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Laboratory-simulated experiments under a one-way wind erosion–rain erosion
sequence were conducted to investigate the effect of S. psammophila roots on
wind and water erosion processes and quantify its erosion-reducing potential. With
the collected soil of sandy loam and planted shrub of S. psammophila, 16 soil boxes
including bare and root-permeated soils were arranged in March 2017 and
conducted in August 2017. With the wind speeds of 11 and 14 m s−1 and rainfall
intensities of 60 and 100mm h−1, two levels of interaction (11 m s−1 × 60 mm h−1 and
14 m s−1 × 100mm h−1) were designed. The particle-size composition and sediment
transport flux were examined in the former wind tunnel experiments, and the runoff
hydrodynamic parameters and runoff and water erosion rates were determined in
the following rainfall tests. The sediment reduction effect by roots (%) was used to
quantify the erosion-reducing potential of roots. The results demonstrated that in
the former wind tunnel experiments, compared with the bare soils, the root-
permeated soils showed a slight coarsening of surface soil and had 18.03% and
35.71% less sediment transport flux at wind speeds of 11 and 14 m s−1, respectively. In
the following rainfall tests, S. psammophila roots weakened the hydrodynamic
intensity of overland flow and decreased runoff and water erosion rates by
13.34%, 30.70% and 4.44%, 43.72% at rainfall intensities of 60 and 100mm h−1,
respectively. Different from the water erosion process of bare soils, which
showed an increased fluctuated trend, the root-permeated soils presented a
steady increase in the early stage of rainfall and then a decrease-stable trend at
the mid and end of rainfall. In the wind tunnel–rainfall experiments, the sediment
reduction effect by Salix psammophila roots showed 24.37% and 39.72% at levels of
11 m s−1 × 60 mm h−1 and 14 m s−1 × 100mm h−1, respectively. This kind of study may
provide more insights into understanding ecological impacts of sandy vegetation
construction on the water–wind crisscrossed erosion region of the Chinese Loess
Plateau and also sandy land.
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Introduction

On the Loess Plateau of China, the water–wind crisscrossed
erosion region (35°20’~40°10’ N, 103°33’~113°53’ E), where wind
and water erosion occurred alternately in temporal and distributed
crisscross accelerating spatial variability, is the most serious erosion
zone and the coarse sediment source area in the Yellow River (Wang
et al., 2016; Tuo et al., 2018). Decades of practice had proved that
vegetation played an important role in preventing wind or water
erosion in this area (Wang et al., 2017; Lu et al., 2019). It is commonly
known that controlling soil erosion by vegetation is mainly attributed
to the combined effects of above-ground parts and below-ground roots
(Zhang et al., 2012a; Zhao et al., 2017). As to the erosion-reducing
effect of above-ground parts such as canopy (Thompson et al., 2015),
stem (Mu et al., 2019), and also leaf litter (Liu et al., 2017), it has always
been of great concern due to its significant weakening of air
momentum or rainfall energy and increasing of wind or water
erosion resistance. With respect to the below-ground roots, which
has direct and close contact with the soils, owing to its great
contribution to the improvement of soil infiltration (Wang et al.,
2017), soil shear strength (Hao et al., 2020), and soil structure (Hallett
et al., 2009), it was often more pronounced in retarding water erosion,
especially for the concentrated flow erosion (Gyssels et al., 2005;
Vannoppen et al., 2015). Through analyzing numerous relevant
studies, it could be easily found that, over the last several decades,
the knowledge of relationship between plant roots and soil erosion has
been mostly focused on the root effects on water erosion (Ghidey and
Alberts, 1997; Mamo and Bubenzer, 2001; Li et al., 2017; Hao et al.,
2021), and the information or direct experiment data concerning the
influence of roots on wind erosion are very limited.

In the water–wind crisscrossed erosion region of the Loess Plateau,
due to the severe complex erosion by wind and water, it was often
observed that a part of the below-ground roots was exposed to air,

especially for the shrubs (e.g., S. psammophila) grown on the
windward slope of a moving dune or semi-fixed dune (Figure 1)
(Chen and Zhao, 2015; Zhang, 2018). According to Dong (2005),
under the certain combination of exposed roots and flow velocity, a
sooner or later phenomenon of air flowing around the exposed roots
occurred, which increased the sectional resistance coefficient and thus
decreased the surface flow velocity. Furthermore, among the exposed
roots, the internal air turbulence produced and then enlarged collision
frequency between soil particles and the exposed roots. As a result,
some soil particles might be captured by the exposed roots. Most
recently, a few studies conducted a simulated wind tunnel experiment
and investigated the wind erosion resistance of roots. Cao (2013)
initiatively created soil samples of 8 cm × 8 cm × 3 cm (length ×
width × height) dimensions, which were mixed into roots (death) of
Setaria viridis, and observed that such “roots” could reduce soil loss by
24.73%. Thereafter, Li (2016) used the soil samples with the mixed
“roots” which came from the fiber of Trachycarpus fortunei and pine
needle and stalk of Sorghum bicolor, and the reported results further
pronounced that the roots should be believed to play an effective and
reliable role in mitigating wind erosion. These aforementioned studies
are well known and accepted. However, the achieved knowledge about
the root effects on wind erosion was only confined to the simulated
roots, which could not exactly represent the interactions between roots
and soils. In addition, there is a lack of information about root effects
on water erosion followed by wind erosion since both the types of
erosion occur alternately throughout the year in the water–wind
crisscrossed erosion region of the Chinese Loess Plateau. Therefore,
it is essential to provide more insights into this topic for the in-depth
understanding of sandy plant root reinforcement on soil.

Salix psammophila, which is widely distributed in this area, is
recognized as a typical and dominant shrub species of wind breaking
and sand fixation. In the present study, a simulated experiment of
wind tunnel first and rainfall thereafter was conducted, and the

FIGURE 1
Distribution of the S. psammophila survey site and soil sampling site in the water–wind crisscrossed erosion region of the Chinese Loess Plateau.
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primary objectives were to i) investigate the effect of S. psammophila
roots on the former wind erosion (particle-size composition and
sediment transport flux) and the following water erosion (runoff
hydrodynamic characteristics and runoff and water erosion rates)
and ii) quantify the erosion-reducing potential of S. psammophila
roots in the wind tunnel–rainfall experiments. It was hypothesized
that the soils under different designs would make some differences in
their soil resistance to wind and/or water erosion, and it was believed
that the erosion-reducing potential of roots would be achieved.

Materials and methods

Experimental soil and equipment

The experimental soil for this study was a typical sandy loam soil
with 12.77% clay (<2 μm), 21.17% silt (2 –50 μm), and 66.06% sand
(50 μm–2 mm), collected from the upper 20 cm soil layer in an area of
S. psammophila land without plant cover at Yulin County, Shaanxi
Province, China (Figure 1). The collected soil was air-dried to a
moisture content of approximately 1.5% and then sieved (a 5-mm
sieve) after the removal of visible stones, weeds, roots, and other
debris. A kind of metal box (length = 110 cm, width = 70 cm, and
depth = 35 cm), with the dual function of a movable and adjustable
slope gradient, was constructed to hold the collected soils for wind
tunnel and rainfall experiments (Figure 2). The metal box was filled at
a bulk density of 1.30 g cm−3, which was similar to the field conditions,
in layer by layer (every 5 cm layer) to a total depth of 35 cm. After
filling and placing in a shelter for 15 days so as to allow the natural
sedimentation of soils, the experimental box was planted with the
cuttings (20 cm length) taken from S. psammophila and sprayed
evenly with 2 L tap water at intervals of 7 days.

The simulated experiments were conducted at the Simulation Hall
of the State Key Laboratory of Soil Erosion and Dryland Farming on
the Loess Plateau in the Institute of Soil and Water Conservation,
Chinese Academy of Sciences and Ministry of Water Resources,

Yangling. A wind tunnel and a rainfall simulator were used for
simulating wind and water erosion (Figure 2). The wind tunnel,
with dimensions of 24 m × 1.2 m × 1 m (length × width × height),
consisted of a driving system (fan section, wind regulation, and
rectification section) and a measuring system (experimental section,
sand collection, and wind diversion section). The uniformity of the
produced airflowwas >99%, and the wind speed could be continuously
switched from 0 to 15 m s−1 by adjusting frequency of the matching
inverter (0 –50 Hz) (Wang et al., 2014). For collection of wind-blown
particles at different heights and thus measurement of the sediment
transport flux profile, a multi-opening sampler equipped with
15 removable rectangular sand chambers (length = 15 cm, width =
3 cm, and height = 1 cm) was set in the center of the sand collection
section close to the wind outlet of the experimental box (Dong et al.,
2004). The rainfall simulator with the nozzle height of 16 m was used,
and the rainfall intensity could be precisely controlled by adjusting the
aperture of the nozzle and water pressure (Pan and Shangguan, 2006).

Experimental design and process

The examined experimental treatments in the present study were
bare soils (0 cuttings per box) and S. psammophila root-permeated
soils (5, 10, and 15 cuttings per box), which were arranged in mid-
March 2017 and conducted on August 12–26, 2017. Considering the
characteristics of soil erosion in this area that showed an alternating
cycle of winter–spring wind erosion and summer–autumn water
erosion (Song et al., 2006), this experiment was designed with the
wind tunnel first and rainfall thereafter under a one-way wind
erosion–rain erosion sequence. Two wind speeds (11 and 14 m s−1)
and rainfall intensities (60 and 100 mm h−1) were selected, and two
levels of interaction between wind speed and rainfall intensity
(11 m s−1 × 60 mm h−1 and 14 m s−1 × 100 mm h−1) were designed.
The wind speed of 11 m s−1 represents a typical wind event and that of
14 m s−1 reflects the maximum monthly average wind speed. The
rainfall intensities of 60 and 100 mm h−1 were representatives of low-

FIGURE 2
Schematic diagram of the experimental procedure in wind tunnel–rainfall experiments.
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and high-intensity erosion events in the study area, respectively
(Tuo et al., 2016). A total of 16 boxes were prepared, and
16 wind tunnel–rainfall events were performed as 2 levels of
interaction (11 m s−1 × 60 mm h−1 and 14 m s−1 ×
100 mm h−1) × 4 planting densities (0, 5, 10, and 15 cuttings per
box) × 2 replications.

For investigation of individual root effects on soil erosion, it was
thought practicable to cut off the above-ground parts of the plant
(Zhou and Shangguan, 2007; Zhang et al., 2012a). Therefore, before
the wind tunnel tests, the above-ground parts of S. psammophila were
cut off to the ground level using a pruner and its growth characteristics
(height, diameter, and biomass) were measured (Table 1). Then, the
experimental boxes were carefully pushed into the wind tunnel. The
soil surface of the box was aligned exactly parallel to the floor of the
experimental section and then exposed to the wind at designated wind
speeds for 20 min. After each wind tunnel test, the collected wind-
blown sediments were transferred into iron containers for oven-drying
at 105°C to determine the sediment transport flux. Thereafter, the
wind-blown box was carefully taken out of the wind tunnel and
positioned at the appropriate location in the rain hall where the
rainfall intensity and effective area were calibrated. Before rainfall
tests, surface soil samples (0–1 cm) were collected and its particle
composition was measured using a Mastersizer 2000 laser diffraction

device. Then, the slope gradient of the experimental box was adjusted
to 15, and the rainfall duration was set to 60 min after runoff was
initiated. The KMnO4 dye technique was used to measure cross-
section average flow velocity (Zhao et al., 2015). Runoff and the
scoured sediments were collected every 3 min using the plastic
buckets at the box outlet. After each rainfall test, all the plastic
runoff-collection buckets were weighed and placed for a period of
time. Then, the upper clear liquid was drained off, and the lower
sediments were transferred into iron containers for oven-drying at
105° C. In addition, all root segments were carefully excavated and
washed, and root characteristics such as root density (g m−3), root
length density (mm−3), and root surface area density (cm2 m−3) were
determined (Table 1). In wind tunnel–rainfall experiments, several
indicators related to wind or water erosion were also measured and
calculated (Table 2).

Statistical analysis

In the present study, the mean of each treatment (bare soil and S.
psammophila root-permeated soil) was used for data analysis. The
descriptive parameters were analyzed using Excel 2017, and the figures
were created using SigmaPlot 14.0.

TABLE 1 Growth characteristics of S. psammophila.

Characteristic parameter Planting density

Five cuttings per box 10 cuttings per box 15 cuttings per box

Height (m) 2.11 ± .04 a 1.91 ± .02 a 1.89 ± .03 b

Diameter (cm) 1.05 ± .05 a .98 ± .03 ab .93 ± .06 b

Biomass (g) 205.37 ± 5.89 c 346.3 ± 4.59 b 407.0 ± 4.31a

RD (g m−3) 11.98 ± 1.32 b 32.03 ± 2.94 a 34.07 ± 2.28 a

RLD (m m−3) 14.63 ± 1.62 b 39.12 ± 3.47 a 43.34 ± 1.69 a

RSLD (cm2 m−3) 398.19 ± 43.97 b 1065.06 ± 94.38 a 1143.31 ± 46.27 a

Note: RD, root density; RLD, root length density; RSAD, root surface area density. Different lowercase letters in the same row means significant differences at p< .05.

TABLE 2 Measured and calculated indicators in simulated wind tunnel–rainfall experiments.

Target indicator Calculation formula Parameter meaning Cited
reference

Sediment transport flux (STF,
g cm−2 min−1)

STF � W
ST

W: the collected sediments in the sampler of multi-openings (g); S: the area of the sand
chamber (cm2); T: the blowing time (min)

Li (2016)

Flow depth (h, mm) h � Q
UBt

Q: runoff in t min (cm3); U: cross-section average flow velocity (cm s−1); B: cross-section
width m); t: interval time for runoff collection (min)

Zhao et al. (2015)

Reynolds number Re � Uh
v

U: cross-section average flow velocity (cm s−1); h: flow depth (mm); v: flow dynamic
viscosity coefficient

Li et al. (2008)

Unit stream power (P, cm s−1) P � UJ U: cross-section average flow velocity (cm s−1); J: flow energy slope, calculated by sinθ (θ is
the section slope)

Huang and Yang
(2003)

Drag coefficient (f) f � 8ghJ
U2

h: flow depth (mm); J: flow energy slope; U: cross-section average flow velocity (cm s−1) Zhao et al. (2015)

Water erosion rate (Er, g m−2

min−1)
Er � Ea/St Ea: sediment yield in t min (g); S: area of the soil box (m2); t: interval time for runoff

collection (min)
Tuo et al. (2012)

Sediment reduction effect by
roots (%)

SREroots � Erck−ErR
Erck

× 100% Erck: wind or water erosion rate in bare soils (g m−2 min−1); ErR: wind or water erosion rate
in root-permeated soils (g m−2 min−1)

Li et al. (2017)
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Results and discussion

Particle-size composition and sediment
transport flux in wind tunnel tests

Wind erosion preferentially removes finer particles and thus coarsens
soil texture (Zhao et al., 2006; Zhang et al., 2007). Table 3 illustrates that,
after the wind tunnel tests, both bare and root-permeated soils showed a
decrease in clay and silt contents and an increase in sand content to
different degrees. However, our results also observed that the increase in
the sand content in root-permeated soils (7.18%–10.07%) was less than

that in bare soils (8.89%–11.72%), implying that roots weakened the
coarsening of surface soil to a certain extent.

The height profile of wind-eroded sediment transport flux is the
reflection of blown sand particles that move in different trajectories
and thus is the basis for a better understanding of the characteristics of
the wind erosion process (Dong et al., 2003; Dong and Qian 2007).
Figure 3 shows the characteristics of sediment transport flux at
different heights above surface soil. At the designed wind speeds of
11 and 14 m s−1, both bare and root-permeated soils presented a
similar height profile that sediment transport flux decreased with
the increasing ground height. This height profile of wind-eroded
sediment transport flux has been widely reported in many other
studies (Tuo et al., 2016; Li et al., 2021). However, it should also
be noted that, compared with the bare soils, root-permeated soils had
always shown a low sediment transport flux at different ground
heights, which indicated that roots effectively enhanced soil
resistance to wind erosion and thus reduced soil loss to a certain
extent. In our study, it was obviously observed that the soil surface of
all the experimental soils was sheared with different degrees, and some
linear fringes or rills were created that oriented from the wind
direction (Figure 2). Interestingly, compared with the bare soils,
the root-permeated soils showed less numbers and shallow depth
of linear fringes or rills, which implied that roots weakened the
shaping effect of wind erosion on soil surface micro-topography.
By observing and analyzing, our statistical data demonstrated that
the sediment reduction effect by roots recorded 18.03% at a wind
speed of 11 m s−1, and this value increased to as high as 35.71% as the
wind speed was increased up to 14 m s−1.

Runoff hydrodynamic characteristics in
rainfall tests

A quantitative understanding of runoff hydraulics such as flow
velocity, Reynolds number, and drag coefficient could well explain and

TABLE 3 Particle-size composition of experimental soils (0–1 cm) before and after wind tunnel tests.

Wind speed (m s−1) Experimental treatment Measuring time Soil particle-size composition (%)

Clay (<2 μm) Silt (2–50 μm) Sand (50 μm–2 mm)

11 Bare soils Before test 12.77 21.17 66.06

After test 11.33 16.74 71.93

Increment (%) −11.28 −20.93 8.89

Root-permeated soils Before test 12.77 21.17 66.06

After test 11.47 17.73 70.80

Increment (%) −10.18 −16.25 7.18

14 Bare soils Before test 12.77 21.17 66.06

After test 10.61 15.59 73.80

Increment (%) −16.91 −26.36 11.72

Root-permeated soils Before test 12.77 21.17 66.06

After test 10.92 16.37 72.71

Increment (%) −14.49 −22.67 10.07

FIGURE 3
Sediment transport flux (STF) at different ground heights and the
sediment reduction effect by roots (SREroots, %) at wind speeds of 11 and
14 m s−1.
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clarify the water erosion process and sediment yield (Govers, 1992;
Lenoard and Richard, 2004). Table 4 shows the hydrodynamic
characteristics of runoff for bare and root-permeated soils which
suffered the former wind erosion. At a wind speed of 11 m s−1

combined with the rainfall intensity of 60 mm h−1, compared with
bare soils, the flow velocity, Reynolds number, and unit stream power
in root-permeated soils decreased by 21.79%, 13.18%, and 21.49%,
respectively. In addition, the root-permeated soils also showed a
higher flow depth and drag coefficient (11.34% and 88.89%
increments compared to bare soils, respectively). These
observations indicated that S. psammophila roots had a positive

effect on weakening the hydrodynamic intensity of runoff.
However, such root effects were seemed to be less pronounced as
the wind speed and rainfall intensity increased (14 m s−1 ×
100 mm h−1). This could be attributed to the more significant effect
of rainfall intensity on runoff hydrodynamic intensity (Zhang et al.,
2012b).

Runoff and water erosion rates in rainfall tests

Dynamics of runoff and water erosion rates with rainfall duration
for the bare and root-permeated soils are shown in Figure 4. As to the
characteristics of runoff generation, it can be seen that both bare and
root-permeated soils presented a similar variation trend that runoff
rates gradually increased and then appeared to approach a steady value
with increases in rainfall duration. However, it should not be ignored
that, compared with the bare soils, the root-permeated soils always had
a low runoff rates in the process of runoff generation. This observation
confirmed the positive effects of below-ground roots on runoff
reduction (Zhao et al., 2017). Yet, our statistic data also indicated
that this contribution of roots to reductions in runoff decreased at a
combination of higher wind speed and rainfall intensity. Specifically,
compared with the bare soils, under a level of 11 m s−1 × 60 mm h−1,
the runoff rate in root-permeated soils could be decreased by 13.34%,
but this value was reduced to 4.44% at a level of 14 m s−1 × 100 mm h−1.

Runoff was generally accompanied by sediment transportation. At
a wind speed of 11 m s−1 combined with the rain intensity of
60 mm h−1, bare and root-permeated soils had similar trends that
the water erosion rates enlarged slightly and steadily with rainfall
duration. However, large variations were observed under the level of
14 m s−1 × 100 mm h−1. Specifically, for the bare soils, the water
erosion rate increased noticeably in the first 9 –30 min which was
attributed to the abundant detached soil particles and large numbers of
linear fringes or rills caused by the former wind erosion (Tuo et al.,
2016). After that, the water erosion rate tended to fluctuate at the mid
and end of rainfall. This observation was roughly consistent with that
found by Zhang et al. (2016) and Zhao et al. (2017) who reported that
the sediment yield often fluctuated due to the irregular connections of
rills and collapse of side walls, especially on a bare slope that was
reshaped by wind erosion. Different from the bare soils, the water
erosion rate in root-permeated soils increased steadily in the early

TABLE 4 Hydrodynamic parameters of runoff for bare and root-permeated soils in simulated rainfall following wind tunnel tests.

Level of wind speed ×
rainfall intensity

Experimental
treatment

Hydrodynamic parameters of runoff

Flow velocity
(cm s−1)

Reynolds
number

Unit stream
power (cm s−1)

Flow
depth (mm)

Drag
coefficient

11 m s−1 × 60 mm h−1 Bare soils 4.68 48.57 1.21 .97 .09

Root-permeated soils 3.66 42.17 .95 1.08 .17

Increment compared to bare
soils (%)

−21.79 −13.18 −21.49 11.34 88.89

14 m s−1 × 100 mm h−1 Bare soils 8.64 165.79 2.24 1.8 .05

Root-permeated soils 7.65 157.24 1.98 1.93 .07

Increment compared to bare
soils (%)

−11.46 −5.16 −11.61 7.22 40.00

FIGURE 4
Average runoff rate and water erosion rate with rain duration and
sediment reduction effect by roots (%).
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stages of rainfall (the first 12 min), which was associated with the
erodible soil particles on the surface flowed down the slope. As the
rainfall continued, although the runoff rate became greater, the
erosion rate gradually decreased and thereafter remained almost
constant. In addition, it was also observed in our study that the
erosion rate in root-permeated soils was higher than that in bare soils
in the early stages of rainfall (the first 15 min), especially under the
level of 14 m s−1 × 100 mm h−1. This phenomenon was probably
because bare and root-permeated soils might have different water-
erodible particles for flow transport after the former wind erosion.
Compared with the root-permeated soils, the bare soils suffered much
serious wind erosion, particularly at a wind speed of 14 m s−1

(Figure 3), which may provide less detached soil particles for flow
transport in the early stages of rainfall (Tuo et al., 2012). As a
consequence, a lower erosion rate in bare soils was observed when
runoff was not strong enough. Our results showed that the existence of
roots not only changed the water erosion process but also reduced the
sediment yield (a reduction of 30.70% and 43.72% at rainfall intensities
of 60 and 100 mm h−1, respectively).

In the whole wind tunnel–rainfall experiments, the erosion-
reducing potential of S. psammophila roots showed 24.37% and
39.72% at the levels of 11 m s−1 × 60 mm h−1 and 14 m s−1 ×
100 mm h−1, respectively. This result was mainly contributed to the
protection and improvement of soils by roots in the wind and water
erosion process. The roots are like a net wedging in soils mechanically,
thus carpeting the ground. Because of its physical effects, roots could
bind, enlace and enmesh soil particles, and then substantially reinforce
the soil surface layer (Wang and Zhang, 2017; Shaurav et al., 2021).
Furthermore, due to its biochemical effects, the produced exudates
from roots adhered to soil particles and thus increased cementation
between adjacent soil particles (Li et al., 2017). All of these direct or
indirect actions of roots increased the soil wind or water erosion
resistance (Guo et al., 2020). The present study investigated only one
type of root and two levels of interaction between wind speed and
rainfall intensity under a one-way wind erosion–rain erosion
sequence; however, the effects of other types of roots (taproot
system, fibrous root system, or even adventitious root system) (De
Baets et al., 2007), multiple levels of interaction between wind speed
and rainfall intensity, a sequence of alternating wind and water erosion
(i.e., first wind erosion–first water erosion–second wind
erosion–second water erosion) (Yang et al., 2019), and other
conditions still remain unknown. These problems hinder a
comprehensive understanding of the mechanism of how plant
roots influence the erosion process and impede the estimation
accuracy of the erosion-reducing potential of plant roots in arid
and semi-arid regions. Therefore, more insights should be gained
about the knowledge of erosion-reducing potential of roots under the
complex erosion by wind and water in the future study.

Conclusion

The roots of S. psammophila clearly mitigated soil erosion in the
water–wind crisscrossed erosion region of the Chinese Loess Plateau.
Based on the simulated experiments of the wind tunnel first and
rainfall thereafter, the present study indicated that S. psammophila
roots weakened the coarsening of surface soil and decreased the

sediment transport flux at different heights in the former wind
erosion and reduced runoff and water erosion rates in the
following water erosion process. Roots also changed the water
erosion process and showed a trend that the water erosion rate
increased steadily in the early stage of rainfall and then it gradually
decreased and thereafter remained almost constant at the mid and end
of rainfall. The erosion-reducing potential of S. psammophila roots
could reach up to 24.37% and 39.72% at the levels of 11 m s−1 ×
60 mm h−1 and 14 m s−1 × 100 mm h−1, respectively. These results are
useful in revealing the mechanism of impacts of sandy vegetation
construction on the water–wind crisscrossed erosion region of the
Chinese Loess Plateau and also sandy land (Zhou and Shangguan,
2007).
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