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Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease. Pigmented
villonodular synovitis (PVNS) is a tenosynovial giant cell tumor that can involve joints.
The mechanisms of co-morbidity between the two diseases have not been
thoroughly explored. Therefore, this study focused on investigating the functions,
immunological differences, and potential therapeutic targets of common genes
between RA and PVNS.

Methods: Through the dataset GSE3698 obtained from the Gene Expression
Omnibus (GEO) database, the differentially expressed genes (DEGs) were
screened by R software, and weighted gene coexpression network analysis
(WGCNA) was performed to discover the modules most relevant to the clinical
features. The common genes between the two diseases were identified. The
molecular functions and biological processes of the common genes were
analyzed. The protein-protein interaction (PPI) network was constructed using
the STRING database, and the results were visualized in Cytoscape software. Two
machine learning algorithms, least absolute shrinkage and selection operator
(LASSO) logistic regression and random forest (RF) were utilized to identify hub
genes and predict the diagnostic efficiency of hub genes as well as the correlation
between immune infiltrating cells.

Results: We obtained a total of 107 DEGs, a module (containing 250 genes) with the
highest correlation with clinical characteristics, and 36 common genes after taking
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the intersection. Moreover, using twomachine learning algorithms, we identified three
hub genes (PLIN, PPAP2A, and TYROBP) between RA and PVNS and demonstrated
good diagnostic performance using ROC curve and nomogram plots. Single sample
Gene Set Enrichment Analysis (ssGSEA) was used to analyze the biological functions in
which three genes weremostly engaged. Finally, three hub genes showed a substantial
association with 28 immune infiltrating cells.

Conclusion: PLIN, PPAP2A, and TYROBP may influence RA and PVNS by modulating
immunity and contribute to the diagnosis and therapy of the two diseases.

KEYWORDS

rheumatoid arthritis, pigmented villonodular synovitis, weighted gene co-expression network
analysis, machine learning, immune cell infiltration, hub gene

Introduction

RA is a chronic autoimmune disease that primarily affects the
joints and is characterized by progressive, symmetrical inflammation
of the joints, ultimately leading to destruction of articular cartilage,
bone erosion, and disability (Smolen et al., 2016). The histological
manifestations of RA are mainly three stages: cell proliferation, fibrin
exudation, and inflammatory infiltration (Aigner and McKenna,
2002). The disease is primarily caused by the transport of
hyperplastic synovial tissue fibroblasts, T and B lymphocytes,
neutrophils and monocytes into the synovial tissue (Muller-Ladner
et al., 2005).

PVNS, also known as tenosynovial giant cell tumor, is a rare
joint disease. The annual incidence of PVNS is 1.8 per million and
is increasing each year as awareness of the disease grows (Xie et al.,
2015). It is characterized by inflammatory synovitis, synovial cell
hyperplasia, and massive monocyte-derived osteoclast
accumulation in joint synovial tissue (Rubin, 2007). It is a
classic single-joint disease that frequently affects the knee,
followed by the hip, ankle, shoulder, and elbow (Myers and
Masi, 1980; Abdul-Karim et al., 1992; Chebib et al., 2018). The
histological features of PVNS are fibrous matrix hyperplasia,
macrophage infiltration, and hemosiderin deposition (Dorwart
et al., 1984).

Both RA and PVNS are joint diseases, and their common
feature is synovial hyperplasia due to excessive proliferation of
synovial cells. Both RA and PVNS have an inflammatory
environment (Berger et al., 2005). A study comparing the
pathological features of RA and PVNS found hyperplasia of
macrophages and fibroblasts in the lesioned synovial tissue
(Berger et al., 2005). On arthroscopy and pathological
examination, the villous nodular tissue exhibited more typical
features of PVNS. Intra-articular injection of TNF-α inhibitors
showed significant therapeutic effects in both RA and PVNS
(Fiocco and Punzi, 2011). The lack of attention to PVNS has led
to an increasing incidence of coexisting PVNS and RA, and the
ability to correctly identify PVNS and RA will have a direct impact
on patient outcome, so there is an urgent need to develop new
biomarkers to identify these two diseases.

In this study, we extracted 18 RA samples and 11 PVNS samples.
After normalization of the GSE3698 dataset, 107 differentially
expressed genes (60 up-regulated and 47 down-regulated) were
identified. In this way, the genes that are differentially expressed in
RA and PVNS were analyzed, and the common target for diagnosing
RA and PVNS was developed.

Materials and methods

Data collection and standardization

The GSE3698 (Finis et al., 2006) dataset was acquired from the
GEO database (http://www.ncbi.nlm.nih.gov/geo) (Edgar et al., 2002),
the dataset was based on the GPL3050 (Human Unigene3.1 cDNA
Array 37.5K v1.0) and 18 RA samples and 11 PVNS samples were
extracted from this dataset. We used R (version 4.2.0) to process the
data and explore the downstream functional expressions. Using the
“limma” package (Ritchie et al., 2015), the expression matrix was
constructed, and then the dataset was normalized by taking log2 and
utilizing the normalize Between Arrays function.

Identification of DEGs

First, the dataset of GSE3698 was transformed into an expression
matrix using the “limma” packages, and then differentially expressed
genes (DEGs) were identified using the screening criteria adjust
p-value <.05 and abs (logFC) > 0.5, Second, the “pheatmap” package
was used to display the 30 most variable genes among PVNS and RA
samples. Lastly, the “ggplot2” package (Wickham, 2009) was employed to
generate a volcanic map depicting which genes were turned up or down.

WGCNA screening for key module genes

Gene association patterns between diverse samples can be
characterized using the systems biology method known as
WGCNA (Langfelder and Horvath, 2008). To weed out samples
that might be inappropriate, we used a mean FPKM = 0.5 filtering
criterion. Then, with the scale-free network concept, the weighting
coefficient was determined. In order to calculate the dynamic tree
cutting procedure, set the red line to 0.9, the module cut height to 0.25,
and the minimummodule gene count to 40. At last, for major modules
related to clinical characteristics, module membership (MM) and gene
significance (GS) were computed.

Functional enrichment analysis of common
genes

The DEGs and selected key module genes were intersected using
the “randomcoloR” and “venn” packages to identify common genes.
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To explore the biological functions of the common genes of PVNS and
RA, we analyzed the Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathways via “ClusterProfiler”,
“ggnewscale” and “DOSE” packages (Yu et al., 2012; Yu et al.,
2015; Campitelli, 2020). Adjusted p-value <.05 was considered
significant.

PPI network construction and analysis of
common genes

Search Tool for the Retrieval of Interacting Genes (STRING;
http://string-db.org) (version 11.5) (Franceschini et al., 2013) could
be used to search for interactions between proteins of interest with the
goal of creating PPI networks with complicated relationships.
Interactions with a combined score greater than 0.40 were
statistically significant. This PPI network was represented using
Cytoscape (http://www.cytoscape.org) (version 3.9.1) (Smoot et al.,
2011). The core common genes were found by using the CytoNCA
(Tang et al., 2015) plug-in in Cytoscape. Here, we applied betweenness
(BC) to determine core common genes. Subsequently, we generated a
network diagram of the core common genes with the closest
associations.

Hub genes identification with machine
learning

Machine learning methods can improve the accuracy of gene
screening. On one hand, LASSO logistic regression algorithm
(Tibshirani, 1996) put 36 common genes in the common multiple
regression, increased the penalty function, and continuously
compressed the coefficients, thus streamlining the model and
filtering out the number of genes with the best fit. On the other
hand, using the “glmnet” package (Friedman et al., 2010), LASSO
regression was used to discover hub genes. What’s more, the RF
algorithm (Breiman, 2001) was conducted to screen hub genes by
using the “randomForest” package (Liaw and Wiener, 2002). Finally,
overlapping genes among 36 common genes generated via LASSO
regression and RF algorithm were considered as hub genes in PVNS
and RA. The GeneCards database (http://www.genecards.org/) was
used to find relevant genes, proteins, and disease connections.

Evaluation of the diagnostic efficacy of hub
genes

Combined with the screened hub genes, logistics regression was
used to construct nomogram, Similarly, the hub genes were tested to
see whether they might be used to distinguish PVNS samples from
control samples using the “pROC” R program (Robin et al., 2011).

Biological process and immune infiltration
analysis of hub genes

To begin with, the “ggplot2”, “limma”, and “pheatmap” packages
were used to investigate the functional pathways enriched with hub
genes. ssGSEA is a method for investigating the absolute enrichment

of hub genes in a dataset. Furthermore, ssGSEA was performed using
the “GSEABase” package (Merico et al., 2010) and “GSVA” package
(Hänzelmann et al., 2013) to investigate differences in immune cells’
expression between PVNS and RA samples and immune infiltration of
hub genes.

Evaluation of expression differences of hub
genes

The “PerformanceAnalytics” (Peterson et al., 2018) and “circlize”
(Gu et al., 2014) packages were used to explore the correlation analysis
on hub genes, and the “corrplot” package was used to visualize the
results. Moreover, to investigate differences in hub genes, statistical
validation of differential expression analysis was carried out using the
“limma” package.

Results

Identification of DEGs

The research process is shown in Figure 1. After normalizing the
GSE3698 dataset (The normalized boxplots of the dataset were shown
in Supplementary Figure S1), 107 differentially expressed genes were
identified, consisting of 60 up-regulated and 47 down-regulated genes.
The statistics were shown on a map of volcanoes (Figure 2A).
Figure 2B displayed a cluster heatmap based on the 30 most
differentially expressed genes.

Acquisition of key modules and common
genes

WGCNA was used to search for key module genes to identify
those having the highest correlation to clinical characteristics. The
appropriate soft threshold was determined to be 8 (Figure 3A. To
satisfy the scale-free network topology, we select a soft threshold
power of 8 with R2 = 0.89, as demonstrated in Supplementary Figure
S2). Then, the dynamic tree cutting technique obtained a total of 4 key
modules by setting MEDissThres to 0.25 and minModuleSize to 45
(Figure 3B). Furthermore, analysis of correlation revealed that the
MEturquoise module was the most significant module for PVNS
(Figure 3C). Finally, the 107 DEGs were intersected with the
250 genes acquired by WGCNA analysis to produce 36 common
genes of PVNS and RA (Figure 3D).

Functional enrichment analysis and PPI
networks

To investigate possible shared biological pathways and
mechanisms between PVNS and RA, we performed Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
pathway enrichment of 36 common genes. GO analysis was
notably enriched in regulation of immune effector process, antigen
processing and presentation of exogenous peptide antigen via MHC
class II, antigen processing and presentation of peptide or
polysaccharide antigen via MHC class II, secretory granule
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membrane, lysosomal membrane, immune receptor activity and
peptide binding (Figure 4A). The KEGG enrichment analysis
showed that antigen processing and presentation, staphylococcus
aureus infection, phagosome, and Th1 and Th2 cell differentiation
may play a significant role in PVNS and RA (Figure 4B). To examine

the interrelationships of common genes between PVNS and RA, we
imported 36 common genes to the STRING database and derived
interaction connections for genes with interaction score >0.4 and PPI
enrichment p-value <.05. For visualization purposes, Cytoscape
software was employed. After identifying a network of 34 nodes

FIGURE 1
Research process flow diagram.

FIGURE 2
(A) The volcano map of GSE3698. (B) The heatmap of GSE3698.
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connected by 56 edges using the STRING database, we used the
CytoNCA module in Cytoscape to calculate the degree of each gene,
and then we reduced the network to 18 core nodes (Figure 4C).

Identification of hub genes based on machine
learning algorithms

The 36 common genes were employed in the LASSO and RF
analyses to screen hub genes. Firstly, The LASSO regression algorithm
identified 8 out of the 36 key genes, including PLIN, PPAP2A, HLA-
DRA, KIAA 1949, RGS5, ALOX5AP, TYROBP and SLC2A5 (Figures
5A, B). CLECSF6, FABP4, TYROBP, LAPTM5, PPAP2A, PLIN,
CAPG, FCGR2B, VAMP8, CD14, NFIB, IFI30 and NOTCH3 were
determined as the 13 most relevant variables using RF (Figures 5C, D).
By overlapping the genes chosen by LASSO and RF, PLIN, PPAP2A,
and TYROBP were identified as hub genes in PVNS and RA
(Figure 5F). Table 1 provided their full names and functions, as
found in the Gene Cards database.

Verification of the diagnostic performance of
hub genes

Nomogram was utilized to estimate the diagnostic implications of
three hub genes, and the model comprising PLIN, PPAP2A, and

TYROBP was the outcome (Figure 6A). Then, visualizing three hub
genes for PVNS-related RA diagnosis using logistic regression
(Figure 6B). The diagnostic utility of the hub genes was then
assessed using ROC curves. The AUC values for PLIN, PPAP2A,
TYROBP, and nomoscore were diagnostically effective
(Figures 7A–D).

Enrichment analysis of hub genes in PVNS
and RA

To delve into the pathways involved in hub genes, we performed
single gene GSEA analysis with the following results: PLIN mainly
affected allograft rejection, ether lipid metabolism, and intestinal
immune network for IgA production (Figure 8A). PPAP2A
strongly influenced protein export, pentose and glucuronate
interconversions, and allograft rejection (Figure 8B). TYROBP
heavily impacted allograft rejection, collecting duct acid secretion,
and graft−versus−host disease (Figure 8C).

Immune infiltration analysis

The correlation between hub genes and 28 kinds of immune
infiltrating cells was analyzed. Initially, the expression differences of
28 immune infiltrating cells in the GSE3698 dataset were evaluated.

FIGURE 3
(A) WGCNA provides the definition for soft threshold power. For different soft threshold powers (β), scale-free indices and mean connectedness are
examined (B) The method of hierarchical clustering is used to find gene co-expression clusters. Each branch of the tree diagram represented a gene, and
genes that belong to the same module have the same coloring. (C) Four modules with different colors are obtained by linking the clinical characteristics of
PVNS and RA, combining modules with a feature factor greater than 0.45 and setting the minimum number of module genes to 40 for identification. (D)
Venn diagram demonstrates the intersection of common genes obtained by WGCNA and DEGs.
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FIGURE 4
(A) Results of GO analysis of the top 10 common genes, including BP, MF and CC (B) Analysis of KEEG enrichment revealed signaling pathways strongly
related with PVNS and RA. (C) PPI network constructed using the STRING database and Cytoscape. The wider the circle, the greater its significance, and the
redder the color, the greater its significance.

FIGURE 5
(A,B) LASSO logistic regression algorithm is used to retain the most predictive features and tuning parameter selection in the LASSO model (C,D)
Identification of the relative importance via PVNS and RA by calculating RF. (E) Intersection of two machine learning genes to obtain three machine learning.
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Natural killer T cell, Natural killer cell, Macrophage, Activated
dendritic cell, and Activated CD8 T cell were significantly positive
correlation with PVNS (p < .001). PVNS was strongly connected with
Plasmacytoid dendritic cell, Monocyte, MDSC, Immature dendritic
cell, Effector memory CD8 T cell, and Central memory CD8 T cell (p <
.01). Type 2 T helper cell was positively associated with PVNS (p <
.05). On the contrary, CD56dim natural killer cell, Neutrophil and
Memory B cell, Effector memory CD4 T cell were significant
correlation with RA (p < .05) (Figure 9A). Afterwards, we looked
at how 28 immune infiltrating cells were connected to 3 hub genes.
CD56dim natural killer cell and Memory B cell showed a robust
positive correlation with PLIN (p < .001). CD56dim natural killer cell
had a strong correlation with PPAP2A (p < .001). Regulatory T cell,
Plasmacytoid dendritic cell, Natural killer cell, MDSC, Macrophage,
Effector memory CD8 T cell, Central memory CD8 T cell, and
Activated dendritic cell were a crucial correlated with TYROP.
Natural killer T cell and Activated dendritic cell were negatively
correlated with PLIN (p < .001). Natural killer T cell and
Macrophage were negatively associated with PPAP2A (p < .001).
TYROBP and Neutrophil, CD56dim natural killer cell, had a passive
correction (p < .001) (Figure 9B).

Differential expression of hub genes in PVNS
and RA

To begin with, the heatmap was intended to reveal the
interdependencies between hub genes, PLIN and PPAP2A had a
positive correlation. PLIN was negatively associated with TYROBP
(Figure 10A), the expression levels of TYROBP were obviously higher
in PVNS samples than in RA samples (Figure 10B), while those of
PPAP2A and PLIN were significantly lower in PVNS samples than in
RA samples (Figures 10C, D). In a word, the findings demonstrated
that the hub genes we examined are useful in the diagnosis of PVNS
and RA.

Discussion

Innate immune system cells, such as monocytes, macrophages,
and dendritic cells (DCs), play an important role in the occurrence and
development of RA disease through their functions of phagocytosis,
antigen presentation, and cytokine production (McInnes et al., 2016;
Narasimhan et al., 2019; Saferding and Bluml, 2020), eventually

TABLE 1 The details of hub genes in PVNS and RA.

Gene
symbol

Aliases Full name Function

PLIN PLIN1 Perilipin 1 Modulator of adipocyte lipid metabolism. Coats lipid storage droplets to protect them from
breakdown by hormone-sensitive lipase (HSL). Unilocular lipid droplet formation by activating
CIDEC. May modulate lipolysis and triglyceride levelsFPLD4

PERI

PPAP2A PLPP1 Phospholipid Phosphatase 1 Magnesium-independent phospholipid phosphatase of the plasma membrane that catalyzes the
dephosphorylation of a variety of glycerolipid and sphingolipid phosphate esters

PAP-2a

LPP1

TYROBP DAP12 Transmembrane Immune Signaling Adaptor
TYROBP

Adapter protein which non-covalently associates with activating receptors found on the surface of a
variety of immune cells to mediate signaling and cell activation following ligand binding by the
receptorsKARAP

FIGURE 6
(A)A developed nomogram for the prognostic prediction of PVNS and RA hub genes. (B) This graph shows the predicted scores after aggregation of three
hub genes’ proportions.
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leading to the destruction of bone and cartilage (Elshabrawy et al.,
2015). In particular, macrophages play a central role in the initiation
and drive of RA (Udalova et al., 2016; Ardura et al., 2019; Siouti and
Andreakos, 2019). The number of synovial tissue macrophages is
clinically the most reliable indicator for assessing the severity of RA
and response to treatment (Tak and Bresnihan, 2000; Van Raemdonck
et al., 2020). In inflamed RA synovial tissue, the majority of antigen-
presenting cells (APCs) are fully differentiated dendritic cells (Iwasaki

and Medzhitov, 2015; Yu and Langridge, 2017), and a decrease in the
number of circulating DC cells in RA patients is associated with
increased inflammation (Eisenbarth, 2019). Furthermore, in RA
pathology, ROS production by neutrophils at sites of inflammation
leads to endothelial dysfunction and tissue damage (Cedergren et al.,
2007; Cecchi et al., 2018). In the inflamed RA synovium, NK cells
aggregate and lead to bone destruction (Dalbeth et al., 2004). Other
studies have shown that the number of granzyme-positive NK cells is

FIGURE 7
(A–D) ROC curve of PLIN, PPAP2A, TYROBP and nomoscore in PVNS and RA samples.

FIGURE 8
(A) UpGSEA results of PLIN (B) UpGSEA results of PPAP2A. (C) UpGSEA results of TYROBP.
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FIGURE 9
(A) Expression differences of 28 immune infiltrating cells in samples of PVNS and RA (B)Correlation between hub genes and infiltrating immune cells. Low
p-values are green, whereas high ones are red. (nsP < 1, #p < 0.2, *p < 0.05, **p < 0.01, ***p < 0.001).

FIGURE 10
(A) Correlation of the three hub genes (B) The expression levels of upgrade hub gene in PVNS. (C,D) The expression levels of upgrade hub genes in RA.
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increased in early RA synovial fluid compared with osteoarthritis (Tak
et al., 1994). High serum granzyme levels have been shown to be an
independent predictor of early erosion in RF-positive individuals
(Goldbach-Mansky et al., 2005). Under the stimulation of APC,
naive CD4+ T cells can differentiate into different types of cells,
which in turn triggers the overactivation of autoantigen T cells and
B cells, which eventually leads to persistent synovitis and joint
destruction (Derksen et al., 2017; Rao et al., 2017; Sparks, 2019;
Lee et al., 2020; Wu et al., 2020). Th17 cells are able to produce
various pro-inflammatory cytokines to promote synovitis, while Treg
cells suppress inflammation and maintain immune tolerance (Bilate
and Lafaille, 2012; Noack and Miossec, 2014; Shi and Chi, 2019).

PVNS may be caused by the disturbance of the CSF-1 gene at
1p13 and the COL6A3 gene at 2q35 (West et al., 2006; Cupp et al.,
2007). Studies have shown that IL-1β, IL-6, TNF-α and MMP-9 are
highly expressed in PVNS tissues. TNF-α stimulates the production of
MMPs, which can lead to cartilage and bone destruction in PVNS
(O’Keefe et al., 1998). In PVNS, the presence of macrophage,
histiocyte, and plasma cell infiltration stimulates an inflammatory
response (Bhatnagar et al., 2017).

The differential expression of 28 immune infiltrating cells in the
GSE3698 dataset was assessed by immune infiltration analysis. We
found that macrophages, plasma cells, dendritic cells, monocytes, etc.
were positively correlated with PVNS. Natural killer cells, neutrophils,
macrophages, etc. were significantly associated with RA. Both RA and
PVNS are associated with immune infiltration, but they are also
influenced by other metabolic pathways. In damaged joint tissue,
MAPKs not only govern the synthesis of pro-inflammatory cytokines
but also play a crucial role in the signaling cascade downstream of
interleukin (IL)-1, IL-17, and tumor necrosis factor (TNF)-α receptors
(McGeachy et al., 2019). PI3K/AKT interacts with the mammalian
target of rapamycin (mTOR) protein, inhibits fibroblastic synoviocyte
(FLS) autophagy, promotes sustained synoviocyte growth, and
aggravates RA (Miryala et al., 2019). O Osteoclasts migrate,
damage bones and articular cartilage via the PI3K/AKT signaling
pathway, and eventually cause joint abnormalities and exacerbate the
progression of RA) (Xin et al., 2020). The absence of Cadherin-11
inhibited PVNS and FLS migration and invasion. Moreover, the
expression of cadherin-11 was upregulated by inflammatory
stimuli, which in turn activated the NF-κB and MAPK signaling
pathways and facilitated cartilage destruction. Cadherin-11
inhibition prevented IL-1β- and TNF-α-induced activation of the
aforementioned pathways, migration and invasion of PVNS FLS,
and chondrocyte injury (Cao et al., 2020).

Studies have shown that the cytological features of RA are very
similar to the proliferating mononuclear synoviocytes in PVNS, and
synovial cell proliferation appears to be a common feature in the
pathogenesis of RA and PVNS (O’Keefe et al., 1998; Sarkissian and
Lafyatis, 1999; Nanki et al., 2001), proliferating synovial cells can
stimulate the expression of the macrophage marker CD68 (Aigner
et al., 1998; Sarkissian and Lafyatis, 1999). Comparing the
immunophenotype of proliferating synovial cells in RA and PVNS
found that the same cell population was involved in the proliferative
process. In localized and diffuse PVNS, macrophage-like and
fibroblast-like cells proliferated, while cells expressing markers of
macrophage and fibroblast-like cells hyperproliferated. In localized
PVNS, a significant increase in the number of fibroblast-like synovial
cells was found compared with diffuse PVNS (Flandry et al., 1994;
Kobayashi et al., 1994). M1 and M2 macrophages also play a role in

PVNS and RA, the detection of macrophage marker (CD68/CD163)
expression showed that macrophage-positive synoviocytes were found
in both RA and PVNS, In RA, CD68/CD163+ synoviocytes were most
often found in the synovial lining layer, but in PVNS, they were more
spread out (Sehgal et al., 2021). CD14+ cells from RA synovial fluid
express low levels of M2 anti-inflammatory markers, accordingly with
a high-level production of pro-inflammatory genes (Sierra-Filardi
et al., 2014). Non-classical Ly6C monocytes undergo polarization
into inflammatory macrophages (M1), increase disease
pathogenesis, and exhibit plasticity during the resolution phase.
What’s more, these cells differentiate into anti-inflammatory
M2 macrophages that address the combustion environment
(Misharin et al., 2014). Another study revealed that Notch
signaling has a strong relationship with M1 macrophage
polarization, and that inhibiting Notch signaling lowers joint tissue
inflammation by inducing a switch fromM1 to M2 macrophages (Sun
et al., 2017). Likewise, two M2 markers remain high and stable during
RA disease (Arg1 and Ym1) and M1 markers were strongly
upregulated (IL-1, IL-6, and CD86) (Hofkens et al., 2013). In
PVNS, a major component of the cells is composed of bystander
macrophages responding to CSF1, which stimulates increased
numbers of macrophages through CSF1 and also promotes
monocyte infiltration, damage cell clearance, and repair (Sehgal
et al., 2021).

When building a generalized linear model, the lasso machine learning
algorithm can include one dimensional continuous dependent variable,
multidimensional continuous dependent variables, non-negative count
dependent variables, binary discrete dependent variables, and
multivariate discrete dependent variables. Lasso can handle both
continuous and discrete dependent variables, and in general, the data
requirement (quantity) of lasso is extremely low, so the application degree
is wide. This solves the problem of screening for accurate results with a
small sample. Random forest is not sensitive to multivariate common
linearity, and the results are relatively robust for missing data and non-
equilibrium data. It can well predict the effects of up to thousands of
explanatory variables (Breiman, 2001) and is known as one of the best
algorithms at present (Iverson et al., 2008). This solves the problemofmore
robust and better prediction of data results under the same algorithm.
Hence, we screened hub genes among 36 common genes using LASSO and
RF analysis. By overlapping the genes selected by LASSO and RF, PLIN,
PPAP2A and TYROBP were identified as central genes in PVNS and RA.

Our study found that PLIN mainly affects the intestinal immune
network of allograft rejection, ether lipid metabolism, and IgA production.
Existing studies have also found that PLIN1 is up-regulated in
steatohepatitis caused by non-alcoholic fatty liver disease (NAFLD), but
PLIN1 protein is generally not expressed in normal hepatocytes (Straub
et al., 2008; Fujii et al., 2009). PLIN2 is overexpressed in patients with
alcoholic steatohepatitis (Mak et al., 2008; Straub et al., 2008; Carr et al.,
2014). PLIN3 upregulation has been observed in human steatotic livers
(Straub et al., 2008; Pawella et al., 2014). Hypoxia-inducible protein 2
(HIG2), a target of hypoxia-inducible factor 1 (HIF1), co-localizes with
PLIN2 and PLIN3 and may be a marker of hepatic hypoxia (Gimm et al.,
2010). However, relatively few studies have been conducted on PLIN4 or
PLIN5 in human liver, and PLIN5may play a role in lipolysis and oxidative
disposal of stored lipids (Wang et al., 2011).

The most functionally important member of the PPAP family is
PPAP2A, which reduces LPA activity by dephosphorylation
(Blackburn and Mansell, 2012). High levels of LPA can be detected
around larger microvessels expressing autotaxin (ATX). In osteoblasts

Frontiers in Genetics frontiersin.org10

Heng et al. 10.3389/fgene.2022.1095058

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://doi.org/10.3389/fgene.2022.1095058


remote from microvessels, ATX was least expressed and LPA was
lowest due to high PPAP2A activity (Yanai et al., 2000). Interestingly,
our study also found that PPAP2A strongly affects protein export,
pentose and glucuronic acid interconversion, and allograft rejection.

TYROBP is a gene located on chromosome 19. TYROBP affects
allograft rejection and graft-versus-host disease by mediating
cytotoxicity of natural killer cells, activation of immune cells
(T cells, B cells, and macrophages) (Lanier et al., 1998; Ono et al.,
2018; Zheng et al., 2020). In addition, it was found that the low
expression of TYROBP can participate in the regulation of OS
immune environment by participating in the activation of
macrophages (Gomez-Brouchet et al., 2017; Withers et al., 2019;
Wolf-Dennen et al., 2020).

At the same time, we also found a positive correlation between PLIN
and PPAP2A. PLIN was negatively correlated with TYROBP, the
expression level of TYROBP in PVNS samples was significantly higher
than that in RA samples, while the expression levels of PPAP2A and PLIN
in PVNS samples were significantly lower than those in RA samples.

Conclusion

In a word, our findings suggest that PLIN, PPAP2A and TYROBP are
associated with the occurrence and development of PVNS and RA. They
are expected to become new targets and research directions for the
diagnosis and treatment of PVNS and RA, thus providing new
opportunities and references for improving the diagnosis and treatment
level and clinical prognosis of PVNS and RA patients in the future.
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