failure mode of the arch
was the 4-hinge failure, and the structure forms a geometrically
variable system and loses the bearing capacity.

FIGURE 10
A-2 arch of the load–displacement curve: (A) Vertical displacement; (B) Horizontal displacement.

TABLE 5 Comparison between the test value and preliminary calculated value of the ultimate load.

Category A-1 arch A-2 arch

Test
result

Preliminary
calculated value

Percentage of
difference

Test
result

Preliminary
calculated value

Percentage of
difference

Ultimate bearing
capacity (kN)

65.012 65.266 −.39% 50.275 50.838 −1.11%

Maximum vertical
displacement (mm)

76.31 69.53 9.75% 108.96 96.31 13.13%

Maximum horizontal
displacement (mm)

20.53 19.02 7.94% −84.96 −75.73 12.19%
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4 Comparative analysis of the “arch
mode” and “rod mode”

In Section 3.5.1, the loading interval of the A-1 arch with obvious
geometric non-linearity is given as 4.563 kN–45.891 kN, and that of
the A-2 arch is 3.65 kN–40.713 kN. The calculation section of the A-1
and A-2 arches and the selection of loads outside the geometric non-
linear loading interval are listed in Table 6. The geometric non-linear
bending moment values of the two calculation modes are compared
under the corresponding external load.

4.1 Calculated geometric non-linear bending
moment values for the regulation

In the current JTG/TD65-06-2015 code (concrete-filled steel tube
arch bridge design code) (Ministry of Transport of the People’s
Republic of China, 2015), the eccentricity increasing coefficient η is

introduced into the calculation formula of the ultimate bearing
capacity of the CFST arch to consider the geometric non-linearity
of the arch. The main parameters of the formula are the Euler critical
force formula and first-order linear axial force, as shown in Eq. 6. It
can be seen that the arch is equivalent to an eccentric compression
column for calculation based on the equivalent beam-column method
in the arch bridge specification. Its essence is that the first-order
bending moment obtained by elastic calculation is enlarged by the
eccentricity increasing coefficient, which is equal to the moment
existing in the control section of the actual component. Then, the
geometric non-linear bendingmoment is calculated, as shown in Eq. 7.

η � 1
1 − 0.4N/NE

, (6)
M′ � ηM. (7)

Type: η—eccentricity increase coefficient; Euler critical force
NE � π2EscAsc

λ2
, of which, Esc—combined the elastic modulus of

CFST, Asc—combined the cross-sectional area of CFST; N—first-
order linear axial force, M′—geometric non-linear bending
moment, and M—linear bending moment.

According to the section-related parameters of the test arch
provided in Section 3.1, the Eulerian critical force NE = 304.3 kN
can be calculated. The first-order linear axial force and bending
moment can be calculated by finite elements as recommended in
the regulation. So, the first-order linear axial force and bending
moment of the test arch were calculated by Midas/civil, as shown
in Table 7.

The Eulerian critical force and the first-order axial force and
bending moment values corresponding to the external loads P1~P4 in
Table 7 are substituted into Eqs 6, 7, obtaining the eccentricity
increasing coefficient η and geometric non-linear bending moment
values M′ of the corresponding sections, as shown in Table 8.

4.2 Measured geometric non-linear bending
moment values based on the arch effect
calculation model

According to the geometric non-linear internal force
calculation model based on the arch effect proposed in this
paper according to Eq. (1), the real geometric non-linear
bending moment in the arch can be calculated by substituting
the measured load–displacement results and the coordinate
position of the cross-section. The cross-section positions and
the measured external loads P1~P4 correspond to the horizontal
displacement δ and vertical displacement ω (arch foot
displacement is 0), as shown in Tables 9, 10.

The measured values of horizontal thrust HA, vertical reaction VA,
bending moment MA, and other cross-section geometric non-linear
bending moment values Mg in the arch foot of the gate side are shown
in Table 11.

4.3 Comparative analysis

The geometric non-linear moment values calculated by the
regulation in Table 8 are compared with the real geometric non-
linear moment values of the CFST arch measured in Table 11, as
shown in Table 12 and Figure 14.

FIGURE 11
Strain and crack distribution of concrete in the tube under ultimate
load: (A) A-1 arch; (B) A-2 arch.
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TABLE 6 Selection of calculation parameters.

Condition Calculate the cross section Loading (kN)

P1 P2 P3 P4

A-1 Arch foot L/4 Vault 15.891 25.891 35.891 45.891

A-2 Arch foot L/4 3L/4 16.713 24.713 32.713 40.713

TABLE 7 First-order linear axial forces (N) and bending moments (M) calculated by finite elements.

Condition P1 P2 P3 P4

N (kN) M (kN·m) N (kN) M (kN·m) N (kN) M (kN·m) N (kN) M (kN·m)

A-1 14.246 2.825 23.211 4.602 32.177 6.38 41.142 8.157

14.969 −1.849 24.389 −3.012 33.809 −4.176 43.229 −5.339

12.879 4.845 20.984 7.893 29.089 10.942 37.193 13.991

A-2 15.789 −4.41 23.346 −6.521 30.904 −8.632 38.462 −10.742

5.615 6.024 8.302 8.908 10.99 11.792 13.677 14.675

8.28 −2.185 12.243 −3.231 16.206 −4.276 20.17 −5.322

FIGURE 12
State after destruction: (A) A-1 arch; (B) A-2 arch.

TABLE 8 Geometric non-linear bending moment values calculated by the regulation (unit: kN).

Condition Cross-section position P1 P2 P3 P4

η M′ η M′ η M′ η M′

A-1 Gate-side arch foot 1.019 2.879 1.031 4.747 1.044 6.662 1.057 8.623

L/4 1.020 −1.886 1.033 −3.112 1.047 −4.370 1.060 −5.661

Vault 1.017 4.928 1.028 8.117 1.040 11.377 1.051 14.710

A-2 Gate-side arch foot 1.021 −4.503 1.032 −6.727 1.042 −8.997 1.053 −11.314

L/4 1.007 6.069 1.011 9.006 1.015 11.965 1.018 14.944

3L/4 1.011 −2.209 1.016 −3.284 1.022 −4.369 1.027 −5.467
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The comparison results show that the results of the two modes at
the beginning of the geometric non-linearity of the A-1 and A-2
arches are in good agreement. As the load was increased, the
geometric non-linearity has the greatest effect under the critical
external load P4 at the end of the elasto-plastic phase. At this time,
the measured value of the arch foot section of the A-1 arch is 2.04%
larger than the regulation calculation value, the measured value of
the L/4 section is about 6.81% larger than the regulation calculation
value, and the measured value of the arch top section is about 3.38%
smaller than the regulation calculation value. The measured value of
the arch foot section of the A-2 arch is about 5.31% larger than the
regulation calculated value, the measured value of the L/4 section is
about .73% smaller than the regulation calculated value, and the
measured value of the 3L/4 section is about 15.73% larger than the
regulation calculated value. It shows that the geometric non-linear
moment value of the control section of the CFST arch calculated by
the eccentricity increase coefficient in the regulation is conservative,
but the influence of geometric non-linearity of other sections is not
considered enough, and the local damage of other sections may occur
before the control section under the action of the large vertical load,
which also shows that the calculation mode of the regulation,
considering the whole arch affected by geometric non-linearity
due to the eccentricity increase coefficient, is not reasonable.

TABLE 9 A-1 arch P1~P4 measured displacement (unit: mm).

Loading L/4 Vault

δ ω δ ω

P1 −2.23 −1.89 .00 6.08

P2 −3.76 −3.16 .00 10.35

P3 −5.34 −4.47 .00 14.86

P4 −7.30 −6.13 .00 21.14

TABLE 10 A-2 arch P1~P4 measured displacement (unit: mm).

Loading L/4 3L/4

δ ω δ ω

P1 10.53 12.50 8.14 −9.38

P2 16.05 19.16 12.39 −14.22

P3 21.94 26.37 16.82 −19.23

P4 30.70 37.47 22.50 −25.64

FIGURE 13
Failure state of concrete in the pipe after failure: (A) A-1 arch; (B) A-2 arch.
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TABLE 11 Measured values of geometric non-linear internal forces (unit: kN m).

Condition Cross-section position Internal force P1 P2 P3 P4

A-1 Gate-side arch foot HA 12.764 20.823 28.917 37.431

VA 7.947 12.947 17.948 22.947

MA 2.872 4.721 6.615 8.799

L/4 Mg (L/4) −1.915 −3.161 −4.444 −6.046

Vault Mg (L/2) 4.889 8.048 11.272 14.213

A-2 Cross-section position HA 7.976 11.794 15.638 19.796

VA 13.946 20.623 27.309 34.1

MA −4.514 −6.774 −.134 -11.915

L/4 Mg (L/4) 6.098 9.109 12.149 14.835

3L/4 Mg (3L/4) −2.321 −3.501 −4.745 −6.327

TABLE 12 Comparison of regulation values and measured values (unit: kN m).

Condition Cross-section position Loading Regulation value Measured value Difference ratio (%)

A-1 Gate-side arch foot P1 2.88 2.87 −.24

P2 4.75 4.72 −.54

P3 6.66 6.62 −.70

P4 8.62 8.80 2.04

L/4 P1 −1.89 −1.92 1.53

P2 −3.11 −3.16 1.58

P3 −4.37 −4.44 1.69

P4 −5.66 −6.05 6.81

Vault P1 4.93 4.89 −.80

P2 8.12 8.05 −.85

P3 11.38 11.27 −.92

P4 14.71 14.21 −3.38

A-2 Gate-side arch foot P1 −4.50 −4.51 .23

P2 −6.73 −6.77 .69

P3 −9.00 −9.13 1.52

P4 −11.31 −11.92 5.31

L/4 P1 6.07 6.10 .48

P2 9.01 9.11 1.14

P3 11.96 12.15 1.54

P4 14.94 14.84 −.73

3L/4 P1 −2.21 −2.32 5.07

P2 −3.28 −3.50 6.61

P3 −4.37 −4.75 8.60

P4 −5.47 −6.33 15.73
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5 Conclusion

The specific results of the analysis are as follows:

(1) The failure of the arch mainly comes from the linear bending
moment generated by the internal force of the arch foot and the
external load and the non-linear bending moment directly
generated by the external load after deformation. In contrast,
the eccentric compression column mainly comes from the linear
bending moment generated by the eccentric force and the non-
linear bending moment generated by the transverse deformation
or transverse force. These two modes have different force
structures, force transmission routes, and deformation sources,
which lead to different bearing mechanisms.

(2) The deformation state of the arch in the whole process is divided
into three stages: elastic deformation, elastic–plastic deformation,
and plastic deformation. Similar to the eccentric compression
column, its failure mode is also a hinge failure. However, the
experimental phenomenon showed that due to different bearing
mechanisms of the two modes, the final failure state of the arch
exhibits 4-hinge failure and has strong plastic deformation ability.
In contrast, the eccentric compression column exhibits single-
hinge failure, which indicates that the deformation ability of the
arch is inevitably reduced after the arch is equivalent to a column
of considerable length.

(3) The initial geometric non-linear moments measured based on the
“arch mode” are in good agreement with the calculated results of
the “rod mode.” However, the increase in load increased the
proportion of geometric non-linear effects, and the geometric
non-linear moments calculated by the eccentricity increase
coefficient are conservative. In the complex force environment,
there is a high possibility of local damage of other sections before
the control section, which indicates that the calculation mode of
the regulation considering the full arch affected by geometric non-
linearity through the eccentricity increase coefficient is not good.

(4) This paper proposes a new calculation model for CFST arch
bridges considering geometric non-linear internal forces, which
can provide a new idea for the future large-span arch bridge
bearing capacity and stability and other verification models. It can
help optimize the arch axis and arch rib section form and structure
and enhance the arch bridge span.
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FIGURE 14
Comparison of geometric non-linear bending moment values between the “arch mode” and “rod mode”: (A) A-1 arch;(B) A-2 arch.
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