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Objective: Therapeutic hypothermia (TH) is the current standard of care for neonatal
hypoxic-ischemic encephalopathy (HIE), yet morbidity and mortality remain
significant. Adjuvant neuroprotective agents have been suggested to augment
hypothermic-mediated neuroprotection. This analysis aims to identify the classes
of drugs that have been used in combination with hypothermia in the treatment of
neonatal HIE and determine whether combination therapy is more efficacious than
TH alone.

Methods: A systematic search of PubMed, Embase and Medline from conception
through December 2022 was conducted. Randomized- and quasi-randomized
controlled trials, observational studies and retrospective studies evaluating HIE
infants treated with combination therapy versus TH alone were selected. Primary
reviewers extracted information on mortality, neurodevelopmental impairment and
length of hospitalization for meta-analyses. Effect sizes were pooled using a
random-effects model and measured as odds ratio (OR) or mean difference (MD)
where applicable, and 95% confidence intervals (CI) were calculated. Risk of bias was
assessed using the tool from the Cochrane Handbook for Systematic Reviews of
Interventions.

Results: The search strategy collected 519 studies, 16 of whichmet analysis inclusion
criteria. HIE infants totaled 1,288 infants from included studies, 646 infants received
some form of combination therapy, while 642 received TH alone. GABA receptor
agonists, NMDA receptor antagonists, neurogenic and angiogenic agents, stem cells,
glucocorticoids and antioxidants were identified as candidate adjuvants to TH that
have been evaluated in clinical settings compared to TH alone. Length of
hospitalization was significantly reduced in infants treated with combination
therapy (MD −4.81, 95% CI [−8.42. to −1.19], p = .009) compared to those treated
with TH alone. Risk of mortality and neurodevelopmental impairment did not differ
between combination therapy and TH alone groups.

Conclusion: Compared to the current standard of care, administration of
neuroprotective adjuvants with TH reduced the duration of hospitalization but did
not impact the risk of mortality or neurodevelopmental impairment in HIE infants.
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Meta-analysis was limited by a moderate risk of bias among included studies and small
sample sizes. This analysis highlights the need for preclinical trials to conduct drug
development studies in hypothermic settings to identify relevantmolecular targets that
may offer additive or synergistic neuroprotection to TH, and the need for larger
powered clinical trials to determine the dose and timing of administration at which
maximal clinical benefits are observed for adjuvant neuroprotectants.

KEYWORDS

hypoxic-ischemic encephalopathy, neonatal, therapeutic hypothermia, adjuvant therapy,
neuroprotection, meta-analysis

1 Introduction

Although substantial progress has been made in reducing neonatal
mortality rates since 1990, annual neonatal deaths remain remarkably
high with socioeconomic and geographic disparities continuing to
widen. While improvements in health and maternal care have led to
rapid reductions in deaths caused by infection (i.e., meningitis, sepsis,
tetanus), perinatal asphyxia–the main reason for hypoxic-ischemic
encephalopathy (HIE)—has continued to account for nearly a quarter
of neonatal mortality for the past 3 decades (Lawn et al., 2005; Lawn
et al., 2010; Hug et al., 2019). In high-income regions, HIE has an
estimated incidence of 1.5/1,000 live births, with death or long-term
neurological sequalae reported in upwards of 60% of infants (Edwards
et al., 2010; Kurinczuk et al., 2010; Lundgren et al., 2018). This suggests
that in Canada, ~540 infants were affected by this condition in the year
2020 alone (Statistics Canada, 2022). HIE is thus an important
contributor to the burden of death and disability in the population,
with considerable socioeconomic implications.

The underlying etiology of HIE is characterized by a drop in
cerebral blood flow and/or hypoxemia with the resulting
pathophysiology progressing in distinct phases (Millar et al., 2017).
Primary depletion of high energy phosphates drives anoxic
depolarization and early cell death, followed by a transient recovery
period due to blood reperfusion. Approximately 6–15 h later, there is a
secondary surge of delayed cell death that is driven by excitotoxicity,
mitochondrial failure and oxidative stress, and is accompanied by
chronic inflammation, seizures and cytotoxic edema (Fatemi et al.,
2009; Cotten and Sankaran, 2010; Yıldız et al., 2017). These deleterious
effects are compounded by the intrinsic vulnerability of the neonatal
brain attributed, in part, to immature antioxidant defense mechanisms
and risingmetabolic demands as the cerebral energy source shifts from
anaerobic glycolysis to aerobic metabolism in order to fuel complex
maturational processes (Liu et al., 2014; Martini et al., 2021). Clinical
magnetic resonance spectroscopy studies have supported this biphasic
model of cell death within the brain. In term and near-term infants
with evidence of birth asphyxia and moderate to severe HIE, normal
cerebral metabolism is observed shortly after birth, followed by a
period of secondary energy failure, the severity of which is correlated
with histological manifestation of brain damage and
neurodevelopmental outcome at 4 years of age (Wyatt et al., 1989;
Roth et al., 1997). Thus targeting secondary cell death mechanisms is
opportune for therapeutic intervention.

Therapeutic hypothermia (TH) was the first empirically supported
neuroprotective treatment for neonates with HIE and has become the
clinical standard of care. Hypothermic therapy was derived from its
ability to reduce brain metabolism by ~5% per 1°C below
normothermic levels, subsequently suppressing various delayed cell

death mechanisms (Laptook et al., 1995). Accordingly, in clinical
settings, selective head or whole-body cooling to 33°C–34°C, instituted
within 6 h of birth and continued for up to 72 h, reduces the combined
risk of death or neurodevelopmental disability at 18 months of age by
~11% (Edwards et al., 2010). However meta-analysis of eight clinical
trials determined that TH has a number needed to treat of seven for
this composite outcome, and a more recent randomized controlled
trial showed that TH for HIE infants did not have a statistically
significant effect on mortality at 6–7 years of age (Jacobs et al., 2013;
Azzopardi et al., 2014). Hence, a current focus of research has been the
exploration of adjunct therapies to TH, that target the same or
different pathophysiological mechanisms of secondary injury,
thereby exerting synergistic or additive neuroprotective effects,
respectively.

Various pharmacologic agents have been associated with
neuroprotection in animal models of HIE and accumulating
evidence at both experimental and clinical levels have
demonstrated the potential for select drugs to augment
hypothermic-mediated neuroprotection (Cho et al., 2020; Zhou
et al., 2020). The relative efficaciousness of hypothermia combined
adjuvant drugs compared to TH alone in clinical settings however,
remains largely unknown (Razak and Hussain, 2019; Ahmed et al.,
2021). Thus, there exists a need for a quantitative comparison of the
efficacy of TH alone vs. combination therapy, in which the latter
consists of the most promising candidate adjuvants to TH. This will
allow us to identify the clinical utility of combination therapy for the
treatment of HIE in the current era, as well as identify whether certain
classes of drugs–targeting certain pathophysiological
mechanisms–confer greater outcomes in clinical settings. The
objective of the present analysis is to, 1) characterize the classes of
drugs that have been used in combination with TH in the treatment of
neonatal HIE; 2) determine the effect of combination therapy and TH
on mortality, long-term neurodevelopmental impairment and length
of hospitalization–outcome measures that predict personal and
healthcare burdens; 3) identify whether certain classes of drugs
represent a more effective adjunctive therapy to enhance the
neuroprotective effects of TH in treating neonatal HIE.

2 Materials and methods

2.1 Publication selection

2.1.1 Types of studies
Randomized- and quasi-randomized controlled trials,

observational studies and retrospective studies were considered
eligible for inclusion.
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2.1.2 Types of participants
Eligible studies must have reported data collected from human

infants who met the following criteria: 1) ≥35 weeks gestational age
(term, near-term infants); 2) evidence of moderate or severe HIE; 3)
met the physiologic eligibility criteria for TH, with treatment initiated
within 6 h of life. Diagnostic criteria for HIE varied between hospitals
but generally included an Apgar score <5 during the first 10 min of life
and/or assisted ventilation, as well as moderate/severe encephalopathy
as evidenced by modified Sarnat criteria, abnormal neurological signs
and/or abnormal amplitude-integrated electroencephalogram (aEEG).
Studies excluded infants with major congenital and hereditary
abnormalities, congenital viral infections, or evidence of overt
encephalopathy other than HIE.

2.1.3 Types of interventions
Eligible studies must have included two intervention groups:

combination therapy (defined as, therapeutic agent and TH) vs.
TH alone. The therapeutic agent must have been administered for
the first time within the first 24 h of life. The method of TH must have
been consistent between the intervention groups and initiated within
6 h of life. Supportive therapy (control of seizures, maintenance of
normal ventilation, blood glucose) was administered to infants at the
discretion of attending physicians when required.

2.1.4 Types of outcomes
Eligible studies must have reported at least one of the following

outcome measures:

1) Mortality: assessed as death during the neonatal–infancy period.
2) Neurodevelopmental impairment (NDI): assessed by any form of

standardized, validated tool or scoring system during the
neonatal–infancy period.

3) Length of hospitalization: assessed as duration of time spent in
hospital before discharge, measured in days.

2.2 Review methods

2.2.1 Search strategy
Searches were conducted using the electronic databases PubMed,

Embase and Medline. Preliminary literature review had led to the
identification of various therapeutic agents shown to exert
neuroprotection in experimental and clinical studies of neonatal
HIE. The identified therapeutic agents led to the search terms used
for all the databases which were as follows: hypothermia AND
Erythropoietin AND neonatal hypoxic ischem*; hypothermia AND
stem cells AND neonatal hypoxic ischem*; hypothermia AND
Phenobarbital AND neonatal hypoxic ischem*; hypothermia AND
Levetiracetam AND neonatal hypoxic ischem*; hypothermia AND
Dizocilpine AND neonatal hypoxic ischem*; hypothermia AND
xenon AND neonatal hypoxic ischem*; hypothermia AND
topiramate AND neonatal hypoxic ischem*; hypothermia AND
N-Acetylcysteine AND neonatal hypoxic ischem*; hypothermia
AND allopurinol AND neonatal hypoxic ischem*; hypothermia
AND crocin AND neonatal hypoxic ischem*; hypothermia AND

FIGURE 1
Flow diagram of study screening process. The search strategy resulted in 519 articles, 263 of which were duplicates, leaving 256 for screening. Of these,
204 were deemed irrelevant, leaving 52 articles for full-text review. A total of 16 studies met the predetermined inclusion criteria and were included in the
present analysis.
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TABLE 1 Study characteristics.

Ref TH protocol Experimental
groups

Outcome
measures

Treatment Control

Method Depth Duration Combination Dose Timing of
1st dose

Number
of doses

Route Mortality NDI Length of
hospitalization

GABA Receptor Agonists

Meyn et al.
(2010)

WBC (Blanketrol
Hyper-Hypothermia
cooling system)

Body temperature of
33.5°C

72 h within
6 h of birth

Phenobarbital + TH 40 mg/kg <6 h of birth, TH
initiation

1 N/A TH Death at
18–49 months

N/A Days until discharge

Sarkar et al.
(2011)

SHC (cool cap) or
WBC (Blanketrol
Hyper-Hypothermia
cooling system)

SHC: rectal
temperature of
34.0°C–35.0°C; WBC:
esophageal
temperature of 33.5°C

72 h within
6 h of birth

Phenobarbital + TH 24.4 ± 6.3 mg/kg <6 h of birth,
before initiation
of TH

21/34: 1 Dose;
13/34: 2 Doses
(during TH)

N/A TH Death during
neonatal period

N/A N/A

Filippi et al.
(2010)

Deep WBC or Mild
WBC (ice packs;
cooling blanket;
Blanketrol Hyper-
Hypothermia cooling
system)

Deep WBC: rectal
temperature of
30.0°C–33.0°C Mild
WBC: rectal
temperature of
32.0°C–34.0°C

72 h within
6 h of birth

Topiramate + TH 5 mg/kg/dose or
5 mg/kg on 1st
day and 3 mg/kg
on following
2 days

<6 h of birth, at
TH initiation

3 (DOL 1–3) Orogastric
tube

TH Death during
hospitalization

N/A N/A

Filippi et al.
(2018)

WBC (Blanketrol
Hyper-Hypothermia
cooling system)

Esophageal
temperature of 33.5°C

72 h within
6 h of birth

Topiramate + TH 10 mg/kg/dose <6 h of birth, at
TH initiation

3 (DOL 1–3) Orogastric
tube

TH Death at
24 months

18–24 months; Severe
NDD if 1 or more:
developmental
quotient <70, moderate
or severe CP, cortical
visual impairment
defined as bilateral
blindness caused by
damage to CNS, or
bilateral sensorineural
hearing loss
defined >40 dB
reduction

N/A

Nuñez-Ramiro
et al. (2019)

WBC (servo-
controlled
hypothermia
mattresses)

Rectal temperature of
33.5°C ± .5°C

72 h Topiramate + TH 5 mg/kg on 1st
day and 3 mg/kg/
day on following
5 days

at TH initiation 6 (DOL 1–6) Nasogastric
tube

TH +
Placebo
(sterile
water)

Death before
discharge

N/A N/A

NMDA Receptor Antagonists

Rahman et al.
(2015)

SHC (cool cap)
or WBC

Rectal temperature of
33.0°C–34.0°C

72 h within
6 h of birth

MgSO4+TH 250 mg/kg/dose <6 h of birth 3 (DOL 1–3) Intravenous
over 30 min

TH +
Placebo (.9%
saline)

Death at
discharge from
hospital

N/A N/A

Gulczynska et al.
(2018)

SHC (cool cap) or
WBC (Inspiration
Healthcare/
Tecotherm Neo)

SHC: rectal
temperature of
34.0°C–35.0°C; WBC:
rectal temperature of
33.0°C–34.0°C

72 h within
6 h of birth

MgSO4+TH 250 mg/kg/dose <6 h of birth 3 (DOL 1–3) Infusion over
60 min

TH Death during
hospital stay

N/A Age at discharge

(Continued on following page)
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TABLE 1 (Continued) Study characteristics.

Ref TH protocol Experimental
groups

Outcome
measures

Treatment Control

Method Depth Duration Combination Dose Timing of
1st dose

Number
of doses

Route Mortality NDI Length of
hospitalization

Azzopardi et al.
(2019)

Cooling (servo-
controlled equipment)

Rectal temperature of
33·5°C

72 h within
6 h of birth

Xenon + TH 30% xenon
mixture

<12 h of birth Continuous
for 24 h

Endotracheal
tube

TH Death at
2–3 years

2–3 years; Moderate
disability: BSID-III
56–69, GMFCS 2/3, or
moderately reduced
vision; Severe disability:
BSID-III 55, GMFCS 4/
5, or no useful vision

N/A

Neurogenic and Angiogenic Agents

Baserga et al.
(2015)

SHC or WBC N/A 72 h within
6 h of birth

Darbepoetin alfa
+ TH

2 ug/kg/dose or
10 ug/kg/dose

<12 h of birth 2 (DOL 1, 7) Intravenous
over 5 min

TH +
Placebo
(normal
saline)

Death in first
month of life

N/A N/A

Wu et al.
(2016)

SHC or WBC N/A within 6 h of
birth

Erythropoietin + TH 1000 U/kg/dose <24 h of birth 5 (DOL 1, 2, 3,
5, 7)

Intravenous TH +
Placebo
(normal
saline)

Death before
hospital
discharge

12 months; Moderate-
severe NDI: AIMS score
less than 5th percentile
for age or WIDEA
score <76.4

N/A

Mulkey et al.
(2017)

SHC or WBC N/A within 6 h of
birth

Erythropoietin + TH 1000 U/kg/dose <24 h of birth 5 (DOL 1, 2, 3,
5, 7)

Intravenous TH +
Placebo
(normal
saline)

N/A N/A Length of hospital stay

Lv et al. (2017) SHC (HGT-
2000 therapeutic
instrument)

Nasopharyngeal
temperature of
33.5°C–34.0°C

72 h Recombinant human
Erythropoietin + TH

200 IU/kg/dose in
10% glucose
solution

On second day of
hospitalization

10 (DOL 2–11) Intravenous TH N/A 9 months; Gross motor
neurodevelopment
retardation: GDS
developmental
quotient <75

N/A

Wu et al. (2022) WBC N/A 72 h within
6 h of birth

Erythropoietin + TH 1000 U/kg/dose <26 h of birth 5 (DOL 1, 2, 3,
4, 7)

Intravenous TH +
Placebo
(normal
saline)

Death at
22–36 months

22–36 months: CP,
GMFCS ≥1 or BSID-
III <90

Stem Cells

Cotton et al.
(2014)

WBC 33.5°C 72 h Nucleated umbilical
cord blood (UCB)
cells + TH

1–5 ×
107 cells/kg/dose

As soon as
possible after
birth

Up to 4
(DOL 0–3)

Infusion TH Death at
15 months

12 months; Moderate-
severe NDD: BSID-
III <85, or could not be
scored due to severe
impairment

N/A

Glucocorticoids

Kovacs et al.
(2019)

WBC Rectal temperature of
33.0°C–34.0°C

72 h within
6 h of birth

Hydrocortisone +
dopamine + TH

.5 mg/kg/dose <12 h of birth 13 (Every 6 h
after TH
initiation)

Intravenous TH +
Placebo +
dopamine

In-hospital
death

N/A N/A

(Continued on following page)
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cannabinoid AND neonatal hypoxic ischem*; hypothermia AND
melatonin AND neonatal hypoxic ischem*; hypothermia AND
connexinhemichannel blockade AND neonatal hypoxic ischem*;
hypothermia AND magnesium AND neonatal hypoxic ischem*;
hypothermia AND IGF-1 AND neonatal hypoxic ischem*;
hypothermia AND hydrocortisone AND neonatal hypoxic ischem*;
hypothermia AND Dexmedetomidine AND neonatal hypoxic
ischem*; hypothermia AND caffeine AND neonatal hypoxic
ischem*; hypothermia AND Darbepoetin AND neonatal hypoxic
ischem*. References of eligible studies were searched to identify
additional relevant studies that did not appear based on the search
terms. All searches were inclusive of studies published from inception
up to December 2022.

2.2.2 Data extraction
Following the initial publication search, all titles and abstracts

were screened, and a final list of studies selected for full-text review was
assimilated. To assess eligibility for inclusion, two investigators
independently read and extracted data from each study using a
pre-determined template. Extracted data included study design,
sample size, sample sex, therapeutic agent characteristics, TH
protocol, and outcome measures. Once eligible studies were
identified, the two investigators determined the primary
mechanism of action for each utilized therapeutic agent, and
studies were accordingly categorized by class of drug.

2.2.3 Assessment of risk of bias
The methodological quality of the included studies was

evaluated independently by two investigators using the risk of
bias tool from the Cochrane Handbook for Systematic Reviews of
Interventions (Higgins et al., 2011). Assessments were made in
the following domains: random sequence generation, allocation
concealment, blinding of participants, personnel and outcome
assessors, incomplete outcome data, selective outcome reporting,
and other sources of bias. All included studies passed the
qualitative analysis.

2.2.4 Data analysis
Using Cochrane statistical package, RevMan5.3 software, a

random effect model meta-analysis was performed for each
outcome measure to define differences between combination
therapy- and TH alone-treated HIE infants. For outcome measures,
1) mortality and 2) NDI, a random effect model under Mantel-
Haenszel methods was used to pool data across studies to calculate
an estimate effect size. The comparative effect sizes were calculated as
odds ratios (OR). For outcome measure, 3) length of hospitalization,
studies reported continuous data and thus, within-group means and
corresponding S.D. were utilized. A random effect model under
inverse variance methods was used to pool data across studies to
calculate an estimate effect size. The comparative effect size was
calculated as mean difference (MD) as all studies reported the
outcome measure using the same scale.

The 95% confidence interval (CI) was calculated for each effect
size, and a two-tailed p < .05 was considered statistically significant
(Deeks and Higgins, 2007). Between studies heterogeneity was
assessed using I2 and Cochrane’s Q method.

Publication bias was assessed using a funnel plot, with SE (log
[OR]) plotted against the OR of the included studies or SE (MD)
plotted against the MD of the included studies.TA
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3 Results

3.1 Publication selection

A total of 519 studies were collected using electronic databases
and citation searching, 263 of which were duplicates, leaving
256 studies for further screening (Figure 1). A further
204 studies were excluded by title, abstract, and/or type of
publication, leaving 52 studies for full-text review. Of these,
36 studies were excluded after a full text review: 21 for a lack of
a TH alone control group, two due to a lack of a combination
therapy group, eight due to a lack of applicable outcome measures,
one review article, one article not available in the English language,
and three due to a repeated dataset analyzed. In all, 16 studies were
included for meta-analysis. Study characteristics are described in
Table 1. It is important to note that two studies analyzed the same
dataset with different outcome measures reported (Wu et al., 2016;
Mulkey et al., 2017) Accordingly, at no point are both studies
included in the same meta-analysis.

3.2 Study subgroups based on drug class

In addition to identifying whether combination therapy improves
outcome measures to a greater extent than TH alone, we sought to
investigate if there were certain classes of therapeutic agents that
served as more efficacious adjuvants to TH than others. Thus, the
therapeutic agents combined with TH were categorized based on their

mechanism of action, and studies were accordingly sorted into
subgroups (Table 2). Doing so allowed for preliminary conclusions
to be drawn regarding the pathophysiological mechanisms during HIE
progression in the brain that are most important to target in the setting
of hypothermic temperatures. See the identified subgroups described
below.

3.2.1 GABA receptor agonists
Phenobarbital (PB) (Meyn et al., 2010; Sarkar et al., 2011) or

topiramate (TPM) (Filippi et al., 2010; 2018; Nuñez-Ramiro et al.,
2019) were administered concurrently with TH in the combination
therapy groups of five studies. PB and TPM are anticonvulsants
with particular effectiveness against focal and generalized tonic-
clonic seizures (Abou-Khalil, 2019). Both drugs have been used
independently to treat HIE-related seizures in clinical settings. PB
is a long-acting barbiturate that binds an allosteric site on the γ-
aminobutyric acid (GABA)-A receptor, activating and prolonging
the duration of opening of the associated chloride channel (Pacifici,
2016). TPM is a sulfate-substituted monosaccharide that works to
potentiate GABA-induced Cl− currents (Shank et al., 2000). PB and
TPM thus work to induce membrane hyperpolarization and reduce
neuronal excitability, suggesting inhibition against HIE-induced
excitotoxicity.

3.2.2 NMDA receptor antagonists
Magnesium sulfate (MgSO4) (Rahman et al., 2015; Gulczynska

et al., 2018) or Xenon gas (Azzopardi et al., 2019) were combined
with TH in three studies. MgSO4 is a clinically feasible and safe

TABLE 2 Study subgroups. Classification based on drug class of the therapeutic agent in the combination therapy group.

Study Drug in combination
therapy

Drug class Mechanism of action

Meyn et al. (2010) Phenobarbital GABA Receptor Agonists Activates or potentiates GABAR-mediated Cl− currents, thereby reducing neuronal
excitability and metabolic by-product overloading of cells

Sarkar et al. (2011) Phenobarbital

Filippi et al. (2010) Topiramate

Filippi et al. (2018) Topiramate

Nuñez-Ramiro et al.
(2019)

Topiramate

Rahman et al. (2015) MgSO4 NMDA Receptor
Antagonists

Inhibits NMDA receptors, reducing extracellular Ca2+ influx and accumulation of toxic
metabolites

Gulczynska et al.
(2018)

MgSO4

Azzopardi et al. (2019) Xenon Gas

Baserga et al. (2015) Darbepoetin alpha Neurogenic and Angiogenic
Agents

Stimulates neurogenesis and angiogenesis to promote remodeling and recovery of cell
functioning

Wu et al. (2016) Erythropoietin

Mulkey et al. (2017) Erythropoietin

Lv et al. (2017) Erythropoietin

Wu et al. (2022) Erythropoietin

Cotten et al. (2014) UBC cells Stem Cells Upregulates growth factors and promotes neural and vascular repair

Kovacs et al. (2019) Hydrocortisone Glucocorticoids Inhibits inflammatory pathways, activates anti-inflammatory mediators and generates
systemic immunosuppression

Aly et al. (2014) Melatonin Antioxidants Reduces oxidative stress within the cell by scavenging destructive free radicals and
promoting antioxidant enzyme expression
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molecule recommended by the World Health Organization for
antenatal administration in women at risk of preterm birth and
shown to exert fetal neuroprotection (Chollat et al., 2018).
MgSO4 gates N-methyl-D-aspartate (NMDA) receptors in a
voltage dependent manner and protects against glutamate-
mediated neurotoxicity (Nowak et al., 1984; Gathwala et al.,
2010). Xenon is a noble gas approved for inhaled anesthesia and
has been shown to be hemodynamically safe in human infants.
Xenon exerts potent non-competitive inhibition of NMDA
receptors and has been associated with the regulation of key
apoptotic mediators and induction of hypoxia-inducible factor
1α (HIF-1α) (Ma et al., 2005; Sanders et al., 2005; Daqing et al.,
2009). In the context of HIE, as NMDA receptor antagonists,
MgSO4 and Xenon act to block excessive calcium influx, thereby
maintaining calcium homeostasis within the cell and suppressing
excitotoxic processes.

3.2.3 Neurogenic and angiogenic agents
Erythropoietin (Epo) (Wu et al., 2016; Lv et al., 2017; Mulkey et al.,

2017; Wu et al., 2022) or darbepoetin alpha (Dpo) (Baserga et al.,
2015) were utilized alongside of TH in the combination therapy group
of five studies. Epo is a glycoprotein produced by peritubular
fibroblasts in the kidneys and acts on the receptor, EpoR, expressed
throughout the brain in neurons, glial cells and endothelial cells
(Rangarajan and Juul, 2014). While Epo is an endogenous growth
factor that promotes the maturation of erythroid progenitors into red
blood cells, Dpo is a synthetic hyperglycosylated Epo analog. Although
Dpo has a longer half-life and decreased clearance compared to Epo,
both are expected to have similar downstream effects (Sinha et al.,
2019). In rodent stroke models, Epo treatment has been shown to
preserve brain structure and promote neurogenesis and
oligodendrogenesis at the lesion site by increasing progenitor
proliferation, stimulating growth factors such as brain-derived

FIGURE 2
Forest plot of mortality in HIE infants treated with combination therapy compared to TH alone. An OR < 1 suggests combination therapy is more
favourable to reduce the risk of mortality. Timepoint at which mortality was assessed is outlined in Table 1. OR .93, 95% CI [.66 to 1.32], p = .68.
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FIGURE 3
Forest plot of NDI in HIE infants treated with combination therapy compared to TH alone. An OR < 1 suggests combination therapy is more favourable to
reduce the risk of an NDI diagnosis. Standardized tests used to diagnose NDI and timepoint of diagnosis for each study are outlined in Table 1. OR .82, 95% CI
[.55 to 1.23], p = .34. Combination therapy with an antioxidant significantly reduced risk of NDI: OR .15, 95% CI [.03 to .87], p = .03.

FIGURE 4
Forest plot of length of hospitalization in HIE infants treated with combination therapy compared to TH alone. Duration reported as mean (standard
deviation). Combination therapy-treated infants spent significant less days in the hospital post-birth compared to infants receiving hypothermia alone:
MD −4.81, 95% CI [−8.42. to −1.19], p = .009.
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neurotrophic factor (BDNF), and decreasing precursor cell death
(Chen et al., 2007; Gonzalez et al., 2013). Epo has also been shown
to upregulate vascular endothelial growth factor (VEGF), preserve
blood-brain barrier integrity and increase vascular density in the brain
following injury (Wang et al., 2008; Rangarajan and Juul, 2014). Thus,
Epo and Dpo treatments are expected to enhance neurogenesis and
angiogenesis post-HIE, promoting brain remodeling and recovery
after the secondary phase of injury progression.

3.2.4 Stem cells
Non-cryopreserved autologous volume- and red blood cell-

reduced umbilical cord blood (UCB) cells (Cotten et al., 2014)
were administered with TH in one study. UCB cells are adult stem
cells derived from the human umbilical cord, and have been shown
in vitro to express various marker proteins for early neural
precursors, as well as neurons, astrocytes and oligodendrocytes
(Sanchez-Ramos et al., 2001; Rosenkranz and Meier, 2011; Ballen
et al., 2013). UCB cells also secrete chemokines, cytokines and

growth factors including BDNF and VEGF. In vivo,
transplantation post-HI brain injury improved sensorimotor
recovery in neonatal rodents and reduced neuronal cell death
(Pimentel-Coelho et al., 2010; Rosenkranz and Meier, 2011).
Administration of UCB cells is thereby hypothesized to induce
a regenerative environment, facilitating both neural and vascular
plasticity and repair.

3.2.5 Glucocorticoids
Infants were treated with hydrocortisone (Kovacs et al., 2019)

combined with TH in one study. Therapeutic hydrocortisone is a
synthetic analog of the endogenous hormone secreted by the
adrenal cortex. Hydrocortisone binds to the glucocorticoid
receptor to induce downstream effects including vasodilation,
inhibition of the NF-κB inflammatory pathway and activation of
anti-inflammatory mediators such as interleukin-10 (Yasir et al.,
2021). Hydrocortisone is frequently utilized to treat vasopressor-
resistant hypotension in preterm infants and has more recently

FIGURE 5
Risk of bias (A) Risk of bias summary (B) Risk of bias graph with authors’ judgements about each risk of bias item presented as percentages across all
included studies.
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been suggested as a neuroprotectant in models of brain injury
(Higgins et al., 2009; Roquilly et al., 2013). Hydrocortisone
treatment is expected to target the robust neuroinflammatory
response characteristic of HIE.

3.2.6 Antioxidants
Melatonin (N-acetyl-5-methoxytryptamine) (Aly et al., 2014)

was utilized as an adjuvant to TH in the combination therapy
group of one study. Melatonin is an indolamine primarily
synthesized in the pineal glands that can act either by
interacting with melatonin receptors, MT1 and MT2, expressed
throughout the brain, or as a direct effector molecule (Dubocovich
and Markowska, 2005). Melatonin is a free radical scavenger,
chelating reactive oxygen and nitrogen species, while exerting
potent antioxidant effects including upregulating superoxide
dismutase and glutathione peroxidase (Dubocovich and
Markowska, 2005; Lee et al., 2019). Following HI insult to the
brain, reduced energy metabolism and cytotoxicity lead to the
production of reactive oxygen species and oxidative stress within
the cell. Melatonin is expected to protect against injury by
promoting the expression of antioxidant enzymes and
scavenging destructive free radicals.

3.3 Study participants

As mentioned, Wu et al. (Wu et al., 2016), and Mulkey et al.
(Mulkey et al., 2017), analyzed the same dataset with different
outcome measures reported. Thus to avoid duplication, only study
participant data from the original trial reported by Wu et al. was
included (Wu et al., 2016). The data used for the present analysis was
derived from a total of 1,288 patients (695 males, 533 females,
60 unknown sex) with an average age of 38.8 weeks gestation.
Infants were diagnosed with moderate (n = 697), severe (n = 363)
or unspecified severity (228 patients) HIE. Modified Sarnat scoring
was used to evaluate the severity of HIE in seven studies for 862 infants
(Aly et al., 2014; Rahman et al., 2015; Wu et al., 2016; Lv et al., 2017;
Gulczynska et al., 2018; Nuñez-Ramiro et al., 2019; Wu et al., 2022).
Abnormal neurological signs and/or aEEG was used to evaluate the
severity of HIE in four studies for 198 infants (Baserga et al., 2015;
Filippi et al., 2018; Azzopardi et al., 2019; Kovacs et al., 2019). Finally,
HIE severity scoring was not reported in four studies for 228 infants
(Filippi et al., 2010; Meyn et al., 2010; Sarkar et al., 2011; Cotten et al.,
2014).

A total of 642 infants received some form of combination therapy,
while 646 infants received TH alone. TH protocols were similar across

FIGURE 6
Funnel plots (A) Funnel plot for the studies reporting mortality for all drug classes (OR, odds ratio) (B) Funnel plot for the studies reporting NDI for all drug
classes (OR, odds ratio) (C) Funnel plot for the studies reporting length of hospitalization for all drug classes (MD, mean difference).
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TABLE 3 Summary of findings table for outcomes assessed. Effect sizes [odds ratio (OR): mortality, NDI; mean difference (MD): length of hospitalization], 95%
confidence intervals (95% CI) and two-tailed p-values.

Population Infants, gestational age ≥35 weeks, with evidence of moderate/severe HIE, both sexes, all ethnicity, all nationality

Intervention Combined TH and therapeutic agent

Comparison TH alone

Outcome Mortality; NDI; length of hospitalization

Study Design(s) Randomized and quasi-randomized clinical trials, observational and retrospective studies

Mortality: Combination Therapy vs. TH Alone

Number of Studies OR 95% CI p-value

GABA Receptor Agonists

5 0.76 [0.37, 1.57] 0.46

NMDA Receptor Antagonists

3 1.03 [0.48, 2.22] 0.93

Neurogenic and Angiogenic Agents

3 1.10 [0.62, 1.94] 0.75

Stem Cells

1 0.40 [0.08, 2.01] 0.26

Glucocorticoids

1 Not estimable

Antioxidants

1 0.02 [0.02,2.02] 0.17

Total

14 0.93 [0.66, 1.32] 0.68

NDI: Combination Therapy vs. TH Alone

Number of Studies OR 95% CI p-value

GABA Receptor Agonists

1 0.85 [0.19, 3.69] 0.83

NMDA Receptor Antagonists

1 1.1 [0.34, 3.51] 0.88

Neurogenic and Angiogenic Agents

3 0.87 [0.50, 1.52] 0.64

Stem Cells

1 0.72 [0.22, 2.39] 0.59

Antioxidants

1 0.15 [0.03, .87] 0.03*

Total

7 0.82 [0.55, 1.23] 0.34

Length of Hospitalization: Combination Therapy vs. TH Alone

Number of studies MD 95% CI p-value

GABA Receptor Agonists

1 −4.00 [−12.84, 4.84] 0.38

(Continued on following page)
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studies, with cooling initiated <6 h after birth, continued for 72 h, and
reaching target temperatures ranging from 30°C to 35.0°C. Some
studies did not report timing of initiation of TH (Aly et al., 2014;
Cotten et al., 2014; Lv et al., 2017; Gulczynska et al., 2018; Nuñez-
Ramiro et al., 2019), and four studies did not report the depth of
hypothermia reached (Baserga et al., 2015; Wu et al., 2016; Mulkey
et al., 2017; Wu et al., 2022). Regarding method of TH induction, all
infants received either selective head or whole-body cooling;
138 received selective head cooling, 1,058 received whole body
cooling, and one study for a total of 92 infants did not report
which of the two methods infants received (Azzopardi et al., 2019).
When categorized by drug class, 158 infants received GABA receptor
agonists (PB, TPM), 113 received NMDA receptor antagonists (xenon
gas, MgSO4), 322 received a neurogenic and angiogenic agent (Epo,
Dpo), 18 received stem cells (UCB cells), 16 received a glucocorticoid
(hydrocortisone) and 15 received an antioxidant (melatonin).
Mortality was compared between 621 combination therapy-treated
infants and 626 TH alone-treated infants. NDI was compared between
330 combination therapy-treated infants and 344 TH alone-treated
infants. Length of hospitalization was compared between
78 combination therapy-treated infants and 83 TH alone-treated
infants.

3.4 Mortality

Death during the neonatal to infancy period was reported in
14 studies (Table 1). The timepoint at which death was reported
varied: six studies reported incidence of death before discharge from
hospital, two studies reported death during the first 4 weeks of life,
and six studies reported death at long-term follow-up which
ranged between 6–49 months of age. Meta-analysis of all trials
showed that mortality in HIE infants receiving combination
therapy vs. TH alone, did not significantly differ (OR .93, 95%
CI [.66 to 1.32], p = .68) (Figure 2). Subgroup analyses based on
drug class revealed decreased likelihood of death in the
combination therapy groups that utilized GABA receptor
agonists (OR .76, 95% CI [.37 to 1.15]), stem cells (OR .40, 95%
CI [.08, 2.01]) and antioxidants (OR .20, 95% CI [.02 to 2.02]),
compared to TH alone groups. Conversely, there was an increased
likelihood of death in NMDA receptor antagonist (OR 1.03, 95%

CI [.48 to 2.22]), and neurogenic and angiogenic agent (OR 1.10,
95% CI [.13 to 1.20]) combination therapy groups compared to TH
alone groups. The observed differences were not statistically
significant. Among all trials, there was no statistically
significant heterogeneity (I2 = 0).

3.5 Neurodevelopmental impairment (NDI)

There were seven studies that reported NDI during the
neonatal–infancy period. Criteria for NDI, and follow-up timepoint
varied between the trials and is outlined in Table 1. Analysis revealed
that a smaller proportion of infants treated with combination therapy
received a diagnosis of NDI compared to those treated with TH alone,
although the difference was not significant (OR .61, 95% CI [.34 to
1.08], p = .09) (Figure 3). This trend was observed in GABA receptor
agonists (OR .85, 95% CI [.19 to 3.69]), neurogenic and angiogenic
agents (OR .87, 95% CI [.50 to 1.52]) and stem cells (OR .72, 95% CI
[.22, 2.39]) subgroups, and was significant in the antioxidants (OR .15,
95% CI [.03 to .87], p = .03) subgroup. A greater portion of infants
however suffered from NDI when treated with combination therapy
utilizing an NMDAR antagonist compared to TH alone, although
the difference was not significant (OR 1.10, 95% CI [.34 to 3.51]).
Heterogeneity among all studies was not significantly
different (I2 = 0).

3.6 Length of hospitalization

Average number of days spent in hospital from birth to
discharge, was reported in three studies (Table 1). The length of
hospitalization was significantly decreased in HIE infants treated
with combination therapy vs. TH alone (MD −4.81, 95% CI [−8.42.
to −1.19], p = .009) (Figure 4). This outcome measure included one
study from each of the following subgroups: GABA receptor
agonists (MD-4.00, 95% CI [−12.84 to 4.84]), NMDA receptor
antagonists (MD −4.22, 95% CI [−9.43 to .99]), and neurogenic and
angiogenic agents (MD −6.00, 95% CI [−12.11 to .11]). The average
number of days before discharge from the hospital was lower in
each of these subgroups, and heterogeneity between the studies was
not statistically significant (I2 = 0).

TABLE 3 (Continued) Summary of findings table for outcomes assessed. Effect sizes [odds ratio (OR): mortality, NDI; mean difference (MD): length of hospitalization],
95% confidence intervals (95% CI) and two-tailed p-values.

Length of Hospitalization: Combination Therapy vs. TH Alone

Number of studies MD 95% CI p-value

NMDA Receptor Antagonists

1 −4.22 [−9.43, 0.99] 0.11

Neurogenic and Angiogenic Agents

1 −6.00 [−12.11, 0.11] 0.05

Total

3 −4.81 [−8.42, −1.19] 0.009**

OR, values below 1.00 denote decreased likelihood of death or NDI, to occur in combination therapy groups compared to TH, alone groups. NegativeMD, values denote reduced days spent in hospital

in combination therapy groups compared to TH, alone groups. *p < .05; **p < .01.
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3.7 Risk of bias among included studies

The risk of bias assessment of all included studies is presented in
Figure 5. Overall, studies had amoderate risk of selection bias due to lack of
randomization into intervention groups, unclear sequence generation
process for randomization, or unclear method of concealment of
participants to randomized groups (high risk: 5/16; unclear risk: 2/16).
Only 7/16 studies utilized placebos in the TH alone groups, however the
authors judged that this was unlikely to influence outcome performance
(unclear risk: 9/16). Furthermore, there was a low risk of detection (unclear
risk: 4/16), attrition (high risk: 1/16) and reporting bias (unclear risk: 3/16),
but a high risk of other bias (high risk: 7/16; unclear risk: 5/16). This was
attributed to unclear TH protocols, inconsistent drug doses, use of
supportive therapies, uncontrolled HIE severity among infants in both
intervention groups, and uncontrolled numbers of in-born and out-born
infants between the intervention groups, potentially allowing for select
infants to reach target hypothermic temperatures quicker.

3.8 Publication bias

Publication bias for each outcome–mortality, NDI and length of
hospitalization–was not found to be a significant factor in the present

meta-analysis (Figure 6). Symmetric scattering of the published data
on either side of the overall effect size can be observed for each of the
produced funnel plots.

4 Discussion

4.1 Summary of findings

Concerning the treatment of infants with moderate or severe HIE,
the present analysis identified GABA receptor agonists, NMDA
receptor antagonists, neurogenic and angiogenic agents, stem cells,
glucocorticoids and antioxidants, as candidate adjuvants to TH that
have been evaluated in clinical settings compared to TH alone. Meta-
analysis revealed that HIE infants endure a significantly shorter
duration of hospitalization post-birth when treated with TH and a
neuroprotective adjuvant, compared to those treated with TH alone,
which stands as the current standard of care (Table 3). Risk of
mortality and NDI did not differ between combination therapy-
and TH alone-treated infants. Due to a limited number of included
studies, small sample sizes, and conflicting findings between studies,
subgroup analysis did not reveal any particular class of drug to be a
more efficacious adjuvant to TH than others.

FIGURE 7
Schematic of the pathological progression in the brain following HI insult and the molecular targets of the various adjuvant therapies to hypothermia,
labeled 1–6. Primary energy failure is characterized by a drop in cerebral blood flow (CBF) leading to lactate accumulation and high energy phosphate
depletion. The resultant cytotoxicity triggers early cell death. Approximately 6–15 h later following a latent period due to reperfusion of brain tissue, secondary
energy failure ensues. Neuronal depolarization leads to synaptic glutamate accumulation, causing excessive Ca2+ influx through NMDA receptors,
voltage-gatedCa2+ channels (VGCC) and calcium permeable channels, as well as excessive release from intracellular stores. Excitotoxicity within the cell leads
to the production of free radicals and mitochondrial dysfunction, causing oxidative stress, as well as inflammatory signaling. This ultimately leads to delayed
neurodegeneration. Days to months after the initial insult, there is a tertiary phase characterized by repair, reorganization of neuronal circuits and new cell
growth. Created with BioRender.com.
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4.2 Proposed synergistic/additive
neuroprotective mechanisms of adjuvants
drugs and TH

The outcome effect sizes and subgroup trends revealed through
this meta-analysis nevertheless have important physiological and
clinical implications for advancing the treatment of neonatal HIE.
Although TH is a clinically proven safe and effective intervention
modality, it alone is insufficient to protect against HIE-related
mortality and morbidity hence the pursuit of a suitable drug to
enhance its neuroprotective effects. Through this analysis we have
identified drug targets under hypothermic temperatures that have
been suggested to complement the molecular mechanisms underlying
hypothermic-mediated protection. The benefit of TH comes from its
multimodal targeting of injurious cascades during primary and
secondary energy failure, that ultimately lead to irreversible
neuronal death. Specifically, a reduction in physiologic temperature
reduces cerebral metabolism, delaying the onset of anoxic
depolarization and accumulation of excitotoxins (Bart et al., 1998;
Wassink et al., 2014). In animal models of ischemia, hypothermia has
also been shown to inhibit NO and superoxide formation, pro-
inflammatory cytokine production and apoptotic cell death-
mediators (Zhao et al., 2005; Zhang et al., 2010; Wassink et al.,
2014). The mechanisms of the neuroprotectants used alongside of
TH in this analysis overlap with this wide array of reported
mechanisms of action of TH (Figure 7). In particular, GABA
receptor agonists also suppress neuronal excitability while NMDA
receptor antagonists reduce excitotoxicity, glucocorticoids inhibit
neuroinflammation and antioxidants target oxidative stress. Thus,
when used in combination with TH, we might expect synergistic
inhibition against these specific pathological cascades. Moreover,
while TH primarily targets the acute and secondary phases of HIE,
as demonstrated by the strict therapeutic window, neurogenic and
angiogenic agents as well as stem cell treatment, may enhance
endogenous repair mechanisms during the recovery phase, leading
to additive neuroprotective effects when used concurrently. These
findings are important and can guide the direction of future preclinical
studies that continue to delineate the complex molecular mechanisms
that underlie HIE pathology.

4.3 Candidate adjuvants to TH: Optimal
administration protocols within each drug
class

Subgroup analysis revealed that combination therapies with
GABA receptor agonists, stem cells and antioxidants, consistently
trended towards more efficacious outcomes than TH alone. However,
each subgroup had discrepancies, even between studies utilizing the
same drug. This highlights the importance of optimizing
administration protocols, particularly drug dose and duration.
Within GABA receptor agonists, the two studies that combined PB
with TH followed the same time course of administration but at
different drug doses. PB at 40 mg/kg favored combination therapy
(Meyn et al., 2010) while ~25 mg/kg favored TH alone (Sarkar et al.,
2011). Previous reports have demonstrated that in severe birth
asphyxiated infants, 40 mg/kg PB alone was safe and well-tolerated,
reduced cerebral spinal fluid lipid peroxide levels, and was associated
with normal neurological outcome at 3 years of age in 73.3% of treated

infants compared to 18.7% of untreated infants (Hall et al., 1998;
Gathwala et al., 2011). However, PB has also been associated with
neuronal degeneration in the immature brain, with 40 mg/kg
representing the threshold dose for triggering apoptotic death
(Bittigau et al., 2002). We speculate that in combination paradigms,
hypothermia acted to suppress high-dose PB-induced apoptosis
thereby nullifying potential adverse effects. However, the extent of
hypothermic-mediated apoptotic suppression remains unknown.
Thus, a larger single dose of PB may exert enhanced protection,
but caution should be exercised if utilizing doses above 40 mg/kg, even
in the presence of hypothermia. Moreover, three studies examined the
effect of combined TPM and TH against infant mortality. Filippi et al.
was the first trial to investigate the safety profile of TPM in HIE infants
treated with TH (Filippi et al., 2010). TPM at low and moderate doses
combined with either mild (32°C–34°C) or deep (30°C–33°C) TH was
deemed safe, with no reported adverse biochemical or hemodynamic
effects, and no differences in incidence of abdominal or
ophthalmologic abnormalities as well as brain lesions compared
with TH control groups. In terms of protocol and corresponding
efficacy, each of the three studies included in this analysis
administered TPM at the initiation of TH, however a loading dose
of 5 mg/kg and maintenance dose of 3 mg/kg/dose for a total of 6 days,
led to more favorable outcomes than the same loading and
maintenance dose for a total of 3 days or 10 mg/kg/dose for 3 days
(Filippi et al., 2010; 2018; Nuñez-Ramiro et al., 2019). Interestingly, at
the beneficial dose and duration, 75.5% of infants reached serum
therapeutic levels (TL) at 48 h of life, which was significantly
correlated with a reduction in seizure activity. Although this would
suggest that a higher loading dose would lead to earlier achievement of
serum TL and thus more effective seizures control which often affects
long-term outcome, higher doses such as 10 mg/kg or 25 kg/mg as
reported by other studies, have failed to reduce mortality and
morbidity (Glass et al., 2011). These findings thereby suggest that
TPM administered at moderate doses for more days post-birth,
confers more efficacious outcomes when combined with TH.

Regarding NMDA receptor antagonists, when combined with TH,
MgSO4 at neither a 10% nor 20% concentration consistently reduced
the likelihood of adverse outcome (Rahman et al., 2015; Gulczynska
et al., 2018). These findings correspond with a previous meta-analysis
of MgSO4 for infants with HIE which revealed increased mortality in
MgSO4 treated-infants compared to controls (Tagin et al., 2013).
Although antenatal administration of MgSO4 has a proven
neuroprotective effect against cerebral palsy and gross motor
dysfunction in preterm neonates, use in perinatal HIE animal
models either with or without TH, delivers highly inconsistent
results (Conde-Agudelo and Romero, 2009; Doyle et al., 2009;
Galinsky et al., 2014). Thus, more rigorous testing at preclinical
and clinical stages is needed before MgSO4 can be considered an
effective monotherapy or adjuvant to TH for the treatment of HIE
infants. Furthermore, although xenon gas has consistently showed
promising neuroprotective effects when combined with TH in
neonatal animal studies, few human trials have reported potent
therapeutic effects, including the study included in this analysis
(Ma et al., 2005; Hobbs et al., 2008; Azzopardi et al., 2019). An
important caveat for the included study is that ventilation with xenon
was only started within 6 h of birth in 15% of infants, while 11% began
treatment after 12 h. This delay in administration is longer than what
has been tested in animal models and thus may have been beyond the
therapeutic window of xenon. Additionally, lack of a robust treatment
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protocol for humans and obstructed delivery of the agent through
recirculating ventilated inhalation, highlights the necessity for
increased clinical studies and protocol development for xenon gas
before the relatively costly agent can be recommended as an adjunct
to TH.

TH combined with neurogenic and angiogenic agents Epo, or its
synthetic analog, Dpo, did not reduce the risk of mortality or NDI in
HIE infants (Baserga et al., 2015; Wu et al., 2016; Lv et al., 2017; Wu
et al., 2022). Combination therapy did however decrease the length of
hospitalization (Mulkey et al., 2017). Pre-clinical and early small, pilot
clinical studies reported that recurrent doses of Epo at 300–2500 U/kg
had a safe pharmacokinetic profile and improved developmental
outcome when administered in conjunction with TH (Zhu et al.,
2009; Elmahdy et al., 2010; Wu et al., 2012). However these findings
contrast the recent reports from the largest, and most robust RCT
included in this analysis, which found that combined Epo and TH had
no effect on the incidence of death or neurodevelopmental disability at
2–3 years of age, and furthermore increased the likelihood of having at
least one serious adverse event compared to those treated with TH and
a placebo (Wu et al., 2022). The safety concerns raised by this trial
warrant further investigation into the optimal dosage and timing of
Epo treatment under hypothermic temperatures. As Epo promotes
recovery and repair, perhaps delayed administration following
secondary energy failure, may exert additive protection to TH
while minimizing potential toxicity. An ongoing large, RCT
evaluating TH and Epo at 1000 U/kg may further inform our
understanding of this potential adjuvant (PAEAN, Clinical
Trials.gov, 2022a, NCT03079167). In a similar regard, the dose at
which optimal neuroprotective effects are observed with Dpo
treatment remains unknown; weekly Dpo administration at both
low and high doses (2–10 ug/kg/dose) has been shown to produce
sufficient serum Epo concentrations and favourable outcomes when
utilized with TH (Baserga et al., 2015). A controlled comparison of
Epo and Dpo is required.

Moreover, the regenerative properties of UCB cells–a potent source of
stem cells and haematopoietic precursor cells–has attracted recent
attention and are advantageous in that collection is non-invasive,
poses no risk to the mother or infant and presents a low risk of
infection transmission (Tsuji et al., 2020; Serrenho et al., 2021; del
Pozo et al., 2022). There are currently nine clinical trials registered to
evaluate intravenous infusion of autologous UCB-derived stem cells in
neonatal HIE (Clinical Trials.gov, 2022b, NCT01649648, NCT00593242,
NCT02612155, NCT02455830, NCT02256618, NCT02881970,
NCT02551003, NCT03352310, NCT02434965) only two are published,
one of which combined treatment with TH and is included in the present
analysis (Cotten et al., 2014; Tsuji et al., 2020). Both published
independent pilot studies followed comparable protocols for collection
and preparation of the non-cryopreserved, RBC- and volume-reduced
mononuclear fraction of cord blood cells, with doses ranging from
107–108, demonstrating safety and feasibility. However, risk of
mortality and NDI in HIE infants treated with combined UCB cells
and TH did not differ from those treated with TH alone (Cotten et al.,
2014). It is our hope that the forthcoming publication of clinical data will
elucidate the therapeutic potential of UCB cells as well as whether the
efficacy of cell therapy and TH improve when administered concurrently.

Finally, an estimated effect size could not be produced for the
glucocorticoid hydrocortisone, due to an equivalent incidence of death
in both the combination therapy group and TH alone group (Kovacs
et al., 2019). It is important to note however that this study did

demonstrate the effectiveness of combined hydrocortisone and TH in
increasing blood pressure in volume resistant hypotensive HIE infants
compared to those treated with TH alone. HI insult and reperfusion
have been associated with reduced myocardial perfusion and
performance and thus the typically employed vasopressor-inotropes
may be ineffective due to compromised cardiac output and further,
actually stimulate negative compensatory mechanisms such as
tachycardia (Zanelli et al., 2010; Giesinger et al., 2017; Diederen
et al., 2018). Treatment with TH, which raises systemic vascular
resistance, combined with hydrocortisone, led to reduced heart rate
and duration of cardiovascular support and inotrope usage (Kovacs
et al., 2019). This suggests hydrocortisone is an effective adjuvant to
TH in the context of treating HIE-related hypotension. Lastly,
combined TH and antioxidant, melatonin, significantly reduced the
risk of NDI (Aly et al., 2014). Caution must be exercised when
interpreting these results however as only one clinical trial was
analyzed with a relatively small sample size. NDI was also reported
at 6 months of age which may not be reflective of long-term outcomes.
Human HIE studies evaluating melatonin as a monotherapy range in
their timing of administration and dose (10 mg/kg—80 mg/kg), thus
the optimal protocol parameters required to reach therapeutic levels
remains unknown (Fulia et al., 2001; Ahmad et al., 2018). Although
supportive pre-clinical animal data for the neuroprotective effects of
melatonin in HIE is extensive, larger powered, efficacy RCTs of TH
with melatonin at therapeutic levels and long-term follow up, are
needed.

4.4 Strengths and limitations

The strength of this study lies in that it is, to the best of our
knowledge, the first to evaluate the efficacy of combination therapy vs.
TH alone in treating neonatal HIE. Identifying potential adjuvants to
TH is a major focus of recent literature yet no study has measured
whether such confers augmented neuroprotection at the clinical level
in a broad sense. We have also categorized promising combination
therapies by mechanism of action which highlights key targets in HIE
pathology under hypothermic temperatures. Additionally, the present
study analyzed three outcomes, mortality, NDI and length of
hospitalization, which are important measures of the personal
burdens posed by HIE as well as socioeconomic burdens placed on
healthcare systems. Finally the included studies consist of infant data
from a variety of research and clinical settings across the globe
including Hungary (2.5%), China (3.2%), Poland (5.8%), the
Middle East (7%), the United Kingdom (7.1%), Italy (7.6%), Spain
(8.2%), and United States (58.5%). This diversity is representative of
the translatability of our findings, particularly in high-income
countries (HICs). Furthermore, there are two approved methods of
TH induction utilized in HICs–selective-head and whole-body
cooling. Selective-head cooling is achieved using a manually
controlled cool cap fitted around the infant’s head, and whole-body
cooling may be achieved via passive, environmental cooling, ice packs
and/or commercially available cooling blankets. Outcomes at
12 months of age do not differ between HIE infants treated with
either of the twomethods, and both have been demonstrated to reduce
the risk of death or major developmental disability compared to
normothermia (Tagin et al., 2012; Celik et al., 2016). Comparable
protocols used in each of the included studies in this analysis
eliminates confounding bias.
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The limitations of the present analysis arise predominantly from a
limited number of available studies, and heterogeneity in the included
studies’ design, intervention protocols, and assessed outcome
measures. Seven of the studies were limited by small sample sizes
of ≤50 infants (Meyn et al., 2010; Aly et al., 2014; Baserga et al., 2015;
Wu et al., 2016; Lv et al., 2017; Filippi et al., 2018; Kovacs et al., 2019),
while the large RCT conducted by Wu et al. accounted for 38.8% of all
infants in the included analysis (Wu et al., 2022). There was no
common assessment of HIE across studies and HIE severity
information was missing entirely from four studies. Control for
severity of encephalopathy at baseline between the treatment and
control groups is essential, as it is correlated with infant death,
disability and hospitalization, and is predictive of response to
treatment. Additionally, timepoint of assessment for NDI varied
from 6 months—3 years of age and the tests utilized to support an
NDI diagnosis also differed between the studies. Although
standardized assessments that measured motor, personal-social,
language and adaptability domains were used, future analyses
should evaluate the effect of combination therapy on specific
neurological modalities to identify whether certain adjuvants
reduce adverse outcomes in certain neurodevelopmental domains.
Further, supportive agents were utilized alongside of the primary
interventions as necessary, to provide respiratory assistance,
hemodynamic support and seizure control. We therefore cannot
conclude that any effects observed were solely attributed to either
TH or the adjuvant therapeutic.

Finally, the outcomes of the present analysis are specific for
HICs and are unlikely to be applicable for low-income and middle-
income countries (LMICs). Although recommended by the
International Liaison Committee Resuscitation guidelines in
2015 as the standard of care for neonatal encephalopathy in
LMICs, the recent ‘hypothermia for neonatal encephalopathy in
LMICs’ (HELIX) trial, reported TH to be ineffective (Perlman et al.,
2015; Thayyil et al., 2021). The multi-country, rigorous RCT found
that TH did not reduce the composite outcome of death or
disability at 18 months of age and increased the incidence of
death alone relative to a control group (Thayyil et al., 2021). In
the HELIX trial, intra- and postpartum care were not standardized
as 67% of included infants were born outside of the participating
hospitals, with 2%–3% born at home. As well, at significantly higher
rates than in HICs, 73%–74% of each cohort presented with clinical
seizures at randomization and 80% had white matter damage,
indicative of subacute injury (Miller et al., 2005). The quality of
intrapartum and neonatal care as well as the subacute nature of
neonatal brain injury in LMICs are important considerations in
addressing the HIE burden in such settings and may partially
underlie the lack of neuroprotection afforded by TH.
Understanding the mechanisms by which the adjuvant drugs
included in this analysis confer protection at the clinical level
may nevertheless reveal novel therapeutics that are relevant in
LMICs and warrant further investigation.

5 Conclusion

Moderate and severe HIE infants endure a significantly shorter
duration of hospitalization post-birth when treated with TH and a

neuroprotective adjuvant, compared to those treated with TH
alone. GABA receptor agonists, NMDA receptor antagonists,
neurogenic and angiogenic agents, stem cells, glucocorticoids
and antioxidants represent promising candidate adjuvants that
either target overlapping or additive pathophysiological
mechanisms to TH. Despite compelling preclinical evidence
however, risk of mortality and NDI did not differ between HIE
infants treated with combination therapy and those treated with
TH alone. This suggests a knowledge gap in clinically important
therapeutic targets and how these candidate drugs interact with
hypothermic-temperatures in clinical settings. It furthermore
necessitates investigating the optimal dose and timing of
administration at which maximal clinical benefits are observed
for each adjuvant neuroprotectant and whether the efficacy of the
neuroprotectant and TH are indeed enhanced when used in
combination. The studies included in this analysis are limited in
number and sample size, and are restricted to HICs. As TH is now
the standard of care for HIE, it is important for preclinical trials to
be conducting drug development studies in hypothermic settings
and in turn, well-designed, larger powered trials from both HICs
and LMICs are needed at the clinical level in order to streamline the
translational pipeline and take combination therapy from bench to
bedside.
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