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Epilepsy has a high prevalence and can severely impair quality of life and

increase the risk of premature death. Sudden unexpected death in epilepsy

(SUDEP) is the leading cause of death in drug-resistant epilepsy andmost often

results from respiratory and cardiac impairments due to brainstemdysfunction.

Epileptic activity can spread widely, influencing neuronal activity in regions

outside the epileptic network. The brainstem controls cardiorespiratory activity

and arousal and reciprocally connects to cortical, diencephalic, and spinal

cord areas. Epileptic activity can propagate trans-synaptically or via spreading

depression (SD) to alter brainstem functions and cause cardiorespiratory

dysfunction. The mechanisms by which seizures propagate to or otherwise

impair brainstem function and trigger the cascading e�ects that cause SUDEP

are poorly understood. We review insights from mouse models combined

with new techniques to understand the pathophysiology of epilepsy and

SUDEP. These techniques include in vivo, ex vivo, invasive and non-invasive

methods in anesthetized and awake mice. Optogenetics combined with

electrophysiological and optical manipulation and recording methods o�er

unique opportunities to study neuronal mechanisms under normal conditions,

during and after non-fatal seizures, and in SUDEP. These combined approaches

can advance our understanding of brainstem pathophysiology associated with

seizures and SUDEP and may suggest strategies to prevent SUDEP.
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Epilepsy and SUDEP

Epilepsy affects ∼0.75% of all people (1), or ∼50 million people worldwide,

with an incidence of 4–10/1000 people/year. Epileptic seizures result from abnormal

hypersynchronous neuronal activity (2, 3). Most seizures arise from both hemispheres

simultaneously (generalized) or from restricted regions in one or both hemispheres but

can propagate widely (focal) (4, 5). Anti-seizure medicines (ASMs) prevent seizures for

∼67% of patients, but many well-controlled patients experience cognitive and behavioral

comorbid disorders and ASMs side effects. One-third of patients have drug-resistant

epilepsy and often take multiple and high doses of ASMs with greater comorbidities,

adverse effects, impairments of quality of life, and higher mortality (6–8).
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Sudden unexpected death in epilepsy (SUDEP) is a

witnessed or unwitnessed, non-drowning, and non-traumatic

death in a person with epilepsy which often but not always

follows a convulsive seizure. SUDEP excludes status epilepticus

and cases where post-mortem examination or toxicology reveals

another cause of death (9). SUDEP is the leading cause of

death in drug-resistant epilepsy (DRE), with an incidence rate

of 1–5 cases per 1000 patients per year (10, 11). SUDEP is

the second leading neurological cause of lost years of life

after stroke (12). Case-control studies reveal the following risk

factors: generalized tonic-clonic seizures (GTCS) (any in the

last year and further increased risk with ≥ 3/year), lack of

adequate medication, nocturnal seizures, and lack of nocturnal

supervision (13, 14). Many SUDEP cases are undetected or

misclassified, suggesting the incidence is higher than reported

(13, 15).

The few SUDEPs recorded on video with

electroencephalographic and electrocardiographic data are

biased toward more severe focal epilepsy cases admitted for

presurgical evaluation with rapid ASMs reduction (16). By

contrast, SUDEP affects the full spectrum of people with

epilepsy (17), and results from epilepsy monitoring units

cannot be generalized. The underlying mechanisms of SUDEP

remain poorly defined. Most occur during sleep and follow

convulsive seizures, with reduced brain activity and respiratory

impairments commonly observed, although cardiac dysfunction

can contribute (18–20). Postictal disruption of brainstem

regulation of arousal, respiratory and cardiovascular functions

is considered the common final pathway of death in SUDEP

(9, 20–23). In animal models, arousal and cardiorespiratory

dysfunctions can result from fast direct synaptic circuit

mechanisms (24–27) and slower phenomenons like spreading

depressions (SD) (28–31). How cortical seizure activity impairs

brainstem functions postictally is a critical research issue.

Understanding this pathophysiology will inform preventative

and therapeutic strategies. We review potential mechanisms of

seizure propagation and spread that might contribute to SUDEP,

examine models used to study the mechanisms, and highlight

advances in investigating complex network interaction in vivo

in mouse models.

Propagation of epileptic activity –
the problem of a highly connected
brain

This section reviews the following questions: how does

epileptic activity spread to the brainstem? Is this a rare event,

or common but usually compensated for (and if so, how)?

Rodent, primate, and human brains orchestrate multiple

areas to optimally assess internal and external conditions and

determine behavioral outputs. This requires high connectivity,

precise coordination, and balance between interacting cortical-

subcortical networks. During cortical seizures, affected areas

are directly impacted by aberrant excitation and inhibition. In

addition, areas beyond the epileptic network can be severely

disturbed by ictal spread to resonating areas. The brainstem

receives projections from cortical and subcortical brain areas

(32–34). During and after seizures, these connections can

alter brainstem activity and potentially impair arousal and

cardiorespiratory functions and contribute to SUDEP (32, 34–

36). Understanding why some cortical seizures propagate to

other cortical and subcortical areas and how this disrupts

brainstem activity is a major challenge in SUDEP research. The

brain regions involved in epileptic circuits - cerebral cortex

(37), hippocampus (38), amygdala (39, 40), and thalamus (41)

- are directly and indirectly connected to the brainstem and

exert powerful influences over it. The brainstem and more

rostral cerebral regions share strong reciprocal connections,

complicating our understanding. We review new techniques

to study network interaction involved in SUDEP in epileptic

mouse models.

General concepts of the spreading
of pathological activity

Epileptic seizures can be provoked by disrupting

neuronal E/I balance by altering intrinsic properties, or by

altering synaptic transmission and network stability causing

hypersynchronous activity (42). The mechanisms underlying

seizure propagation and termination are less well characterized.

Focal seizures influence other brain areas via rapid axonal

connections or spreading depression (SD), a slow propagating

depolarization wave that inactivates neurons (25, 31, 35, 36).

This slow ictal wavefront propagation corresponds to the

gradual evolution of seizure symptoms, as in the Jacksonian

sensory symptom march (43). The ictal wavefront may

evoke a feedback loop to the seizure focus which triggers

the clinical symptoms. Failure of feedforward inhibition

supports epileptiform activity and seizure spread via this slow

route in addition to classic synaptic pathways (44, 45). While

SD contributes to symptoms of migraine and epilepsy, the

mechanisms may be conserved or divergent (29, 46). The

propagation rate of SD in migraine and epilepsy are similar, but

their onset, duration, impacted brain regions and EEG changes

can differ (47–50). Different SDs might exert distinct influences

on brainstem function and SUDEP risk (29, 51). Debate persists

whether this risk is primarily an ictal or post-ictal phenomenon.

While the ictal seizure spreading into the brainstemmight cause

direct autonomic dysfunctions (36, 52, 53), the disturbance in

the post-ictal period might substantially outlast the seizures. The

post-ictal EEG suppression is viewed as a potential contributor

but only a weak SUDEP predictor (54–56).
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Mouse models of familial hemiplegic migraine with

mutations in Cacna1a (57, 58), Atp1a2 (59) and Scn1a (60,

61) show increased mortality. In mice with Cacn1a variants,

brainstem SD elicited by seizures can be fatal (31). Brainstem

SD may directly impair cardiorespiratory function (21, 30, 31,

35, 40). In focal seizures, SD with seizure propagation may be

restricted to cortical regions in most instances. SDs were directly

triggered by high neuronal activity of focally induced seizures

and prevented by applying tetrodotoxin (TTX; a potent sodium

channel inhibitor) (62). The authors postulate that SD is an

innate mammalian mechanism to prevent seizure propagation

and generalization, and to induce seizure termination (62).

However, if SDs reach brainstem autonomic centers, severe

cardiorespiratory dysfunction may follow (31, 63).

Brain areas linked to autonomic
control

Human studies used electrical stimulation or the time of

seizure invasion to investigate cortical structures that alter

breathing. These brain areas include the amygdala (32, 36, 64),

the hippocampus head and body, anterior parahippocampal

gyrus, and antero-mesial fusiform gyrus (65, 66). A pediatric

study found apneas and seizure spread to the amygdala were

strongly correlated (67), an adult study failed to replicate this

(64). Electrical stimulation to the insula and left cingulate

gyrus decreased cardiac output and induced cardiac asystole

in epilepsy patients without effects on breathing (68, 69).

However, electrical activation cannot precisely target specific

neurons and circuits. Further, cortical and subcortical electrode

coverage is limited. So the invasion of ictal activity to a

region (e.g., amygdala) may be accompanied by spread to

areas that were not sampled (e.g., hypothalamus, anterior

cingulate, and orbitofrontal cortices). Also, correlating seizure

invasion to apneas might reveal only some parts of the network

involved in autonomic dysfunction. In animals and humans,

physiological changes in subcortical areas (e.g., locus coeruleus)

alter breathing (27, 70).

In addition to seizure invasion of cortical areas, altered

connectivity between cortical areas and respiratory brainstem

centers may be important (71). Functional magnetic resonance

imaging (fMRI)-studies on epilepsy patients show reductions

in resting-state functional connectivity and tissue loss in

cortical, subcortical, and brainstem structures associated with

impaired autonomic control and increased SUDEP risk (71–73).

However, monitoring of patients who later died from SUDEP

did not reveal a direct associated location or lateralization of

the epileptogenic zone with their higher risk of death (16).

Intracranial EEG recordings and stimulation studies implicate

the amygdala, hippocampus, insular cortex, and seizure spread

to the contralateral temporal lobe to correlate with ictal

cardiorespiratory dysfunctions (32, 36, 53, 65, 67, 74). Thus,

identifying the detailed and complex connectivity and the

altered brain activity in regions controlling cardiorespiratory

activity is crucial for SUDEP risk estimation.

Control of autonomic functions in
the brainstem and SUDEP

Here, we review evidence of brainstem alterations (e.g.,

genetic or physiological/structural resulting from chronic

epilepsy) associated with SUDEP risk. We discuss crucial

brainstem areas generating andmodulating autonomic rhythms,

such as breathing, and discuss their potential role in SUDEP.

The respiratory network flexibly adapts to environmental and

metabolic changes while maintaining stability to guarantee

effective gas exchange (75). This network integrates brainstem

rhythm-generating nuclei with other central and peripheral

neural regions (76). The brainstem respiratory network includes

the parafacial respiratory group (pFRG), Bötzinger complex

(BötC), pre-Bötzinger complex (pre-BötC), rostral ventral

respiratory group (rVRG), and caudal VRG (cVRG). Pontine

nuclei modulate respiratory activity via projections to medullary

respiratory nuclei (34, 76, 77). The post-inspiratory complex

(PiCo) provides excitatory input to generate post-inspiration

patterns (78). Seizure-related effects on respiratory and cardiac

brainstem centers can impair these functions and contribute

to SUDEP (20, 21, 79, 80) (Figure 1). Cardiorespiratory

dysfunction in SUDEP could result from the effects of

higher cortical and limbic areas on brainstem function, direct

brainstem alterations, or both, including descending and

ascending circuitries (27, 38, 81) (Figure 2). Chronic alterations

of respiratory control, such as reduced ventilatory responses to

increased CO2 levels, occur in epilepsy patients (82).

Epileptic seizures can directly alter heart rhythms and heart

rate variability (HRV), which reflects balanced sympathetic and

parasympathetic activity (83–86). High sympathetic tone and

elevated levels of several neuropeptides can follow seizures

(87, 88). Other seizure-induced acute changes include asystole,

brady- and tachy-arrhythmias are most common with seizure

foci in paralimbic and limbic cortices (69) and may contribute

to SUDEP (23, 89, 90). Reduced HRV can result from voltage-

gated sodium channel gene variants (91), and low-frequency

HRV power is associated with SUDEP risk (92). Temporal lobe

seizures may disturb arousal and vigilance networks (93).

A critical challenge is distinguishing indirect vs. direct

effects on brainstem autonomic centers. For example, PreBötC

dysfunction can result from mutations in ion channels (94–

96) and mitochondrial genes (97), as well as transcription

factors (98). In animal SUDEP models with Kcna1 and

Scn1a mutations, the threshold to trigger brainstem SD

is reduced (21). However, respiratory networks are state-

dependent; neuromodulators influencing respiratory activity

include norepinephrine, serotonin, acetylcholine, substance P,
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FIGURE 1

A�erent and e�erent connections to central autonomic networks and proposed mechanisms involved in seizure-induced cardiorespiratory

dysfunction leading to SUDEP. Cortical and subcortical regions involved in epileptic activity and cardiorespiratory modulation in the brainstem.

Magnification shows connections and brainstem nuclei of cardioregulatory and respiratory centers that can be a�ected by seizure activity

leading to cardiorespiratory dysfunction. DRG, Dorsal respiratory group; HC, Hippocampus; NA, Nucleus ambiguous; PRG, Pontine respiratory

group; VRG, Ventral respiratory group.

ATP, somatostatin, dopamine, endorphins, and adenosine (99).

Several have been shown to be elevated during and following

seizures and potentially could contribute to SUDEP (88, 100–

102).

The brainstem is crucial for controlling cardiorespiratory

autonomic function impairments likely contribute to sudden

infant death syndrome (SIDS), the sudden and unexpected death

of a seemingly healthy baby under age 1 year (103–105). There

are striking similarities between SIDS, sudden unexplained

death in childhood (SUDC), and SUDEP (106–109) with the

exclusion of other causes, nocturnal occurrence in the prone

position, and an unwitnessed death (106). Arousal can be

triggered by increased CO2 (hypercapnia) and reduced oxygen

levels (hypoxia), further preventing a build-up of end-tidal CO2

and restoration of normal oxygen levels (103). This arousal

response is linked to breathing and is normally initiated with a

sigh (augmented breath) (110–112). Sighs are generated in the

PreBötC by the same rhythm-generating network crucial for

eupnea and gasping (95, 113). In addition, several other areas

such as the dorsal raphe nucleus, the nucleus tractus solitarius,

the parabrachial nucleus, and the retrotrapezoid nucleus are

involved in arousal (106). Seizures in the amygdala [bed nucleus

of the stria terminalis (BNST)] can activate projections to the

brainstem, disturbing structures like the parabrachial nucleus

involved in arousal and respiratory function (40). The BNST

is highly interconnected to cortical regions, the hippocampus,

the hypothalamus, the midbrain, and other brainstem

nuclei and may serve as an integrator of autonomic and

neuroendocrine responses (40, 114–117). As discussed above,

massive release of neuromodulators (e.g., norepinephrine,

serotonin, and acetylcholine) can disturb arousal. Since hypoxia

and hypercapnia trigger arousal and gasping, they are a focus

of SIDS research. However, another vulnerability phase is

reoxygenation after a hypoxia/hypercapnia. This phase includes
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FIGURE 2

Schematic of brain regions involved in epileptic activity and cardiorespiratory regulation in humans (A) and mice (B). (A, B) Top, Human and

mouse brain with depicted Cortex (pink), Hippocampus (red), Striatum (yellow), Thalamus (green), Hypothalamus (orange), and brainstem (blue)

with ascending (green lines) and descending (red lines) projections. Bottom, Magnification of brainstem nuclei. VII N, facial nucleus; BötC,

Bötzinger Complex; cVRG, caudal ventral respiratory group; DRG, Dorsal respiratory group; HC, Hippocampus; LRt, lateral reticular nucleus; NA,

Nucleus ambiguus; pFRG, para-facial respiratory group; PRG, Pontine respiratory group; PiCo, Post-inspiratory Complex; preBötC, preBötzinger

Complex; rVRG, rostral ventral respiratory group; SO, superior olive; VRG, Ventral respiratory group.

post-hypoxic ventilatory depression (118, 119), which can

occur after generalized tonic-clonic seizures and could be

potentially prolonged in SUDEP. To dissect these mechanisms,

modern experimental technology, including optogenetics and

chemogenetics in animal models, as discussed below, is critical.

Future directions of SUDEP research seek to identify

common molecular and cellular changes overlapping in several

SUDEP animal models and potentially identify common

changes in SIDS and SUDC models. While expression

changes in RNA levels in brainstem areas of animals

showing SD in cortical areas were detected (120), more

investigations in epileptic animal models (genetic and induced)

are needed to unravel molecular changes that participate

in SUDEP.

ASM and brainstem function

Another potential SUDEP mechanism is direct ASM effects

on brainstem function. ASM can reduce SUDEP risk by a

reduction of seizure frequency and severity, thereby preventing

seizure-induced impairment of brainstem autonomic centers.

Under normal oxygen concentrations, mammals are eupneic,

their robust respiratory network combines diverse synaptic

and intrinsic signals in the respiratory network (99). During

severe hypoxia, the respiratory network generates gasping

(121, 122) through reduced mechanisms of rhythm generation

(99, 113). During gasping, changes include reduced inhibition

(123) and a switch to sodium-dependent intrinsic neuronal

bursting securing rhythm generation (124–126). These altered

rhythm-generating properties of the respiratory network alter

the sensitivity to sodium channel-blocking ASMs and may

interrupt the gasping response during seizure-induced postictal

hypoxia (127). These direct brainstem effects may contribute

to increased mortality associated with lamotrigine use observed

in some studies (128). Moreover, during seizures, patients can

experience repeated hypoxic episodes combined with increased

norepinephrine and other neurotransmitter/modulator levels.

This combination can destabilize PreBötC function (129)
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and may parallel secondary changes induced by the hypoxic

conditions during and after cortical seizures.

More investigations of the brainstem function and gene

expression of the brainstem areas controlling respiratory and

cardiac functions are needed in epileptic mice to get a better

understanding of the mechanisms underlying SUDEP. New

insights into chronic brainstem changes could stem from novel

techniques of brainstem transcriptome using single-cell RNA-

Seq or spatial transcriptomics (130).

Model systems for studying epilepsy
and SUDEP

Model systems help to investigate the pathological

interactions between brain regions that can result in a collapse

of cardiorespiratory function and SUDEP. In vitro and in vivo

models can study neuronal disease network mechanisms (131–

133). In vitro models standardize experimental conditions,

but oversimplify neuronal network function or whole

organism interaction, which may be critical in SUDEP. In

vivo models comprise diverse methods and model organisms

(134–138). Brain areas involved in epileptic activity and

cardiorespiratory regulation are similar in mice and humans

(78, 139) (Figures 2A, B). Thus, mice can appropriately model

human epilepsy. Modern techniques can target specific brain

areas and predefined neuronal cell populations to decipher their

role in epilepsy and SUDEP (140).

Epilepsy can result from diverse pathological processes,

including trauma, stroke, tumors, infections, autoimmune

disorders, and >150 genetic variants (141, 142). Epilepsy is

often accompanied by comorbid disorders, including autism

spectrum, cognitive, psychiatric, and hyperkinetic (143–148).

The developmental and epileptic encephalopathies (DEEs)

include a diverse spectrum of early-life epilepsies, often resulting

from genetic disorders, and associated with developmental

delays partly attributable to seizures and interictal epileptiform

activity (149). Across these disorders, E/I imbalances occur in

the amygdala, cortex, hippocampus, and other epileptogenic

regions (150, 151). Complex and heterogeneous genetic mouse

models recapitulate various human pathologies, offering insights

into epilepsy and SUDEP and allowing controlled experiments

on mechanisms by controlling for different confounds. Epilepsy

mouse models are divided into induced and genetic models. In

kindling models, stimulation (electrical, chemical, or acoustic)

induces seizures, whereas in genetic models, gene mutations

result in spontaneous seizures (136, 152). Mouse models can

mimic focal and generalized epilepsies as well as post-traumatic

epilepsy (153), temporal lobe epilepsy (TLE) (152), genetic

variants (80, 154), and scores of rare genetic disorders (e.g.,

tuberous sclerosis complex, CDKL5, Rett Syndrome, Dravet

Syndrome, FOXG1 syndrome, STXBP1 syndrome and many

more) (Figure 3).

FIGURE 3

Overview of commonly used genetic mouse models to study

epilepsy, SUDEP, and co-existing disorders.

Some genetically modified mouse lines model SUDEP with

deadly seizure-induced cardiorespiratory abnormalities (39,

155). Many genetic models involve ion channels, including

sodium voltage-gated channels (Nav) (154, 156–158), potassium

voltage-gated channels (Kv) (28, 159, 160), or calcium voltage-

gated channels (Cav) (30, 161) (Table 1). Some display

spontaneous epileptic seizures (e.g., Scn1a, Scn1b,Kcna1,Kcnq1,

Cacna1a, Shank3) (31, 143, 159, 162, 163) while others are

susceptible to heat or audiogenic-induced seizures (e.g. Scn1a,

Scn8a, DBA/1) (80, 164) (Figure 3).

Commonly SUDEP mouse models carry mutations in

the Nav (1.1, 1.6) and Kv (1.1, 7.1, 11.1) genes (159, 162,

165). Scn1a mutations alter the Navα1 subunit (Nav1.1) and

Nav1.1 haploinsufficiency can cause Dravet Syndrome (DS).

DS is a treatment-resistant early-onset epilepsy with 70-80%

of cases due to Scn1a variants and high rates of SUDEP (9,

83, 166–169). Nav1.1 is expressed in inhibitory neurons. A

loss of function decreases their excitability, increasing network

excitability, altering action potential (AP) dynamics (170–173)

and impairs thalamic glutamatergic and GABAergic function,

disrupting thalamocortical networks and facilitating seizure

generation (174, 175). Nav1.1 deficient mice recapitulate many

aspects of human DS pathology including severe epilepsy,

multiple neuropsychiatric comorbidities, and increased SUDEP

risk (21, 22, 83, 173, 176–180). Other gene mutations (e.g.,

Scn1b and Scn8a) display similar symptoms (163, 164, 181,

182). Mice with mutations in genes encoding for Kv show

cardiorespiratory failure including cardiac abnormalities and

apnea observed in SUDEP (21, 183). Kv1.1-α1 subunits, encoded

by the Kcna1 gene, are crucial for neuronal excitability and

are broadly expressed in the cortex, hippocampus, cerebellum,

and brainstem (184, 185). Kcna1 knockout mice display early-

onset generalized tonic-clonic seizures, seizure-related death,
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TABLE 1 Overview of common channelopathies in mouse models of epilepsy and SUDEP.

Gene Channel Expression Disorder Studies

SCN1A Na+ channel (α subunit of Nav1.1) Central nervous system and cardiac

myocytes

Genetic epilepsy with febrile

seizures plus (GEFS+), Dravet

Syndrome

(22, 169, 170, 173, 174,

191)

SCN1B Na+ channel (β subunit of Nav1.1) Central and peripheral nervous

system, skeletal, and cardiac muscles.

Genetic epilepsy with febrile

seizures plus (GEFS+)

(163, 181)

SCN8A Na+ channel (α subunit of Nav1.6) Central nervous system Epilepsy (148, 154, 164, 182)

KCNA1 K+ channel (α subunit of Kv1.1) Central and peripheral nervous

system

Epilepsy, Episodic ataxia (159, 160, 183, 187)

KCNH2 K+ channel (Kv11.1) Brain and heart Long QT syndrome (165, 189)

KCNQ1 K+ channel (Kv7.1) Heart, intestinal cells Long QT syndrome (162)

CACNA1A Ca2+ channel (α subunit of Cav2.1) Brain Epilepsy, Familial hemiplegic

migraine, Episodic ataxia

(30, 31, 35, 161)

and cardiorespiratory dysfunction (159, 186–188). These mice

exhibit apneas, increased respiratory variability, and precede

cardiac failure as risk factors for SUDEP (183, 187). Further

Kv-channelopathies (e.g., Kcnh2 and Kcnq1) are susceptible

to recurrent seizures and long QT syndrome (LQTS); i.e.,

arrhythmias and SUDEP (162, 189, 190).

Mutations in genes encoding for Nav1.1, Kv1.1, and Cav2.1

are moreover linked to brainstem seizures, medullary SD,

and cortical seizures propagating to the brainstem causing

cardiorespiratory arrest (21, 30, 31, 35). Thereby, local brainstem

SD can elicit EEG suppression, apnea, bradycardia, and

asystole, mimicking the involvement of SD in epileptic activity

propagation and its relevance as SUDEP models.

Thus, a number of model systems and especially mouse

models, are nowadays available for epilepsy and SUDEP

research. In the direct context of SUDEP, models with Nav

(1.1, 1.6) and Kv (1.1, 7.1, 11.1) mutations seem particularly

promising. Of these, Scn1amodels have been extensively studied

and largely model the human SUDEP pathology and phenotypes

well (152, 167, 191). Future studies need to extend to clinically

and genetically characterized epilepsies to explore if common or

distinct pathways of autonomic dysfunction mediate SUDEP.

Techniques to study network
interaction involved in SUDEP

To understand SUDEP mechanisms, we need models and

techniques to represent and measure cortical seizure generation

and propagation as well as cardiorespiratory function. In vivo

techniques allow direct epileptic activity measurements and

manipulations (192, 193) of complex circuitries and brain

connections. Ex vivo recordings from targeted brain regions

allow cellular processes to be investigated at high resolution. Ex

vivo measurements like histological reconstructions, stainings,

and spatial transcriptomics (180, 194) can reveal anatomical

brain changes associated with epilepsy, which may be the

cause or effect of epilepsy or an epiphenomenon of the

underlying pathology.

Next, we will discuss recent advancements in methods to

investigate in vivo and ex vivo models, including optogenetics,

electrophysiology, imaging, and other measurements (Figure 4).

Optogenetics is a technique to study specific cells and their

relations to brain functions and disorders (195). Optogenetics

utilizes the expression of light-sensitive proteins (opsins)

in brain areas or specific cells. Depending on the opsin

used, targeted neurons can be activated or inhibited (or

even both) using light stimulation to precisely control

neuronal activity. Optogenetics can trigger or prevention of

epileptic activity (196) with millisecond temporal precision,

enabling the assessment of how specific firing patterns

affect brain cells and networks (197). Optogenetics can be

applied invasively and non-invasively (198) and can be

combined with electrophysiological recordings and imaging

techniques. Chemogenetics can selectively modulate cellular

pathways using restricted artificial chemogenetic receptors

[e.g. DREADDs (Designer Receptors Exclusively Activated by

Designer Drugs)] delivered to specific neuronal populations.

Instead of light stimulation, chemogenetics systemically injected

or microinfused can activate ligands that excite or inhibit

targeted neurons (199). Optogenetics can be combined with

chemogenetics to manipulate neuronal activity with a high

temporal and spatial resolution (200). In epilepsy animal

models, these combined methods can identify and manipulate

specific neuron populations, brain regions, and neuronal

circuitries involved in epileptic activity (201).

Seizures and interictal epileptic discharges (IEDs)

can be restricted to certain brain regions and networks.

Electroencephalographic (EEG) recordings can localize brain

regions giving rise to seizures and examine epilepsy-related
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FIGURE 4

Schematics of in vivo techniques for studying neuronal activity in mouse models. (A) Electroencephalography (EEG) recording with implanted

EEG probe and recording electrodes (30 channels) on the brain surface. (B) Implated optrode with integration of optical fiber and recording

electrodes for simultaneous optical stimulation and electrophysiological recordings. (C) Imaging of the mouse brain through an optical window

for visualizing brain areas (mapping, Allen Brain Atlas) or/and single-cell activity in the region of interest. (D) Fiber photometry of a target brain

region with simultaneous optical stimulation (laser) and calcium imaging (photodetector) via an implanted fiber probe.

neuronal activity changes across brain regions (202). Scalp

EEG records changes in electrical potentials caused by ion

flow across neural membranes, mainly at the brain’s surface.

It can detect the origin and propagation of epileptic activity

throughout different brain regions at a macro scale (203, 204)

(Figure 4A). Invasive methods include intracranial EEG (iEEG)

using depth or subdural EEG recordings (ECoG) to study

seizure onset and spread as well as SD and seizure propagation

in SUDEPmodels at a higher spatiotemporal resolution (22, 30).

Stereotaxically inserted multi-channel electrodes can record

local field potentials (LFPs) and single-cell activity (204, 205).

Modulation of neuronal activity via electrical stimulation

with these electrodes is possible but is much less precise

than optogenetic manipulation. For example, SDs can be

induced by electrical, and optogenetic techniques (206) whereas

electrophysiological and optical recording methods can assess

their propagation and effects on other structures (207, 208).

Combined optogenetics and electrophysiology in vivo,

using optical microelectrodes are called optrodes (209, 210)

enabling a direct readout of manipulated cell activity. Here,

a single microelectrode probe with integrated optical fiber

can simultaneously record and transmit light to genetically

modified, opsin-expressing cells. Optrodes can study neuronal

circuit dynamics in awake-behaving animals (211, 212)

(Figure 4B).

Imaging allows the visualization/mapping of cortical activity

with high spatial and temporal resolution (213, 214). Voltage-

sensitive dyes (VSDs) or genetically encoded calcium indicators

(GECIs) react to direct or indirect (Ca2+) changes in neuronal

activity. VSD imaging incorporates dyes into the cell membrane

that signal membrane-potential differences as changes in

fluorescence. VDS imaging can monitor synaptic transmission

and propagation of cortical activity but has a low signal-to-

noise ratio and lacks cellular specificity (215, 216). GECIs allow

cell-specific targeting but have a slower temporal resolution.

GECIs have been used to record population activity in wide-

field calcium imaging experiments. Combined with two-photon

imaging, GECIS can reveal activity dynamics of hundreds of
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FIGURE 5

Schematics of in vivo techniques for the recording of cardiac and respiratory activity. Mouse in a whole-chamber plethysmograph (left) or in a

restraining system (right) with additional recording methods. (1) video monitoring and infrared camera, (2) whole-chamber plethysmography,

(3) intranasal cannula, (4) telemetry system, (5) movement sensor, (6) external temperature probe (thermocouple), (7) restraining system, and (8)

3-point ECG.

individual neurons (217). Since the activity-dependent changes

in calcium-sensitive proteins can be visualized in vivo over

months, large-scale longitudinal functional studies can assess

activity before, during, and after seizures and in a single animal

(Figure 4C). Imaging techniques can visualize seizures in vivo at

high temporal and cellular resolution (172, 218).

Fiber photometry can combine imaging and optogenetics

using an implanted fiber-optic cannula to deliver excitation

pulses and monitor activity-dependent fluorescence changes

(219). This technique is ideal for deep brain recordings and can

study calcium signals in distinct epileptic brain regions in freely

moving mice (220) (Figure 4D). Fiber photometry can be used

simultaneously with electrophysiological recordings to combine

cell-type-specific imaging with high temporal-resolution spike

recordings in freely behaving mice (221).

These methods have provided new insights into the

role of brain regions and cell populations in epilepsy.

Optogenetics combined with optical manipulation, and

electrophysiological recordings revealed the key role of

inhibitory GABAergic interneuron signaling in seizure

generation and ictal propagation in epileptic mice (212, 222).

Other studies addressing brainstem excitatory neurons showed

a direct correlation to reduced subcortical activity during

seizures (223). Together, these techniques provide new research

opportunities on epilepsy networks and seizure dynamics over

the whole brain.

Investigating SUDEP and cardiorespiratory dysfunctions

requires additional recording techniques for in vivo monitoring

of autonomic functions including breathing and heart rate.

Several methods are available in the mouse (155, 182, 183, 224).

Cardiac activity is typically recorded via electrocardiography

(ECG) (225, 226). Methods can monitor breathing (227)

including invasive (telemetry systems and intranasal cannulas)

and non-invasive methods (movement sensors, restraining

systems, plethysmographs) (Figure 5). The whole-chamber

plethysmography approach offers a non-invasive method in

freely, non-restrained animals (95, 97, 228). This technique

allows recordings of breathing under hypoxia/hypoxemia

conditions (low blood oxygen levels and insufficient oxygen

supply) linked to SUDEP (30, 52, 229).

Although in vivomethods provide insights into the network

mechanisms, ex vivo studies offer more focused investigations

of cellular changes. Histological reconstructions and stainings of

brain regions can follow in vivo experiments to verify transgene

expressions and precisely localize implanted electrodes or

optical fibers (30, 180, 230). Brain slice preparations containing

cortical, hippocampal, or brainstem microcircuits allow single-

cell recordings or small network analysis to gain insights into

pathophysiology (78, 95, 231, 232). Spatial transcriptomics can

map the organization and connectivity of distinct genetically

defined cell types (194, 233). In epilepsy research, this can

provide a deeper exploration of disease mechanisms and

pathogenic changes in the spatial organization and molecular

signaling networks (234).

Thus, combining different techniques can provide a greater

definition of the dysfunctions associated with epileptic activity

and its interplay with autonomic functions on different levels

to identify possible biomarkers for epilepsy, seizure onset, and

SUDEP (202, 235).

Possible therapeutic approaches could be based on electrical

or optical stimulation of specific brain areas to “rebalance” their

E/I activity and maintain cardiorespiratory function during and

after seizures (198, 236). Electrical stimulation in patients to

map epileptic zones can inhibit or enhance respiration (237).

Optogenetic neuronal activation has been shown to suppress

seizure-induced respiratory arrest and exert an anticonvulsant
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effect in a SUDEP mouse model (238). Further, ex vivomethods

might provide opportunities for new molecular targets and drug

screening (233, 234, 239). However, these invasive approaches

will require far more refinement for their potential benefits to

exceed their definite risks.

Conclusion and future perspectives

SUDEP is the leading epilepsy-related cause of death,

affecting all age groups and epilepsy severities. SUDEP

mechanisms are poorly understood but are critical for preventive

and therapeutic strategies. Although ASMs can control seizures

in most patients, they do not alter long-term prognosis or

cure epilepsy (240). Further, their side effects can be severe

(241, 242). 30% of the patients with ASM-resistant epilepsy

suffer ongoing seizures and experience an increased SUDEP risk.

Medications/treatments that prevent seizures in those that are

currently uncontrolled with minimal side effects are desperately

needed. Understanding SUDEP mechanisms in more detail is a

desperate need.

Epilepsy mouse models with ion channel mutations

mimic human epilepsies (176) and are critical in translational

neuroscience research (243). They offer possibilities to

investigate the link between genetic alterations and their

underlying neurobiological mechanisms in much greater detail

compared to humans. Translation of basic animal research to

human epilepsy is exemplified by SCN1A-mice whose response

to ASM has enabled the development of FDA-approved

medications and gene therapy trials (191). Translational

research with new molecular targets for anti-epileptogenic and

anti-seizure research can empower novel drug discoveries and

identify potential biomarkers for early diagnoses and more

effective treatments (235, 243, 244).

Cardiorespiratory inhibition following epileptic

seizures may be the common final mechanism of SUDEP.

Cardiorespiratory dysfunctions from cortical or subcortical

epileptic activity propagating to brainstem regions could cause

SUDEP (21, 30, 31). SD might be directly involved in SUDEP-

related seizure spread to the brainstem (29). Mouse models

combining technological advances allow precise investigations

of the brain networks implicated in SUDEP (235). These

brain areas may provide new targets for interventions to

prevent SUDEP.

In mice, invasive methods such as optical or electrical

stimulations can manipulate neuronal networks (198, 245)

whereas neurostimulation-based techniques can also be applied

to epilepsy patients. Acute and chronic deep brain stimulation

(DBS), as well as vagus nerve stimulation (VNS), are epilepsy

therapies (236, 246–248). Combining neurostimulation and

ASM may be more effective in controlling seizures than either

alone (249).

There remains a critical need to better understand the

mechanisms of epilepsy and SUDEP. Mouse models combined

with precise methods are an important tools to assess these

mechanisms and translate this knowledge into preventive and

therapeutic strategies.
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