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Introduction:PM2.5 and climate change are twomajor public health concerns,

with majority of the research on their interaction focused on the synergistic

e�ect, particularly for extreme events such as hot or cold temperatures. The

climate sustainability index (CLS) was introduced to comprehensively explore

the impact of climate change and the interactive e�ect on human health with

air pollution.

Methods: In this study, a county-level panel data in China was collected

and used. The generalized additive model (GAM) and geographically and

temporally weighted regression (GTWR) was used to explore the interactive

and spatial e�ect on mortality between CLS and PM2.5.

Results and discussions: Individually, when CLS is higher than 150 or lower

than 50, the mortality is higher. Moreover, when PM2.5 is more than 35 µg/m3,

the influence on mortality is significantly increased as PM2.5 concentration

rises; when PM2.5 is above 70 µg/m3, the trend is sharp. A nonlinear

antagonistic e�ect between CLS and PM2.5 was found in this study, proving

that the combined adverse health e�ects of climate change and air pollution,

especially when CLS was lower (below 100) and PM2.5 was higher (above 35

µg/m3), the antagonistic e�ect was much stronger. From a spatial perspective,

the impact of CLS and PM2.5 on mortality varies in di�erent geographical

regions. A negative and positive influence of CLS and PM2.5 was found in

east China, especially in the northeastern and northern regions, -which were

heavily polluted. This study illustrated that climate sustainability, at certain

level, could mitigate the adverse health influence of air pollution, and provided

a new perspective on health risk mitigation from pollution reduction and

climate adaptation.

KEYWORDS

PM2.5, climate sustainability, mortality, China, interaction e�ect

1. Introduction

Particles measuring less than 2.5 [(PM2.5) micrometers in aerodynamic diameter] is

themost representative and harmful air pollutant, and has received increased attention in

recent years. Scientists have reached a consensus that long-term exposure to air pollution

contributes to an increased risk of illness and premature death from ischemic heart
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disease, lung cancer, chronic obstructive pulmonary disease

(COPD), lower-respiratory infections (e.g., pneumonia), stroke,

type 2 diabetes, and, more recently, adverse birth outcomes (1–

7). PM2.5, carrying harmful chemicals, can penetrate deeply

into the human lung system and blood circulation to cause

cardiovascular and respiratory diseases, resulting in an estimated

42million deaths (∼7.6% of the total mortality) and 1031million

disability-adjusted life-years lost (8). A positive correlation

between PM2.5 and mortality is proven (9–11). For instance,

Yap et al. found that exposure to particulate air pollution

was significantly associated with non-accidental mortality and

cardiovascular mortality, especially in the elderly≥65 years (12).

Studies on the health effects of climate change mostly

focus on the effect of high temperature or heat waves (13–15).

There are few studies on the health effects of extremely low

temperature, as many scientists believe that it has less impact

than extreme high temperature (16–18). Moreover, few studies

have been carried out on the impact of diurnal temperature on

health (19). Longden noted that the reference values used to

define extreme temperatures (high and low temperature) under

different climatic zones in Australia influenced the estimation of

the impact of death, reversing the previous view that extreme

low temperature was the main cause of death in Australia, and

thus proposed the net benefit of the health impact of climate

change (20). The influence of climate change on health may

vary from one region to another, for example, the mortality

from climate-induced conditions was increased in Brasilia

and decreased in the Russian subarctic (21, 22). In China, a

study found that the mortality resulting from extremely high

temperatures was higher in the north than in the south, while

the mortality from extremely low temperatures was higher in

the south (23), implying the climate adaptability of the locals.

Most of the research on climate and mortality are based on

temperature, and the relationship of mortality with other factors

like wind, pressure or the composite climate index are lacking.

The reductionist approach of merely using air temperature

in assessing weather-health relationships, specifically hot, or

cold extremes, can limit our understanding of human-weather

interactions (24).

Air quality is closely related to meteorological conditions.

Studies have shown that static weather, extremely high

temperatures, and extreme composite weather can increase the

concentration of ozone and particulate matter in the air (18).

Due to the strong correlation between air quality and climatic

conditions (25), there have been studies on the synergistic

health effects of the two in recent years, mainly through the

establishment of indicators like relative excess risk due to

interaction (RERI). Borge et al. found that the weather change

has made air-quality related-mortality up to 10% greater in

Spain for the period (1993–2017) (26). Ho et al. (27) found

that areas with higher PM2.5 of lag two day of a hot hazy day

had a significantly higher all-cause mortality [odds ratio (OR):

1.135], and on a cold hazy day, the OR was 1.131 with the lag

of 0 days (27). Many studies suggest that future warming may

increase PM2.5-related deaths, and the health benefits of climate

policy may be offset by severe climate-induced PM2.5 and aging

(28). Moreover, considering the physiological stress that extreme

weather and pollution may cause, Zhang et al. established the

human thermal comfort index combining air pollution and

somatosensory temperature (29). In summary, the impacts of

air pollution and climate on health are mostly based on the

negative effects of climate factors (most are single indicators),

while few studies explain the relationship between them from the

perspective of population adaptability (climate sustainability).

China spans five climatic zones, having the world’s largest

altitude range, with a varied climatic condition throughout the

country. China also experienced severe air pollution in the past

decades. Since its accession to the World Trade Organization

in 2001, the share of heavy & chemical industries such as

energy, steel, and chemical engineering increased sharply. The

total energy and materials consumption increased after 2000,

and the urban residential energy consumption increased as

the population increased (30, 31). From 1995 to 2010, the

concentration of PM2.5 showed a fluctuating upward trend of

approximately 7.6 µg/m3 5 years, and the bulk of this increase

occurred from 2000 to 2010 (32).

Therefore, in order to explore the interactive effect of climate

adaptability and air pollution, this study established a climate

sustainability index (CLS) and explored the interactive and

spatial effect on mortality between CLS and PM2.5 based on

the county-level death in 2000 and 2010 in China, using GAM

(Generalized additive model) and GTWR (Geographically and

Temporally Weighted Regression) sequentially. This study can

provide scientific support for addressing the health risks of air

pollution and adapting to climate change in the meantime.

2. Methods and data

2.1. Method

A two-stage analytic approach was used in this study. In the

first stage, GAM is built. PM2.5 and CLS independently, and

the interaction of PM2.5 and CLS together with socioeconomic

confounders are introduced sequentially in the model. The

mortality panel data consists of 2000 and 2010, and temporal

variations of mortality are set as the dependent variables,

respectively, in GAM. In this stage, the interaction between

PM2.5 and CLS, and the confounding effect of socioeconomic

conditions are explored. In the second stage, a GTWR is

introduced. Again, the mortality panel data in 2000 and 2010,

and temporal variations of mortality are set as the dependent

variables, and all of the independent variables but not the co-

founders with no significance are included in GTWR. In this

stage, the model spatially varying relationships between PM2.5,

CLS, and total mortality are explored. For GAM, the result is
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expressed as the spin curve of exp (β), and for GTWR, the result

is expressed as the exp (β), representing the OR of PM2.5 or CLS

on mortality.

2.1.1. Global and local Morans’I

Global Moran’s I, which is introduced in 1948, is extensively

used to test the spatial autocorrelation based on feature locations

and attribute values. This study employs Moran’s index to

explore the clustering effect ofmortality. The calculationmethod

for Moran’s I in this study referred from Anselin (33).

2.1.2. Gini index

Gini index is a conventional inequality measure, and has

been widely used in income and health related studies (34).

It assumes that transfers at the top of the distribution (e.g.. a

transfer from the richest person to the second richest person)

reduce inequality as much as if the same transfers happen at the

bottom of the distribution. In this context, Gini index is used to

represent the inequity of mortality inside a province and inside

China, using the county level data. The absolute Gini index is

calculated using the Lorenz curve (35, 36), based on the total

mortality of each county ranked from the worst to the best level

using the following formula,

G = 2

T
∑

t−1

ut × ft × Rt − u

Here, G is the Gini index, u is the mean value of the total

mortality, T is the number of counties, f is the weighed share,

here we use constant number 1 as the mortality instead of

mortality. R is the relative rank of the tth county.

2.1.3. GAM

GAM is widely used for time-series analysis on the

impact of air pollution and/or climate factors on health (37,

38). It allows for non-parametric adjustments for nonlinear

confounding effects. In this study, firstly, a GAM with quasi-

Poisson regression was performed to obtain the risk estimates

of mortality due to PM2.5 and CLS separately with penalized

smoothing spline function(s), other factors, including education,

economic etc. in Table 1 were also included as confounders. The

main model is:

f (x) = s
(

PM2.5, df
)

+ s
(

CLS, df
)

+

n
∑

i

S
(

cofi, df
)

f(x) here represents estimated number of mortality in each

county; df represents the degrees of freedom. After model test

to avoid over fitting based on the value of vif, the df for PM2.5

and CLS were set as 4 and 5 respectively, and 4 df for all the

other confounders.

Secondly, to include the interaction effect, a modified GAM

was used as following,

f (x) = s
(

PM2.5, df
)

+ s
(

CLS, df
)

+ ti(PM2.5, CLS)

+

n
∑

i

S
(

cofi, df
)

where, function (ti) here is introduced to process the interaction

between smooths of PM2.5 and CLS. The “mgcv” package was

used to process the above modellings in R 4.2.0.

2.1.4. GTWR

GTWR is a method of regression analysis proposed by

Huang et al. (39) considering the simultaneous resolution of

space and time characteristics of data. GTWR assumes that the

regression coefficient is an arbitrary function of the geographical

location and the time of an observation considering the non-

stationarity of time and space. The GTWR principle is as

follows (39):

yi = β0 (ui, vi, ti) +

d
∑

k=1

βk (µi, vi, ti) xik + εi

Where, (yi, xi1, xi2,
...xid) are the n sets of observations at the

observation point (ui, vi, ti), the dependent variable yi is the

total mortality in this study, and the independent variables xi

represent PM2.5, CLS and other covariates which are shown in

Table 1. β0 (ui, vi, ti) is the intercept value. βk (ui, vi, ti) is a

function of coefficients, it’s the value of the function βk (u, v, t) at

the ith observation point (ui, vi, ti). The estimation of βk (ui, vi,

ti) based on local weighted least squares, and it can be expressed

as follows:

β̂(ui, vi, ti) = [XTW(ui, vi, ti)X]
−1

XTW(ui, vi, ti)Y

The weightW(ui, vi, ti)is the distance function from observation

point (ui, vi, ti) to other observation points, usually using

Gaussian distance function. In addition, the broadband selection

has a great impact on the accuracy of the GTWR model,

according Huang et al. (39) the AIC criterion can be used, that

is, the minimum AIC corresponds to the optimal broadband.

2.2. Data source and process

2.2.1. Mortality data

Census-based data at various spatial levels is popularly used

in pollution-related epidemiology or ecological studies (1, 11).

It can represent the health status at the population level. The

data used in this study covers the total mortality data at county
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TABLE 1 Variable definitions and summary statistics.

2000 2010 2010–2000

Mean Max Min Std Mean Max Min Std Mean Max Min Std

Total mortality (‰) 6.01 12.24 0.57 1.45 5.73 12.81 0.75 1.56 −0.28 3.89 −7.92 1.19

PMP (%) 16.13 99.78 0 28.88 16.19 99.78 0 28.90 −54.18 54.65 −5.17 3.08

MED (‰) 19.90 139.72 1.26 12.94 26.19 135.25 1.77 14.69 6.29 86.90 −59.37 9.51

EDU (Year) 7.40 11.71 0.63 1.47 8.69 13.14 2.00 1.43 1.29 3.98 −1.47 0.45

ELD (%) 6.74 18.15 0.97 1.72 8.79 19.00 1.02 2.22 2.04 8.61 −5.12 1.44

GDPpc (1000 yuan) 5.19 34.80 0.83 3.07 23.48 240.40 2.79 17.63 18.29 229.53 −10.07 16.51

PM2.5 (µg/m
3) 38.04 89.41 1.76 14.94 47.36 129.35 1.15 20.10 9.32 52.21 −10.50 7.03

CLS 116.75 253.15 −183.19 63.87 119.39 251.83 −179.30 64.01 2.63 34.95 −20.24 5.83

levels in 2000 and 2010 based on the 5th and 6th national

censuses. It is calculated through the ratio of the total mortality

to the total population from all the age groups, represented as

thousandths (‰). There are 2,858 counties in China, and after

data validation, 2790 counties with mortality remained. The

abnormal values detected at the significant level of α = 0.01 are

regarded as highly abnormal and are eliminated.

2.2.2. Data of PM2.5 and CLS

Annual data of PM2.5 are derived from the V4.CH.03

product (China Regional Estimates) developed by the

Washington University Atmospheric Composition Analysis

Group (40, 41), and the mean value of PM2.5 was calculated

by county administrative division. Spatiotemporal PM2.5

concentrations were primarily estimated utilizing the GEOS-

Chem chemical transport model by combining aerosol optical

depth (AOD). These modeling estimates were subsequently

calibrated to regional ground-based PM2.5 observations using

GWR (41). This well-developed space–time model exhibited

excellent performance in predicting annual mean geophysical

PM2.5 estimates, showing a high consistency (R2 = 0.81)

with globally distributed ground monitors. GWR is applied

to account for PM2.5 residual with ground monitors yielding

a cross-validation value of R2 = 0.90–0.92 (40). The data are

distributed as Geotiff files, and we use a mask tool to extract

them at the county level. The annual values were summarized

by zonal statistics tools using ArcMap 10.8.

Climate sustainability represents the people’s somatosensory

of the climate environment. In this study, CLS integrating

climate factors and altitude adaptability is established based

on Zhong et al. (42). The temperature-humidity Index, wind-

chill index, clothing index, and altitude adaptation index were

established first and then constructed into a comprehensive

index with weighted coefficients, and the detailed calculation

are shown in the Supplementary material. The meteorological

data was obtained from the China Meteorological Data Service

Center, and the 30m DEM data is from the resdc (https://data.

cma.cn/).

Compared with previous studies on the impact of climate

change and environmental pollution on health, CLS can

comprehensively reflect the human body’s impact on the change

of basic climate factors such as temperature, humidity and

altitude, and provide a new perspective to analyze the impact

of climate change on human health, so as to arouse more

comprehensive impacts of changes in various climate conditions

on human health except for extreme temperature.

2.2.3. Other socio-economic data

Considering that 2000–2010 was the period of rapid

economic development in China, the improvement of relevant

socio-economic and medical conditions could affect the change

in mortality. Furthermore, the number of ethnic minorities was

also one of the important factors affecting the mortality in

China at that time (43, 44). Therefore, this study incorporates

the considerations of economic development, education level,

medical resources and in national and local county levels, which

are characterized byGDP per capita (GDPpc), years of education

(EDU), medical beds per 1000 (MED), and the proportion of

minority population (PMP) (44–46). Furthermore, numerous

studies have shown that elderly people are sensitive to climate

change and air pollution (4, 47). An aging population will

aggravate health losses caused by climate change and air

pollution. Thus, we considered the proportion of people aged

65 years and above (age≥65) (ELD) as a correction factor. All

the data came from the national censuses, the China County

Statistical Yearbook and China Urban Statistical Yearbook.

3. Results

3.1. Spatial distribution patterns of
mortality and mortality change

The total mortality at the national level was 5.92 and 5.58 in

2000 and 2010, respectively. At the county level, the average total

mortality was 6.20 ranging from 0.89 to 12.24 for 2000, and 5.93,
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ranging from 0.78 to 11.74 for 2010, respectively (Table 1). The

total mortality showed a spatial cluster pattern for both years.

In 2000 and 2010, the global Moran’s I was 0.225 with highly

significant. More specifically, in 2000, the southwest regions,

including Sichuan, Tibet, Yunnan, and Guizhou provinces,

and south Qinghai provinces had a higher mortality of above

6. The northeast and northwest regions, mainly Xinjiang,

Inner Mongolia, Heilongjiang, and Jilin provinces had a lower

mortality below 6. Counties surrounding Beijing and Tianjin,

Shanghai, and the counties in the Pearl River estuary, had

considerably higher mortality. In 2010, compared with 2000,

the mortality distribution changed. Regions with high mortality

<6 in Southwest China were relatively reduced, while regions

in the eastern coastal region had increased, mainly in Jiangsu,

Anhui, and Shandong provinces. Simultaneously, the areas with

low mortality in the northwest and northeast also increased

relatively, mainly in Gansu and Qinghai provinces. The county-

level total mortality in China experienced a significant decrease

from 2000 to 2010 (Figure S1).

Based on the LISA (Figures 1A, B), in 2000, the cold spot

(low-low) was distributed in the northern Xinjiang, Ningxia,

and its surrounding areas, Heilongjiang, Jilin, southernGuangxi,

Fujian, Pearl River Delta, Hainan, and eastern Hubei. The

hot spot (high-high) was mainly distributed in the northern

Hebei, Pearl River Delta, and southwest regions, including

Tibet, Sichuan, Yunnan, Guizhou, and Chongqing. In 2010,

the cluster pattern was more continuous compared with 2000.

The cluster counties in the northern regions (low-low) and

middle coastal regions (high-high) had increased, and the

cluster counties in the southeast coastal regions (low-low) and

southwest regions (high-high) had decreased. The results were

similar to the previous spatial heterogeneity analysis results at

the city level (48).

The spatial autocorrelation of the mortality changes from

2000 to 2010 showed that the global Moran’s I was 0.168

with significant, though the value was small, indicating that

there was a certain spatial correction in the mortality change.

However, the distribution of the cold and hot spots of the LISA

was more dispersed (Figure 1C), such as the cold spot (low-

low) mainly distributed in Tibet, Yunnan, Qinghai, Jiangxi,

and Hubei provinces, and the hot spot (high-high) was mainly

distributed in Guangxi, Fujian, Jiangsu, Anhui, Shandong,

Liaoning, and Heilongjiang.

3.2. Inequities of mortality

In 2000, the Gini indexes of mortality were higher in

Qinghai, Guangdong, Xinjiang, Hubei, Shaanxi, and Jiangsu,

and much lower in Jilin and Jiangxi. In 2010, Shanghai,

Guangdong, Zhejiang, Xinjiang, Inner Mongolia, Qinghai,

Beijing, Jiangsu, Guangxi, and Hubei had a higher Gini index,

while for Jiangxi and Yunnan were considerably lower. Except

for Shaanxi, Liaoning, Shanxi, and Yunnan, the Gini index of

mortality of all provinces increased from 2000 to 2010, with

a significant increase for Shanghai, Zhejiang, and Beijing. The

Gini index (∗100) of total mortality in China was 13.38 and

15.29 in 2000 and 2010, respectively (Figure 2). For both years,

most of the Gini indexes at the provincial level were lower

than the national index, indicating that there was considerable

inequity among provinces. In all provinces, apart from Beijing

and Guangdong in 2010, the Gini indexes were all below 0.2,

indicating that the total mortality variations within provinces

were smaller compared with the variation among provinces.

Therefore, it is necessary to consider spatial heterogeneity to

explore the impacting factors of mortality.

3.3. Influence of PM2.5 and CLS on
mortality

Regression based on the cross-section data in 2000 and 2010

indicated that both CLS and PM2.5 had a significant influence

on mortality. The change curves of CLS and PM2.5 tended to

be similar in both years. For CLS (Figures 3A, B), the change

is grouped into four states. From −200 to −50, the influence

of CLS showed a significant decline, from −50 to 75 and more

than 150, the influence was increased. The phase of 75 to 150 was

slightly different; it was steady in 2010 but decreased in 2000. For

PM2.5 (Figures 3D, E), its impact on mortality was significantly

positively correlated. The change was more steady in 2000, while

in 2010, it was generally stable below 60µg/m3, and then showed

a significant upward trend.

Based on the regression of changes in the 2 years (Figures 3C,

F), the influence of CLS and PM2.5 on mortality was significant.

For CLS, its effect change curve on mortality was similar to

an inverted u, it decreased from −20 to −5 and increased at

<15. For PM2.5, the effect showed an upward trend when the

concentration change was >10µg/m3.

3.4. Interactive e�ect of PM2.5 and CLS
on mortality

In the GAM results, the degree-of-freedom (DOF) was

>1, and the DOF of interaction factors was more than 10. It

showed that the effect of interaction between CLS and PM2.5 on

mortality was non-linear. The parameters in Table 2 showed that

the interaction improved the interpretation of this model, and

the influence of interaction factors on mortality and its change

were significant at the p= 0.01 level. From the interaction point

of view, the higher the PM2.5 concentration and the lower the

CLS, the greatest the interaction effect on mortality (Figure 4).

In both years, PM2.5 began to show an inflection point at about

30 µg/m3. When PM2.5 was <30 µg/m3, the overall interaction
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FIGURE 1

LISA clustering of mortality and mortality change (A) 2000 (B) 2010 (C) 2010–2000.

FIGURE 2

Gini index of mortality within provincial administrative unit for 2000 and 2010.
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FIGURE 3

The GAM model fitting diagram of CLS, PM2.5 without interaction (A, D) 2000 (B, E) 2010 (C, F) 2010–2000.

changed slightly, and when PM2.5 was >30 µg/m3, there was

a significant impact. The inflection point of CLS appeared in

90–100, and when less than this range, the interaction increased

significantly. However, when the CLS was between 100 and

200, the change of interaction was not obvious in 2000, while

increasing in 2010, and when CLS exceeded 200, the interaction

also decreased significantly, indicating that at this stage, the

leading role of climate sustainability was stronger.

This also showed that when the PM2.5 was below 30–35

µg/m3, even if CLS is very low, the interaction between the two

had a low effect on health. When the CLS was between 100 and

200, the improvement of PM2.5 had a slight impact onmortality.

When the CLS was >200, even if the PM2.5 concentration is

high, the interaction between the two had a very low impact on

mortality. Therefore, at this stage of >200, CLS began to play a

dominant role.

After considering the interaction of air pollution and climate

sustainability, the consistency of the impact trend of PM2.5 and

CLS on mortality was enhanced, and the curve change was

smoother (Figure 5). When PM2.5 was more than 35–40 µg/m3,

its impact on mortality suggested an increasing trend in 2000,

and significantly increasing trend in 2010. While the impact

was not that obvious below this value in both 2000 and 2010.

This indicated the impact of PM2.5 on mortality in 2010 was

more remarkable than in 2000. For climate sustainability, when

CLS was <50, the overall impact on mortality was significantly

positive. The worse the CLS was, the higher the mortality.

Moreover, between 100 and 150, the impact was not obvious.

When CLS was more than 150, a positive correction was

found. The CLS was mainly distributed in the Northeast areas

(Figure S2), where the high chill index may be uncomfortable

for people, thus causing an increase in mortality.

3.5. Spatial-temporal di�erentiation
mechanism of PM2.5 and CLS on mortality

The regression results of the TWR,GWR andGTWRmodels

were presented in Table 3. The AIC value of the GTWR model

(14403.9) wasmuch lower than that of the TWRmodel (15490.6)

and GWR model (14570.1), representing that the GTWR model

is the most suitable to use. The R2 of the GTWR model (0.675)

was higher than that of the TWR (0.593) and GWR model

(0.660), which means the highest explanatory power of GTWR.

Table 4 indicated that PM2.5 had a positive driving effect

on mortality. In terms of the mean value, the risk of total

mortality increased by 0.46 for every 100 µg/m3 increase of

PM2.5. There was a negative correlation between CLS and

mortality, with an increase of 100 of CLS, the total mortality

decreased by 0.10. Moreover, it can be observed from the table

that increased economic and educational levels contribute to

reducing the incidence of death, while aging and the proportion

of the minority population increase the risk of death. The

relationship between medical care and mortality was negative.
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TABLE 2 The parameters for GAM in two periods with interactions.

f0 f1 f10 f0in f1in F2in

Intercept 6.01 5.730 −0.280 6.398 5.982 −0.273

CLS (p-value) 0 0 0 0 0 0

PM2.5 (p-value) 0.002 0 0 0 0 0

In (CLS, PM2.5) (p-value) / / / 0 0 0.005

PMP (p-value) 0 0.002 0.003 0 0 0.002

MED (p-value) 0 0 0.039 0 0 0.023

EDU (p-value) 0 0 0 0 0 0

GDPpc (p-value) 0 0.610 0 0 0.634 0

ELD (p-value) 0 0 0 0 0 0

Intercept P 0.00 0 0 0 0 0

R2(adj) 0.616 0.609 0.270 0.643 0.628 0.275

Deviance explained 61.9% 61.2% 27.6% 64.8% 63.3% 28.4%

f0, f1, f10 mean GAM results of 2000, 2010 and 2010-2000 without interactions; f0in, f1in, F2in mean GAM results with interactions.

FIGURE 4

Three-dimensional e�ect graph of PM2.5-CLS interaction on the variation of mortality (A) 2000 (B) 2010 (C) 2010–2000.

Compared to the distribution in eastern China, which had a

higher level of economic and medical development, the impact

of the development of medical level on mortality was relatively

reduced, and other unfavorable factors like low efficiency and

uneven distribution of medical resources allocation became the

leading cause of mortality (49, 50).

To identify the spatial heterogeneity of the impact of climate

sustainability and air pollution on total mortality, the average

annual regression coefficients of CLS and PM2.5 in the GTWR

model were visualized in Figure 6. For CLS, in addition to

the southwest region including Sichuan, eastern Tibet, western

Yunnan, southern Gansu, and Qinghai, most of the areas were

shown to be negatively correlated with mortality in 2000. The

higher the CLS, the lower the mortality, especially in Hainan,

Guangdong, and Guangxi. In 2010, only the west-central region

and a small part of the northeast and northwest regions had

a negative correlation between CLS and mortality, indicating

that human suitability for climate had increased, and the

contribution of climate change to mortality was weakened. For

PM2.5, only the west-central region and a small part of the

northeast and northwest regions were negatively correlated in

2000, while other regions were positively correlated, meaning

the higher the PM2.5 concentration, the higher the mortality.

In 2010, the areas with a positive relation between PM2.5 and

mortality had increased, indicating that the increase of PM2.5

increased its threat to human health.
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FIGURE 5

The GAM model fitting diagram of CLS, PM2.5 with interaction (A, D) 2000 (B, E) 2010 (C, F) 2010–2000.

TABLE 3 Comparison of the model test results.

TWR GWR GTWR

R2 0.593 0.660 0.675

Adjusted R2 0.593 0.660 0.674

Residual sum of squares 5212.74 4353.40 4172.46

AICc 15490.6 14570.1 14403.9

Bandwidth 0.206 0.115 0.114

4. Discussion

This study estimated the influence of air pollution exposure

and climate sustainability on total mortality based on county

panel data in China. Spatial-temporal heterogeneity of mortality

was found, with high-high or low-low spot distribution in

China having more regional coherence from 2000 to 2010.

The mortality inequity was in general lower within provinces,

while higher at the country level, and the inequity showed

an increasing trend from 2000 to 2010. GAM was then

used to explore the interactive effect of PM2.5 and CLS on

mortality, and further, GTWR model was used to identify the

spatiotemporal factors.

The deviance explained was much higher in the GAMmodel

when considering the interactive effect and an antagonistic

effect was found on the mortality. Generally, the higher the

PM2.5 concentration and the lower the CLS, the higher the rate

of mortality, especially when PM2.5 concentrations exceeded

35 µg/m3 and CLS was below 100, the interactive effect

became significant. The climate sustainability indicator here was

comprised of temperature, humidity, altitude, and wind-chill

index. Too high or too low will cause human maladjustment,

and thus the antagonistic effect was less. For example, the

cold temperature may increase cardiovascular strain in healthy

individuals via physiological means to maintain heat balance

(51, 52), hot temperature and low relative humidity are

associated with increased loss of water from the body through

the skin as well as the mucus membrane, while hot temperature

and high humidity may trigger asthma symptoms by increasing

airway resistance. The process of physiological adjustment of

ambient temperature may affect the intake of toxic substances,

thereby increasing the total intake of air pollution in the human

body. Many reports have confirmed that the combined effect

of adverse climate factors and PM2.5 would increase the risk of

circulatory and respiratory diseases and cardiovascular diseases,

as well as the total mortality (14, 15, 28, 53–55).

According to the GAM results, when CLS was in the range of

50–150, the influence on mortality was stable, meaning that this

period may be the most comfortable for humans. When below

50, the higher the CLS, the lower the mortality risk. These values
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TABLE 4 GTWRmodel test results.

Average Min 25% 50% 75% Max Standard
deviation

C1_PM2.5 (∗100) 0.46 −2.85 0.00 0.45 0.90 5.98 0.97

C2_CLS (∗100) 0.10 −2.04 −0.41 −0.03 0.21 1.03 0.48

C3_ELD 0.38 0.09 0.36 0.38 0.41 0.60 0.06

C4_EDU −0.68 −0.86 −0.75 −0.69 −0.64 −0.21 0.09

C5_MED (∗100) 0.55 −1.56 0.36 0.60 0.87 1.38 0.51

C6_GDPpc (∗100) −1.01 −8.05 −1.46 −0.57 −0.12 0.23 1.25

C7_PMP (∗100) 0.47 −1.72 −0.22 −0.28 1.24 3.35 0.90

FIGURE 6

The local non-stationary influence of CLS and PM2.5 on mortality (A, C) 2000 (B, D) 2010.

are mainly distributed in the plateau areas since human health

is affected by a high-altitude hypoxia environment. Exposure

to increasing terrestrial altitude reduces ambient O2 availability

in cells producing a series of hypoxic oxidative stress reactions

altering the redox balance in humans (56–59). When CLS

was above 150, impact of CLS on mortality showed a positive

relationship. The counties with high CLS mainly located in

Northeast China and the high wind-chill index contributed to

the high CLS, indicating an uncomfortable environment for

people to live in. For air pollution, when PM2.5 was more

than 35 µg/m3, the influence on mortality becomes significantly

increased as PM2.5 concentration increased, and when above

70 µg/m3, the trend is sharp. This phenomenon provides

some support for the concentration threshold of PM2.5 in the

standards of China, which stipulated 35 µg/m3 as the top and

75 µg/m3 as the second level. Though it is not that strict with

the air quality guidelines of WHO, especially updated in 2021

(annual PM2.5 AQG revised from 10 µg/m3 to 5 µg/m3) (60).
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Considering that during this study period the main source of air

pollution was coal combustion in China, carbonaceous material

and sulfate were the main components for PM2.5, which are

less toxic compared with the recent components of volatile

organic compounds (like Polycyclic Aromatic Hydrocarbons)

and heavymetals, from the transportation and chemical industry

(61–67). This could be one of the reasons that a more severe

mortality influence in 2010 than in 2000 was found. Identically,

although the pollution control policy strengthened, the current

ambient pollution standard may not satisfy the present-day

situation in China, and more stringent standards should

be developed.

Regarding spatial-temporal heterogeneity, comparing the

results of 2 years with GTWR, we found that counties with a

negative relationship between CLS and mortality had decreased,

while counties with a positive between PM2.5 and mortality

had increased, indicating more people are at risk of PM2.5

exposure with time went by. Besides the worse air pollution

in 2010, the increasing aging may amplify the health risk of

PM2.5 (68), and the economic and medical improvements may

not be enough to offset the serious health threats posed by

aging. An abnormal relationship between PM2.5 and mortality

was found in part of the southwest areas, as well as between

CLS and mortality. It may be related to the special geographical

conditions within the transition zone from basin to plateau,

and there are reports that the climate index was insensitive

there, and the weather would change drastically in a year. The

regions with positive relationship between CLS and mortality

significantly expanded from 2000 to 2010, and the change

was more evident in the northeast. There are two possible

explanations for this. First, in northeast, the CLS in almost all

regions are higher than 150 with high wind-chill index, which

might impact the mortality as the similar results from the GAM.

While for the rest region, CLS are in the range of 50–150 and

the relationship between CLS andmortality is more subtle. Thus,

slight human disturbancemight affect its variation. In particular,

in 2007, government issued China’s Policies and Actions to

Address Climate Change, the observation and forecast system

of climate change was fully established in 2010, and the public

awareness to cope with climate change has been strengthened

since then. This might lead to the uncertainty between CLS and

mortality. In addition, the improved living standards to facilitate

the intake of nutrition, the use of air-conditioning, heating

and other equipment has further improved people’s ability to

adapt to climate change in recent years (18, 55). There is one

example that there is a high-related mortality risk in areas with

lower GDP where air conditioning cannot be afforded (15).

Moreover, individuals usually make more substantial adaptation

decisions in the end, to alleviate and mitigate health risks due

to extreme temperature (69). Another possible explanation for

this is that the GTWR model is a linear regression; while

the impact of CLS on mortality is not a one-way (positive or

negative) correlation.

Our study has several limitations. First, in the calculation

method of the CLS, the annual mean value of climate factors

such as temperature, humidity, and wind speed are adopted in

our study, but extreme events such as extreme temperature are

not included. This is a less comprehensive assessment of the

impact of climate change as a whole, although it can reflect the

sensory perception of climate change for people, to some extent.

Second is the source of PM2.5 data. Although the interpretation

degree used in this study was 81%, the unified air pollution

monitoring stations were not set up before 2013 in China, and

we could not evaluate the accuracy of the data for the 2 years.

Therefore, there could be some errors. Third, we used the total

population mortality rate as the dependent variable. The impact

of climate change and air pollution on health would also be

affected by gender, age and occupation, while this study was

based on the population level and not the individual level.

5. Conclusions and suggestions

This study explored the spatial-temporal change of

mortality, its inequity, and the influencing mechanisms of

CLS and PM2.5 based on county level penal data in 2000

and 2010. Four main conclusions can be drawn. First, spatial

heterogeneity of mortality existed and the mortality inequity

decreased with the years. Second, considering the individual

effect, when CLS is much higher than 150 or lower than 50, the

higher the mortality. When PM2.5 was more than 35 µg/m3, the

influence on mortality became significantly increased especially

above 70 µg/m3. Third, an antagonistic effect between climate

sustainability and air pollution was found. When CLS was

lower (below 100) and PM2.5 was higher (above 35 µg/m3),

the antagonistic effect was stronger. It suggests specific health

protection attention should be paid in these regions, mainly in

northwest and central China. Fourth, from a spatial perspective,

the impact of CLS and PM2.5 on health varies greatly in different

geographical regions. In 2010, the negative health effects of

PM2.5 are more serious when the PM2.5 is lower than 35 µg/m3,

indicating the necessity to further strengthen the national air

quality guidelines in China.
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