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Background: Genetic testing is becoming more and more accepted in the auxiliary
diagnosis and treatment of tumors. Due to the different performance of the existing
bioinformatics software and the different analysis results, the needs of clinical
diagnosis and treatment cannot be met. To this end, we combined Bayesian
classification model (BC) and fisher exact test (FET), and develop an efficient
software DeteX to detect SNV and InDel mutations. It can detect the somatic
mutations in tumor-normal paired samples as well as mutations in a single sample.

Methods: Combination of Bayesian classificationmodel (BC) and fisher exact test (FET).

Results: We detected SNVs and InDels in 11 TCGA glioma samples, 28 clinically
targeted capture samples and 2 NCCL-EQA standard samples with DeteX, VarDict,
Mutect, VarScan and GatkSNV. The results show that, among the three groups of
samples, DeteX has higher sensitivity and precision whether it detects SNVs or InDels
than other callers and the F1 value of DeteX is the highest. Especially in the detection
of substitution and complex mutations, only DeteX can accurately detect these two
kinds of mutations. In terms of single-sample mutation detection, DeteX is much
more sensitive than the HaplotypeCaller program in Gatk. In addition, although
DeteX has higher mutation detection capabilities, its running time is only .609 of
VarDict, which is .704 and .343 longer than VarScan and MuTect, respectively.

Conclusion: In this study, we developed DeteX to detect SNV and InDel mutations in
single and paired samples. DeteX has high sensitivity and precision especially in the
detection of substitution and complex mutations. In summary, DeteX from NGS data
is a good SNV and InDel caller.
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GRAPHICAL ABSTRACT

Software running process and output results.

Background

After a long period of extensive and intensive research, it was
believed that tumor is a disease driven by genetic mutations, which
is closely related to clinical diagnosis and personalized therapy
(Stratton, 2011; Ding et al., 2012; Frampton et al., 2013; Kandoth
et al., 2013; Landau et al., 2013). Although the next-generation
sequencing (NGS) has become more widely accessible in cancer
research for its high-throughput advantages, the accuracy of this
technology depends to a large extent on the optimization of data
analysis. Cancer genome analysis is expected to reveal the patterns
of genetic alterations, including single nucleotide variantions
(SNVs), multi-nucleotide variantions (MNVs), insertion and
deletions (InDels), complex variantions etc. Among all mutation
types, SNVs and InDels get the most attention from variant callers
(McKenna et al., 2010; Koboldt et al., 2012; Cibulskis et al., 2013;
Lai et al., 2016). Due to the variable sample material, the rare
frequency of alteration and the complex mutation event, it is a
tough and urgent need to accurately detect mutations from
NGS data (Stransky et al., 2011; Banerji et al., 2012; Carter
et al., 2012).

Errors in bioinformatics processes and experimental steps may
confuse the real variants of clinical samples (Robasky et al., 2014;
O’Rawe et al., 2013; Kircher et al., 2011; Metzker, 2010). As a
consequence, several regularly cited tools such as VarScan2,
VarDict, MuTect and GATK, have been developed to solve or
partially solve these problems. VarScan2 and VarDict apply the
Fisher’s Exact Test (FET) to detect mutations (Koboldt et al., 2012;
Lai et al., 2016). Even though FET performs well at calling crucial
and slight variables that other callers are likely to miss or ignore,
the accuracy is still insufficient due to inadequate false positive
filtering. In addition, VarDict’s versatile capability drags down its

running speed performance at computing the specific type of
mutation.

Another statistical method is using Bayesian Classifier (BC) to
detect somatic point alterations (Cibulskis et al., 2013), such as
MuTect. MuTect is a highly sensitive mutation caller, only
requiring a few supporting reads to detect, and a series of
filters are used to ensure its specificity. Meanwhile, MuTect
applies severe penalties to somatic variant candidates if the
variant sites are also found in the matched normal. While this
approach filters out the most false positives of germline variants, it
adversely affects sensitivity in cases when the normal sample is
contaminated. GATK is a comprehensive variants caller that
combines multiple methods to detect germline or somatic
mutations (McKenna et al., 2010). However, GATK has poor
sensitivity and accuracy in detecting low-frequency variants,
especially those with variant allele frequencies (VAFs) less than
5%. Generally, most of these approaches would be confounded by
false negative or false positives owing to impure sample
compositions, deviations in experimental operation and
imperfect detecting strategies.

To address these problems mentioned above, we have
developed a high-confidence variant caller, DeteX which can
detect variants in tumor-only or tumor-normal matched NGS
data. This software is developed by integrating FET and BC
algorithms in Perl language to adapt to different conditions and
purposes. Considering the artifacts caused by polymerase chain
reaction (PCR) and mutations occurring around InDels, many
filtering conditions were optimized to ensure the accuracy of
detecting mutations, and the efficiency of DeteX is improved by
running sub-regions in parallel. In this study, F1 score was used as a
quantitative indicator of accuracy to compare the performance of
DeteX with that of other callers. Moreover, three group sample
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datasets, including 11 pairs of TCGA glioma samples, 28 pairs of
real tumor targeted sequencing samples and two standard samples
from External Quality Assessment of High-throughput Sequencing
for Tumor Somatic Mutation in China (NCCL-EQA), were used to
assess the performance of DeteX. This study proved that DeteX can
improve the accuracy of mutation detection, especially in detecting
substitution and complex mutations, and it could be used as a
convenient tool to replace the multiplex calling and filtration
pipeline.

Materials and Method

Datasets

In order to evaluate the performance of DeteX, we used a range of
real and standard datasets as shown below:

1 The public whole genome sequencing datasets from TCGA:
11 pairs of glioma data in sam format, with average sequencing
depth of 50X-100X. The variant set of Mutect2 software for these
11 samples (Supplementary Table S2) was obtained from the
TCGA (https://portal.gdc.cancer.gov/) website was used as the
standard variant set for subsequent analysis.
2 The real clinical targeted sequencing data: Blood from 28 pairs
from clinical patients with lung cancer and intestinal cancer were
selected. ctDNA from blood samples was used as tumor samples,
and leukocytes were used as normal samples. These DNA samples
were extracted, library was constructed and sequenced to obtain
sequencing data in fastq format.

The data were obtained by the process of filtering, Bwa (.7.12-
r1039) (McKenna et al., 2010) comparison, marker duplication by
Picard MarkDuplicates.jar (1.119) package, re-matching by Gatk (Lai
et al., 2016) and correction of base mass values to obtain the bam data

of the samples. The average sequencing depth of samples ranged from
500X to 2500X.

3 The NCCL-EQA data: Illumina Hiseq platform data of NCCL-
EQA in 2017 and 2019 were analyzed to obtain bam data through
the same process of reads filtering, alignment, marking duplication,
realignment and correction of base quality value.

Requirements and implementation

DeteX starts with Binary Alignment/Map (BAM) file, which is
generated from NGS reads alignment or procedures, such as BWA
(Li and Durbin, 2009), TopHat (Trapnell et al., 2009; Eenst et al.,
2017), Bowtie (Langmead et al., 2009), and Bowtie2 (Langmead and
Salzberg, 2012; Langmead et al., 2019). It is developed in Perl
language. The source code can be downloaded at https://github.
com/mvlzwtd/DeteX. This website is maintained by Marvelbio
O&M team.

Structure and workflow

DeteX can detect somatic and germline mutations in tumor-only
or somatic mutations in tumor-normal paired samples. The detection
strategy includes the following steps:

(i) Filtering reads with low base quality, low mapping quality,
duplicates, multiple mapped and outside of the detection
interval.

(ii) Detecting variants, if there is a control sample, the process of
filtering variation should be added to the control sample.

(iii) After filtering the false positive variants based on multiple
filtering conditions, high confidence variants are ultimately
output. The workflow of DeteX is illustrated in Figure 1.

FIGURE 1
The workflow of DeteX. DeteX uses BAM format file as input. The preliminary filtering is mainly concerned with base quality and mapping quality. Then it
applies Bayesian classifier (BC) method for mutation calling. For tumor-normal matched data, Fisher’s exact test (FET) is further performed to identify the
candidate variant. By reducing false positive by meeting several screening criteria (Supplementary Table S1) the final high-confidence variants is obtained.
SigVar indicates single tumor variant and SomVar indicates somatic variant.
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Variant detection principle

Reads filtering

In order to reduce the number of false positive variants caused by
non-independence errors and sequencing errors, we have set various
filtering conditions in our software, which are derived from the
experience of developers in data analysis and suggestions of other
software. The filtering conditions applied in our software, including
reads and variants filtering, are shown in Supplementary Table S1.
These conditional values can be set by parameters except for
mapping type.

Meeting all the reads filtering and the first 4 variants filtering
conditions in Supplementary Table S1 and then these reads can be
used to detect mutations by the following BC and FET model.

SNV detection

We calculate the ratio of the maximum likelihood values (LOD) of
the twomodels for each variant locus by using the model introduced in
the MuTect supplemental method (Cibulskis et al., 2013). The larger

LOD value of a variant, the more reliable it is. We calculate the LOD
value for each variant in the tumor sample, and filter out the variants
with LOD value less than 3.9.

If there is no control sample, perform variations filtering according
to the conditions 5, 6, and 7 in Supplementary Table S1, and output the
final variations in VCF format. The results contain germline and
somatic variants. If there is no control samples, all we need is the
results of somatic mutation. We can screen out somatic mutations by
dbSNP (Smigielski et al., 2000; Sherry et al., 2001; Chiang et al., 2017;
Arifuzzaman et al., 2020) (https://www.ncbi.nlm.nih.gov/snp/),
Cosmic (Forbes et al., 2017) (https://cancer.sanger.ac.uk/cosmic),
1000G (https://www.ncbi.nlm.nih.gov/variation/tools/1000genomes/
), gnomAD (http://hgdownload.cse.ucsc.edu/gbdb/hg19/gnomAD/
vcf/), EXAC (Song et al., 2016) (http://exac. broadinstitute.org) or
other databases. The dbSNP, 1000G, gnomAD and EXAC databases
are healthy human variant databases. If this variant exists in these
databases, and the population variant frequency is greater than or
equal to 1%, then this variant is considered as a germline variant,
otherwise it is considered as somatic mutation. Cosmic database is
database of tumor variants. If there is a variant, it is considered to be
somatic mutation. If a variant is considered as both somatic and
germline variant, it means that both possibilities exist.

TABLE 1 Results of each caller to detect variants in TCGA samples.

Mutation type Caller Benchmark
mutation num

Detected
mutation num

True positive
mutation num

Precision (%) Sensitivity (%) F1

SNV VarDict 723 681 673 98.83 93.08 .96

DeteX 686 684 99.71 94.61 .97

VarScan.hc 610 610 100.00 84.37 .92

VarScan 934 707 75.70 97.79 .85

MuTect 654 654 100.00 90.46 .95

InDel VarDict 37 39 35 89.74 94.59 .92

DeteX 37 37 100.00 100.00 1.00

VarScan.hc 31 29 93.55 78.38 .85

VarScan 49 35 71.43 94.59 .81

Gatk 44 35 79.55 94.59 .86

TABLE 2 Results of each caller to detect variants in clinical samples.

Mutation type Caller Detected
mutation num

True positive
mutation num

Benchmark
mutation num

Precision Sensitivity F1

SNV DeteX 1,445 968 1,045 .67 .93 .62

VarDict 1,637 962 .59 .92 .54

VarScan 1,424 693 .49 .66 .32

Mutect 485 484 1.00 .46 .46

InDel DeteX 854 355 436 .42 .81 .34

VarDict 2371 375 .16 .86 .14

VarScan 260 151 .58 .35 .20

Gatk 152 96 .63 .22 .14
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If there is a control sample, the frequency of variation in the
control sample needs to be less than the value of parameter “-nf” or
.2 times frequency in the tumor sample. The variants that are not in
control sample or supporting reads in the same direction are
directly output. The LOD value of a variation in the control
sample whose frequency is less than .5 times that in the
tumor is calculated. If the LOD value is less than 3.9, the
variation will be output. If it is greater than or equal to 3.9, the
significance p-value of the variation is calculated according to
Fisher’s exact test. If the p-value is less than or equal to the
parameter setting value, the variation is output, otherwise it is
not output. The p-value of Fisher’s exact test of a variation is
calculated as follows: We denote supporting variant reads in normal
sample as n1, supporting reference reads in normal sample as n0,
supporting variant reads in tumor sample as c1, supporting
reference reads in normal sample as c0. The significance value p
is given by

p � n1 + n0( )! c1 + c0( )! c1 + n1( )! c0 + n0( )!
n1!n0!c1!c0! n1 + n0 + c1 + c0( )!

Next, according to the conditions 5, 6, 7. and 8 in Supplementary
Table S1, variation filtering is performed, and then the final variations
in VCF format are outputted. If two adjacent loci are mutated at the
same time, which shows that they are mutated in the same reads, we
call this type mutation a substitution mutation. According to this
features, we can correctly output these type mutations. Delete reads
with more than or equal to three mutations, most of which are caused
by alignment errors.

InDel detection

The software applies Fisher’s exact test algorithm to detect InDel.
After meeting the reads filtering conditions, reads with one or two
gaps/insert sequences (inss) are retained. If SNV variants exist SNV in
the same reads within five bases distance to gap/ins, they are combined
into one variant. If the gap or the distance among the gaps or inss in
the same reads is less than 10 bases, they are also combined into a
variant. If the two mutations are in the different reads, they are
considered to be two variants. These conditions ensure the
detection of complex mutation correctly. Variant filter conditions
5, 6, 7, 8, 9, and 10 in Supplementary Table S1 are also applicable to
InDel detection.

Variation frequency calculation

Due to PCR amplification, duplicate reads may occur at the
variant site. Duplicate reads are counted as one in variation
frequency calculation. In repeated reads, if the proportion of
mutated reads is greater than .8, it is considered as a read
supporting variation. The maximum base quality value of
mutated reads at the variation site is considered as the base
quality value of this site. Only reads that cover all the InDel
sites are counted in InDel frequency calculation. Final variation
frequency VAF is given by

VAF � totalmutation reads
total reads

× 100%

FIGURE 2
Sensitivity and precision of each software for the detection of SNV and InDel in 28 clinical samples. (A) Precision of SNVs, (B) Sensitivity of SNVs, (C)
Precision of InDels, (D) Sensitivity of InDels.
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Softwares to detect SNV/InDel

To evaluate the performance of DeteX, we used DeteX, VarScan,
MuTect and VarDict to detect SNV and DeteX, VarScan, Gatk and
VarDict to detect InDel. In the detection of SNVs and InDels of three
groups of datasets, DeteX and Mutect were used the default value of
the parameters. We added parameters of “--min-avg-qual 13, --min-
tumor-freq .01, --max-normal-freq .02” to VarScan, “-filter T_
INDEL_F < .01” to Gatk, “-m 5 -O 40 -V .02 -x 0 -k 0 -X 3 -c 1 -
S 2 -E 3 -g 4” to VarDict.

Performance evaluation metrics

We use sensitivity, precision and F1 value to evaluate the
performance of the software. Sensitivity is the proportion of
detected true variantions in all the true positive variations. The
higher the sensitivity, the lower the rate of missed detection.
Precision is the proportion of detected true variantions in all the
observed variations. The higher the precision is, the accuracy is higher.
The value of F1 is the products of sensitivity and precision, which
comprehensively reflects the performance of variation detection of
softwares.

Results

Benchmark variant datasets

Benchmark variant data is very important for assessing the
performance of variant detection software. A few typical real
samples containing all types of mutations, and simulation data
usually can not contain all kinds of random errors in sequencing,
public authority samples and standard samples can be used to
evaluate software performance. In this paper, three groups of
samples are selected. Each group of sample has different ways to
get the benchmark variant data.

11 TCGA samples. The Mutect2 software can obtain the most
reliable variant results. So we used variants detected by Mutect2 as
the final benchmark variant dataset. The mutations with
sequencing depth below eight and less than 2 variant reads are
dropped. Finally, 760 mutations, including 37 InDels and 723 SNVs
(Supplementary Table S2) were found in 11 glioma samples with
Mutect2-labeled. Because substitution and complex mutations are
considered as two mutations in the public mutation database,
763 variants are displayed in the table. We put the substitution
mutations into the SNV set and the complex mutations into the
InDel set.

28 real clinical samples. All SNVs and InDels with variant
frequency ≥1% were detected. Those detected by at least two
softwares were put into the final benchmark variant set. The
categorization method is the same as TCGA sample variants,
with substitution mutations categorized as SNV and complex
mutations categorized as InDel. There are 1,481 variants
(SSupplementary Table S3) including 1,045 SNVs and 436 InDel
in the benchmark variant set.

NCCL-EQA external quality assessment data. There is a set of
standard variables to assess the testing capabilities of laboratories
across China. 94 variants are available in 2017 sampleTA
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(Supplementary Table S4) and 23 variants are available in
2019 sample (Supplementary Table S5). These standard
datasets enable accurately evaluate the performance of the
software.

Higher precision and sensitivity of DeteX in
SNVs and InDel detection

We compared the accuracy and sensitivity of each software in
detecting SNVs and InDels in 11 pairs of TCGA samples (Table 1).
In the table, in the SNV detection, VarScan.hc and MuTect have the
best precision but at the expense of sensitivity. In contrast, VarScan
has the best performance in sensitivity, but it contains a large
number of false positive variants, resulting in the lowest accuracy.
VarDict and DeteX show relatively balanced in both metrics, but
DeteX slightly outperforms vardict in all metrics. So the score is the
highest among all the software when it measured by F1 values. In
the InDel detection, VarScan has a similar performance in detecting
SNV with the lowest accuracy. VarScan.hc has a relatively high
precision but has the lowest sensitivity. DeteX has great advantage
over other software in all metrics, and it can reach a maximum
F1 of one.

FIGURE 3
The distribution of reads for four variants in the TCGA sample (obtained by samtools tview program). (A) The distribution of reads for CA->AG in the TCGA
sample. (B) The distribution of reads for C->T in the TCGA sample. (C) The distribution of reads for GC->A in the TCGA sample. (D) The distribution of reads for
G->A in the TCGA sample.

FIGURE 4
The readsmapping of one complexmutation. The sites in the red
box represents from 55242466 to 55242481 of chr7. “ = ” indicates that it
is identical to the reference base in the positive strand. “|” indicates that it
is identical to the reference base in the negative strand. “c” indicates
negative strandmismatch. “C” indicates positive strand mismatch. Blank
indicates deletion.
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TABLE 4 The results of InDel, substitution, and complex mutations in two NCCL-EQA samples by each software.

SampleID Num Chr Start End Ref Var Gene Type VAF
(%)

VarScan GATK DeteX VarDict

201711 1 1 115256520 — — CCCGGCAC NRAS Insertion 2 √ √ √ √

2 2 29445271 — — CGT ALK Insertion 15 √ √ √ √

3 3 37089070 37089072 ACA — MLH1 Deletion 5 √ √ √ √

4 3 41266107 41266108 TC AA CTNNB1 Complex 2 × × √ √

5 3 178916946 178916948 GAT — PIK3CA Deletion 7 √ — √ √

6 4 55152092 55152100 GACATCATG — PDGFRA Deletion 6 — √ √ √

7 4 106180857 106180857 C — TET2 Deletion 10 √ √ √ √

8 5 112175210 — — A APC Insertion 6 √ √ √ √

9 7 55242467 55242481 AATTAAGAGAAGCAA TTC EGFR Complex 3 × — √ ×

10 7 140453132 140453136 TTTCA AT BRAF Complex 5 — × √ ×

11 9 5070022 5070027 TCACAA — JAK2 Deletion 4 √ √ √ √

12 10 89692837 89692842 TCTTGA — PTEN Deletion 2 √ - √ √

13 10 123247618 123247620 GAT — FGFR2 Deletion 3 √ √ √ √

14 11 32417910 — — ACCGT WT1 Insertion 5 √ √ √ √

15 11 64575435 — — CTGT MEN1 Insertion 5 √ √ √ √

16 11 108170483 108170487 TCTCT — ATM Deletion 8 √ √ √ √

17 12 25380259 — — TGCACTGTACTCCTC KRAS Insertion 3 √ √ √ √

18 13 28608104 — — AAGCACCTGATCCTAG TACCT FLT3 Insertion 7 √ √ √ √

19 17 7577105 — — GA TP53 Insertion 13 √ √ √ √

20 22 30032780 30032801 GGACTCTGGGGCTCCGAGAAAC — NF2 Deletion 3 — — √ √

201911 1 2 148683693 148683693 A — ACVR2A Deletion 16 √ √ √ √

2 2 209113112 209113113 CG GA IDH1 Complex 14 × × √ √

3 7 55242470 55242495 TAAGAGAAGCAACATCTCCGAAAGCC CGAAAGG EGFR Complex 15 × × √ ×

4 7 140453135 140453136 CA GT BRAF Complex 24 × × √ √

5 20 31022449 — — G ASXL1 Insertion 27 — √ √ √

√’ indicates a correct result, “-” indicates no result, and “×” indicates part of result.
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TABLE 5 The results of DeteX and HaplotypeCaller to detect variants in tumor sample from the 2017 NCCL-EQA.

Chr Start End Ref Obs Gene_Symbol MType Freq
(%)

Gatk DeteX

chr1 10412784 10412785 A G KIF1B SNV 3.08 — √

chr1 11190665 11190666 C T MTOR SNV 5.94 — √

chr1 43812575 43812576 T C MPL SNV 6.8 — √

chr1 115256520 — — AGGCCAGG CCCGGCAC TG NRAS Insertion 1.7 — √

chr2 29445271 — — CGT ALK Insertion 13.72 √ √

chr2 29519890 29519891 C G ALK SNV 6.16 — √

chr2 29541234 29541235 C T ALK SNV 6.12 — √

chr2 209108165 209108166 T C IDH1 SNV 3.29 — √

chr2 212566836 212566837 C A ERBB4 SNV 3.48 — √

chr3 37089070 37089072 ACA — MLH1 Deletion 4.38 — √

chr3 41266107 41266108 TC AA CTNNB1 Complex 1.82 — √

chr3 47164278 47164279 G A SETD2 SNV 7.49 √ √

chr3 142224005 142224006 C A ATR SNV 9.17 √ √

chr3 142232475 142232476 C T ATR SNV 3.99 — √

chr3 178916946 178916948 GAT — PIK3CA Deletion 7.59 √ √

chr3 187447267 187447268 C T BCL6 SNV 14.39 √ √

chr4 1805528 1805529 T G FGFR3 SNV 5.01 — √

chr4 1808929 1808930 G A FGFR3 SNV 3.79 — √

chr4 55131212 55131213 A T PDGFRA SNV 17.99 √ √

chr4 55152092 55152100 GACATCATG - PDGFRA Deletion 5.61 — √

chr4 68610385 68610386 G T GNRHR SNV 13 √ √

chr4 106180857 106180857 C - TET2 Deletion 9.39 √ √

chr4 106190823 106190824 T C TET2 SNV 11.83 √ √

chr4 106197175 106197176 G A TET2 SNV 11.3 √ √

chr5 112175210 — — A APC Insertion 5.7 — √

chr5 112176361 112176362 C T APC SNV 5.23 — √

chr5 149501448 149501449 G A PDGFRB SNV 4.31 — √

chr5 176517792 176517793 G A FGFR4 SNV 6.2 — √

(Continued on following page)
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TABLE 5 (Continued) The results of DeteX and HaplotypeCaller to detect variants in tumor sample from the 2017 NCCL-EQA.

Chr Start End Ref Obs Gene_Symbol MType Freq
(%)

Gatk DeteX

chr5 180057074 180057075 C T FLT4 SNV 13.05 √ √

chr6 30862397 30862398 G A DDR1 SNV 2.17 — √

chr6 117700257 117700258 C T ROS1 SNV 5.66 — √

chr6 117714444 117714445 C T ROS1 SNV 11.47 √ √

chr7 55242467 55242481 AATTAAGAGAAGCAA TTC EGFR Complex 1.2 — √

chr7 55249037 55249038 G A EGFR SNV 2.46 — √

chr7 55249091 55249092 G C EGFR SNV 3.53 — √

chr7 55259514 55259515 T G EGFR SNV 2.16 — √

chr7 116414979 116414980 A T MET SNV 7.79 — √

chr7 140453132 140453136 TTTCA AT BRAF Complex 4.93 — √

chr7 140494237 140494238 G A BRAF SNV 1.47 — √

chr8 92982976 92982977 C T RUNX1T1 SNV 21.35 √ √

chr8 128753093 128753094 C A MYC SNV 4.48 — √

chr9 5070022 5070027 TCACAA - JAK2 Deletion 4.07 — √

chr9 8500789 8500790 C T PTPRD SNV 4.07 — √

chr9 21970965 21970966 C A CDKN2A SNV 9.2 √ √

chr9 133760366 133760367 C A ABL1 SNV 3.07 — √

chr9 133760951 133760952 A G ABL1 SNV 2.16 — √

chr9 139391525 139391526 G A NOTCH1 SNV 6.15 — √

chr9 139396741 139396742 T C NOTCH1 SNV 10.74 √ √

chr9 139409810 139409811 G T NOTCH1 SNV 8.93 — √

chr10 43596167 43596168 G A RET SNV 4.26 — √

chr10 63851815 63851816 C T ARID5B SNV 3.65 — √

chr10 89692837 89692842 TCTTGA — PTEN Deletion 2.46 — √

chr10 89717612 89717613 C A PTEN SNV 2.61 — √

chr10 123247618 123247620 GAT — FGFR2 Deletion 2.67 — √

chr11 32417910 — — ACCGT WT1 Insertion 5.26 — √

chr11 32439125 32439126 T G WT1 SNV 5.93 — √

(Continued on following page)
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TABLE 5 (Continued) The results of DeteX and HaplotypeCaller to detect variants in tumor sample from the 2017 NCCL-EQA.

Chr Start End Ref Obs Gene_Symbol MType Freq
(%)

Gatk DeteX

chr11 64573739 64573740 A G MEN1 SNV 4.52 — √

chr11 64575435 — — CTGT MEN1 Insertion 3.63 — √

chr11 108114802 108114803 C G ATM SNV 5.82 — √

chr11 108170483 108170487 TCTCT — ATM Deletion 7.41 — √

chr11 108206581 108206582 A T ATM SNV 2.45 — √

chr12 6704522 6704523 G A CHD4 SNV 1.47 — √

chr12 25378590 25378591 C T KRAS SNV 11.68 √ √

chr12 25380259 — — TGCACTGTACTCCTC KRAS Insertion 2.53 — √

chr12 58144504 58144505 G A CDK4 SNV 10.31 √ √

chr12 115109751 115109752 T A TBX3 SNV 9.39 √ √

chr13 28599039 28599040 C T FLT3 SNV 9.13 √ √

chr13 28608104 — — AAGCACCTGATCCTAG TACCT FLT3 Insertion 4.49 √ √

chr13 28895609 28895610 C T FLT1 SNV 7.31 — √

chr13 28897044 28897045 C T FLT1 SNV 7.75 — √

chr13 48934220 48934221 T C RB1 SNV 10.32 √ √

chr13 48937054 48937055 G A RB1 SNV 12.29 √ √

chr14 75514889 75514890 G T MLH3 SNV 18.81 √ √

chr14 105246489 105246490 C T AKT1 SNV 2.07 — √

chr15 67358628 67358629 G A SMAD3 SNV 16.51 √ √

chr15 67457294 67457295 G T SMAD3 SNV 17.73 √ √

chr16 2126135 2126136 C T TSC2 SNV 5.86 — √

chr16 3789660 3789661 C T CREBBP SNV 1.33 — √

chr16 3828109 3828110 C T CREBBP SNV 4.95 — √

chr17 7574001 7574002 C T TP53 SNV 2.84 — √

chr17 7577105 — — GA TP53 Insertion 11.64 √ √

chr17 29562778 29562779 T C NF1 SNV 8.23 — √

chr17 29576056 29576057 G A NF1 SNV 3.05 — √

chr17 42327859 42327860 C T SLC4A1 SNV 4.22 — √

(Continued on following page)
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We also compared the results of each software for SNVs and
InDels in 28 pairs of clinically targeted sequencing samples
(Table 2; Figure 2). As shown in Table 2, DeteX and VarDict
have similar sensitivity in SNV detection and they are significantly
higher than VarScan and MuTect. The accuracy of DeteX is lower
than MuTect, but higher than VarDict and VarScan.Finally DeteX
has the highest F1 value. In the InDel detection, DeteX and VarDict
have similar sensitivity, which is significantly higher than VarScan
and Gatk. The accuracy of DeteX is moderate. The final the F1 value
of DeteX is also the highest. Figure 2 shows the sensitivity and
accuracy of each software in detecting SNV and InDel in 28 samples
in more intuitive and detailed way. In some samples, there is no
variant detected by MuTect. The precision of it in these samples is
marked 0, so the status of 1 and 0 are appeared in Figure 2A. All
variants marked somatic including “StrongSomatic” and
“LikelySomatic” are counted in the VarDict results. Therefore, in
InDel detection, the precision of VarDict performs the worst
(Figure 2C). DeteX and VarDict are significantly better than the
other two softwares in terms of sensitivity both in detecting SNV
and InDel (Figures 2B, D).

We also analyzed the variant results of each software for the
NCCL-EQA external quality assessment samples. Each software could
detect SNVs accurately (Supplementary Table S6). For InDel,
substitution and complex mutations (Table 4), only DeteX detected
all of them correctly, VarDict detected 22 and both VarScan and Gatk
detected 16.

DeteX detects substitutions and complex
mutations more accurately

It shows clearly in Table 3 and Figure 3 to detect substitution
and complex mutations in TCGA samples by each software. From
these results, it can be seen that for substitution mutations such as
the variant one in Table 3 (Figure 3A), two adjacent bases are
mutated in the same reads, and the standard result is chr10:
28409253–28409254, CA- > AG, which was detected as two
adjacent mutations by VarScan and MuTect, but accurately
detected by VarDict and DeteX. If two adjacent bases are
mutated, but one of them also mutated in the normal sample, it
is not a substitution mutation. For example, the standard result of the
variant 2 in Table3 (Figure 3B) is chr21:46074201, C- > T. VarDict
detected as CA- > TG, the other softwares detected correctly. The above
two cases indicate that VarScan, MuTect and VarDict have certain
detection errors for the mutations occurring in adjacent sites. For
complex mutations, variant three in Table3 (Figure 3C) is a deletion
accompanied by a SNV variant. The standard result is chr8:
145540703, GG>A.The results show that only DeteX could
detect it correctly. VarDict detected it as two mutations.
VarScan and Gatk detected a deletion only. MuTect did not
detect the mutation. The variant 4 in Table 3 (Figure 3D) is
similar to the variant 2 except that the two mutanted loci
are not adjacent to each other. So the result is the same as the
variant 2.

The results of NCCL-EQA (Table 4) once again confirmed the
excellent detection ability of DeteX for complex mutations and
substitution mutations. Only DeteX detected all of them. VarDict
could accurately detect substitution mutations, while complex
mutations can only be partially detected or not. The other twoTA
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software could partially detect or fail to detect these two kinds of
mutations. The detection ability of DeteX is excellent especially in
complex mutations which contain SNV and gaps. For example, four
events AAdel, TTmap, AAGAGAAGCAdel, and A- > C occurred
simultaneously in the mutation chr7:
55242467–55242481 AATTAAGAGAAGCAA- > TTC (Figure 4).
It is difficult to output it accurately without considering the
adjacent InDel and SNV together.

Single sample testing

We analyzed the SNVs and InDels results of DeteX and the
HaplotypeCaller (DePristo et al., 2011) program in Gatk in tumor
sample from the 2017 NCCL-EQA external quality assessment
(Table 5). DeteX detected all the 94 variants in the standard
variant set, but only 29 variation were detected by HaplotypeCaller,
most of which were more than 10%. This indicates that DeteX is more
sensitive than HaplotypeCaller in detecting somatic variants in a single
sample.

Running speed

Good accuracy is often at the expense of computing time. DeteX
increases computing speed by splitting the targeted capture interval by
setting the threads. We calculated the time taken by these four softwares
to detect SNVs and InDels in 28 pairs of clinical samples (Figure 5A).
The samples in Figure 5A are arranged from shortest to longest
according to VarDict’s running time. It takes much less time than
VarDict. Due to the high complexity of the algorithm, it takes slightly
longer than VarScan and MuTect. DeteX processes the bam data
linearly first and then it outputs the sequencing reads of the variant
site in the case sample. Therefore, the more variations exist, the deeper
the sequencing depth, and the longer it takes. The number of variants is
not only related to the sample itself, but also to the sequencing quality.
The higher the quality, the faster the speed is. Figure 5B shows the
relationship between the running time of DeteX and the average
sequencing depth. It can be seen that there is a high linear
relationship between them, and the correlation coefficient reached .8.

Discussion

The performance of the Bayesian classification model depends
on the probability of the variables, although this distribution model
is usually used to detect all kinds of variations, and the actual NGS
data is not ideally distributed. Furthermore, when there are many
attributes or the attributes are highly correlated, the Bayesian
classifier is also effective. This is because in NGS data, with the
increase of subclone types, the statistical method of determining
mutation based on the likelihood ratio tests becomes unstable. The
sequencing errors and true variants are not absolutely distinguished.
The reads and base anomalies in non-reference sequences may
contain causes of both sequencing background noise and true
variants. The Bayesian model is used in mutect, so that false-
positive variations exists in the control samples. By filtering the
control variation, the real tumor variation is deleted, and its
sensitivity is reduced. The Bayesian model used in MuTect
could filter out possible variants due to the low requirement
resulting in non-variant loci in normal samples being considered
as variant loci. MuTect can detect low-frequency variation, and
its precision is high enough, but its sensitivity is not enough.
Software that detects variants using Fisher’s exact test, such as
VarDict and VarScan, is sufficient in sensitivity but not enough
in precision. If both software are used to detect variants together,
the number of false positive variants increases, which is a great
challenge for clinical testing cycle time and accuracy. First, we used
BC model to ensure the correct detection of high-frequency
variation, then used FET algorithm to ensure the detection of
low-frequency variation, and finally reduced false positives by
various filtering conditions, thus ensuring high sensitivity and
specificity of the test results.

When detecting substitution and complex variants, DeteX fully
considers whether multiple adjacent variants occur simultaneously,
which is expressed in the data as to whether they occur in the same
reads. If two adjacent single nucleotide mutations occur
simultaneously, they are considered as a substitution mutation
which is written in the form of one variation, such as variation one
in Table 3. If two mutations do not occur simultaneously, they are
considered as two variants which are written in the form of two
variants such as variation two or four in Table 3. Thus, this ensures the

FIGURE 5
Computational performance of DeteX. (A) Time consumption of four callers in 28 clinical samples. (B) The relationship between running time of DeteX
and average sequencing depth.
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correctness of detection of substitution mutation. For complex
mutations, the situation is similar. The adjacent gap, ins and SNV
in the same reads are fully considered. They are combined into one
variation, which ensures the accuracy of this mutation detection. Due
to lack of local realignment and over-reliance on the comprision
results, some of the variants that occur at the end of reads may be
softclip off instead of being accurately compared, so the frequency of
variant may be slightly lower, which needs to be improved.

DeteXmethod for detecting single sample mutations is the same as
that of detecting somatic mutations in paired samples, except that
there is no normal sample as a control. Therefore, it can detect low-
frequency variation very well. Compared with the HaplotypeCaller in
Gatk, which is commonly used to detect single sample mutations,
DeteX is much more sensitive. This greatly improves the efficiency
of detecting somatic mutations in tumor samples without control
samples. It offers the possibility of reducing costs and provide testing
for more patients.

Conclusion

Compared to other softwares, DeteX has higher sensitivity
and precision in detecting systemic SNV and InDel mutations
in tumor samples, especially in the detecting substitution and
complex variants. This enhances our confidence in detecting
sparse driver mutations in tumor samples, reduces the workload
of relevant staff and improves detection efficiency. Clinical
applicable mutation detection software with high sensitivity and
specificity is very important for patient therapy and clinical research.
The advent of our software has led to significant advances in clinical
genetic testing.
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