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Heat stress is one of the most important environmental stressors facing

poultry production. The presence of heat stress will reduce the antioxidant

capacity and immunity of poultry, thereby seriously a�ecting the health and

performance of poultry. The paper proposes an improved FPN-DenseNet-

SOLO model for poultry heat stress state detection. The model uses E�cient

Channel Attention (ECA) and DropBlock regularization to optimize the

DenseNet-169 network to enhance the extraction of poultry heat stress

features and suppress the extraction of invalid background features. Themodel

takes the SOLOv2model as themain frame, and uses the optimized DenseNet-

169 as the backbone network to integrate the Feature Pyramid Network to

detect and segment instances on the semantic branch and mask branch. In

the validation phase, the performance of FPN-DenseNet-SOLO was tested

with a test set consisting of 12,740 images of poultry heat stress and normal

state, and it was compared with commonly used object detection models

(Mask R CNN, Faster RCNN and SOLOv2 model). The results showed that

when the DenseNet-169 network lacked the ECA module and the DropBlock

regularization module, the original model recognition accuracy was 0.884;

when the ECA module was introduced, the model’s recognition accuracy

improved to 0.919. Not only that, the recall, AP0.5, AP0.75 and mean average

precision of the FPN-DenseNet-SOLO model on the test set were all higher

than other networks. The recall is 0.954, which is 15, 8.8, and 4.2% higher than

the recall of Mask R CNN, Faster R CNN and SOLOv2, respectively. Therefore,

the study can achieve accurate segmentation of poultry under normal and

heat stress conditions, and provide technical support for the precise breeding

of poultry.
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1. Introduction

With the continuous growth of the world’s population,

people have higher requirements for agricultural production. At

present, under the extensive and intensive production system,

there are more than 3.535 billion animals raised under this

system in the world, and the annual output of milk and meat

reached 798 million tons and 3,029 million tons respectively

(1, 2). According to existing data, it is predicted that global meat

consumption will increase by 70% until 2050 (3). Intensified

farming has obviously become the main production method to

ensure sufficient supply of meat, eggs, and milk from all over the

world. But from another perspective, there are many stressors

in intensified farming, such as restraint, warmth, density, and

immunity (4, 5). Compared with natural grazing and free-range

breeding, heat stress (HS) is an important aspect of all stressors,

which causes greater harm to poultry production activities.

HS refers to a series of non-specific reactions produced by

the body under high temperature stimulation that exceeds the

upper limit of the isothermal zone (6). Constant temperature

animals have their own isothermal zone, within this range,

the animal body can rely on its own physical regulation

function to maintain the balance of body temperature, so as to

obtain the best body metabolism and physiological functions

(7, 8). However, when the temperature exceeds the upper limit

temperature of the isothermal zone, the animal’s heat dissipation

capacity is hindered, what will break the body temperature

balance and steady state maintained by the body’s own physical

regulation, leading to the heat accumulation in the animal’s

body, resulting in increased body temperature and increased

metabolism, which will damage the health and productivity of

the animal. And if the animal continues to be in a state of heat

stress, symptoms of organ failure will appear, which can lead

to animal death if it is not found and treated in a timely and

effective manner (9).

Compared with other animals, poultry is more sensitive

to high temperature environment. Due to the high body

temperature of the poultry itself, rapid metabolism and lack of

sweat glands, especially in summer (10, 11), when the poultry is

in a high temperature and high humidity environment, the heat

loss through evaporation and heat dissipation is reduced, which

intensifies the harm of HS. Therefore, Under the general trend of

intensive and large-scale development of poultry breeding, how

to reduce the impact of HS has become one of the key issues in

the process of poultry breeding.

HS brings significant negative impact on the immune system

of poultry. For example, it can affect the immunity organs and

cytokines of the poultry and do harm to humoral immunity

mediated by B cells and T cells. On the other hand, Heat

stress can transform the kind of specific immunity of poultry

from cell-mediated immunity to humoral immunity, which

will increase the susceptibility of poultry to pathogens. Heat

stress can also weaken the immune function of poultry against

emerging pathogens, so that the number of antibodies after

vaccination cannot meet expectations. Therefore, this study

designed a poultry heat stress detectionmodel based onmachine

vision. The model can accurately segment poultry under heat

stress from healthy ones, and establish a classifier of heat state.

If the system based on this model applied in an actual farm, it

can quickly provide heat stress detection results for the breeders,

and then provide technical support for the accurate breeding and

welfare breeding of poultry.

Traditionally, the temperature-humidity index (THI) is used

to determine whether poultry is under HS (12). In general, a

THI value of 21 is considered as the threshold for chicken heat

stress. However, in the actual breeding process, the temperature

and humidity in the poultry house are quite different in space.

As an indirect indicator, THI cannot directly reflect the heat

stress state of poultry located in different positions of the poultry

house. With the rapid development of computer vision and

bioacoustic technology, poultry behavior monitoring methods

based on images and sounds have been widely studied and

applied, thus breaking through the limitations of traditional

monitoring methods (13–15). Aydin et al. (16) used 3D images

captured by the Kinect depth camera to identify the lying

and standing states of broilers, and to detect the number and

duration of lying states. According to the negative correlation

between lying time and health status of broilers, an indirect

method for evaluating the health status of broiler legs was

proposed. Pu et al. (17) proposed an automatic convolutional

neural network-based method to recognize the chicken behavior

within a poultry farm using a Kinect sensor. Compared with

the actual results, this test result achieved 99.17% accuracy. In

addition, there are also studies on the monitoring of heat stress

in poultry. Du et al. (18) concentrated on building a machine

learning-based hen vocalization identification algorithm to

estimate their thermal comfort status. Using the support vector

machine (SVM) algorithm to build a classifier for heat stress

state. Data from several studies suggest that the classification

performance of the optimal SVM model was 95.1 4.3% (the

sensitivity parameter) and 97.6 1.9% (the precision parameter).

The typical symptoms of heat stress in chickens are reduced

activity and increased drinking time. Therefore, Lin et al.

(19) analyzed the changes in exercise and drinking time of

chickens under different THI values, and proposed to use time-

lapse images and deep learning algorithms to monitor drinking

time and coordinates of chickens. Further analysis showed

that the detection accuracy rate of this method for chickens

was 98.16%, and the tracking accuracy rate for chickens was

98.94%. In conclusion, the analysis of poultry sound and the

monitoring of drinking time can accurately determine the heat

stress state of poultry. However, these research methods have

many shortcomings. For example, it is impossible to accurately

locate the position of poultry under heat stress, and long-term
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monitoring will affect the normal physiological activities of

poultry, which is not suitable for actual production.

In order to make up for the insufficiency of existing research,

for the images of the complex breeding background in actual

production. Based on the existing research, this study improves

the DenseNet-169 network and fuses it with the Feature Pyramid

Network (FPN) as the backbone network of the SOLOv2

network. A novel classification model (FPN-DenseNet-SOLO)

for identifying heat stress status in poultry is proposed. Themain

contributions of this study are as follows:

(1) For complex background images, a deep learning-based

recognition and segmentation model of poultry heat stress

state is proposed. The model can complete the accurate

segmentation of poultry in normal state and heat stress

state, and provides a basis for analyzing the classification

model of poultry breeding state.

(2) Optimize the DenseNet-169 network. By introducing

Efficient Channel Attention and DropBlock regularization,

the extraction of poultry heat stress features is

strengthened, and the extraction of invalid background

features is suppressed, thereby improving the recognition

accuracy and the generalization ability of the network.

(3) Taking the SOLOv2 model as the main framework, the

optimized DenseNet-169 is used as the backbone network

to fuse the FPN, and instances are detected and segmented

on the semantic branch and the mask branch. In this way,

the model can solve the problem of gradient disappearance,

have strong anti-fitting ability, improve the accuracy of the

model, and provide technical support for the monitoring of

poultry heat stress state in actual production.

The rest of the paper is organized as follows: Section 2

introduces and summarizes the related work. Section 3 describes

the detailed information of the poultry heat stress data set,

PoultryHS. Section 4 describes the proposed novel detection

model for poultry heat stress in detail. Section 5 provides the

evaluation and analyses of the experiment performance. Finally,

Section 6 summarizes this paper.

2. Materials and methods

2.1. Experiment design and image
acquisition

Experiments were conducted between September 10–13,

2021 at Animal Experiment Station of College of Animal

Science and Technology, Shandong Agricultural University,

Tai’an, Shandong, China. Twenty 13-week-old Hy-Line brown

laying hens were randomly selected from the farm and reared.

These laying hens are housed in environmentally controlled

rooms. Each laying hen is kept in a separate cage, which

FIGURE 1

Experiment setup and image acquisition system.

is connected to each other. Video recording was performed

using three ZED 2 cameras to completely record the behavior

of the laying hens in the ring control room. It is worth

noting that human interference should be avoided during

video acquisition. The ZED 2 camera was pre-installed in an

environmental control room, the ZED camera was positioned

2.0m above the ground and precisely at the center of the

operation corridor, as shown in Figure 1. The ZED camera was

connected to an Intel core i7-11800H CPU, 4.6 GHz, 16 GB

physical memory, Microsoft Windows 10 PC installed with the

ZED for Windows Software Development Kit (SDK) via a USB

port. Additionally, the surveillance camera was used to acquire

videos (for observation, labeling, and verification) at 30 fps

MOV format. The temperature of the environmental control

room was set to 27◦C and the relative humidity to 60% at

the beginning of the experiment. Raised in this environment

for 48 h to ensure that the research subjects fully adapt to the

new environment. After 48 h, the data collection of laying hens

in normal state was carried out. After data acquisition was

completed, the temperature of the environmental control room

was set to 36◦C and the relative humidity was 75%. When

the experimental environment reached the set parameters, the

image data of laying hens under heat stress were collected.

According to the experimental study by Aydin and Mortensen,

normal feeding was performed during the experiment, with free

access to food and water, and received 16 h of light per day, the

light periods having an approximate light intensity of 30 lx.

2.2. Definition of heat stress behavior of
poultry in images

The breeding environment has an important impact on

the growth and production of animals. In the face of

different stresses, animals usually exhibit different behavioral
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characteristics (20, 21). Under high temperature conditions,

poultry change their behavioral and physiological balance to

thermoregulate and thus lower their body temperatures. And

under the influence of heat stress conditions, poultry usually

show behaviors such as wing opening, nervous system disorders,

short breathing, panting, wing drooping, increased water intake,

and reduced food intake (6). As shown in Figure 2A, it can

be noticed that the poultry that developed heat stress in this

experiment presented behaviors such as wing droop, wing

spread, and open mouth panting. These behaviors can be clearly

observed in the images compared to the poultry in the normal

state (Figure 2B). Behaviors such as wing droop, wing spread,

and open mouth panting can increase heat dissipation and thus

ensure their own heat stability. This can be seen as a direct

behavior of heat stress. At the same time, chickens will drink

more water and peck less, which are indirect behavioral effects

of heat stress on chickens.

2.3. Image pre-processing

A total of 12,741 clear original images were collected by the

image acquisition device, and a data set of the poultry heat stress

(PoultryHS) was constructed for the first time. The size of these

acquired raw images is 2,976 × 2,976 pixels. First, resized the

original image to 512 × 512 pixels to facilitate model training.

Then, Labelme software was used to label the images of laying

hens to generate a mask map. To draw the bounding boxes,

we followed the guidelines of the reference Pascal VOC 2010

Challenge (22). Two classification labels are defined: (1) Normal:

laying hens under normal conditions; (2) Heat: laying hens

under heat stress. As described above, when the poultry were

in a suitable environment (temperature of 27◦C and relative

humidity of 60%), the collected behaviors belonged to the

“Normal” label; when the poultry were in a hot environment

(temperature of 36◦C and relative humidity of 75%), they

showed heat stress behavioral characteristics belonged to the

“Heat” label. The accuracy of the study was assessed against

manually labeled images. The dataset is randomly shuffled and

divided into training, test, and validation sets in a 7:2:1 ratio.

3. Methodology

Driven by artificial intelligence technology, convolutional

neural networks (CNNs) have also achieved rapid development

in computer vision. Image recognition and classification

technology based on CNNs can realize automatic recognition

and classification of target objects; by training a large number of

data sets, computers can process, analyze and recognize images

efficiently and accurately, which greatly improves production

efficiency (23, 24). In the intensive and large-scale animal

husbandry mode, there are often some abnormal behavior

monitoring problems of livestock and poultry, such as stress

response, disease monitoring, behavior recognition, etc. Using

CNNs to accurately monitor abnormal behavior of poultry can

effectively solve such problems. It is of great significance to

improve the economic benefits and management level of the

poultry breeding industry.

In order to achieve accurate and rapid detection of

the heat stress state of laying hens, this paper proposed

to introduce Efficient Channel Attention (ECA) after each

convolutional layer on the basis of DenseNet-169 network, and

randomly hidden some feature blocks of the research object

through DropBlock regularization. In this way, not only the

generalization ability of the model can be improved, but also the

adaptability of the model to identify poultry in different poses

can be enhanced. The improved DenseNet-169 network is used

as the SOLOv2 backbone network to fuse the Feature Pyramid

Network (FPN) to detect and segment instances on the semantic

branch and mask branch. This research will provide technical

support for the fine breeding of poultry and animal welfare.

3.1. SOLOv2

SOLOv2 is mainly composed of five parts: fully

convolutional networks (FCN), feature pyramid network,

mask kernel branch, mask feature branch and semantic

branch (Category branch). For the input image, the SOLOv2

network divides it into S × S grids, and performs feature

extraction through the fully convolutional network and the

feature pyramid network to determine whether the center of

the instance falls into a certain grid. The grids that meet the

conditions will enter the semantic branch and the mask branch,

and use the corresponding instances to judge the semantics and

the size and position of the mask, respectively (25).

The output of the network is divided into two branches: the

classification branch and the semantic branch. The structure of

the classification branch is S × S × C, where C is the number

of categories. While, the semantic branch structure is H × W

× S2, where H and We are the high and wide resolution of

the semantic output, generally 1/4 of the original image, and

S2 is the maximum number of instances predicted. One-to-

one correspondence with the grid of classification branches in a

top-to-bottom, left-to-right manner. According to the principle,

the network predicts category and semantic segmentation based

on the location at the same time, and combines the results to

achieve instance segmentation. Semantic prediction is divided

into convolution kernel branch and feature branch. Matrix

non-maximum suppression is proposed in SOLOv2. The idea

is derived from softening non-maximum suppression, but the

computational efficiency is close to that of fast non-maximum

suppression. SOLOv2 has a simple structure, and the one-

step instance segmentation method adopted has high efficiency

and accuracy.
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FIGURE 2

Poultry in di�erent states in the dataset. (A) Poultry in heat stress. (B) Poultry in normal state.

3.2. DenseNet

The SOLOv2 network has a complex structure and generates

a high number of parameters. In order to reduce the number of

parameters and improve the model performance, the DenseNet-

169 network is selected as the backbone network in this study.

The robust structure of dense block in DenseNet network makes

the number of output feature maps of each convolutional layer

small. Compared with traditional convolutional networks, it

requires fewer parameters to make the feature transfer more

efficient, make the network easier to train, make the number

of parameters smaller, and make the performance improvement

higher. At the same time, the model uses the feature maps of

all previous layers as input and its own feature maps as input to

all subsequent layers, ensuring maximum information transfer

between layers in the network. In this way, all layers can be

connected and the gradient disappearance can be effectively

mitigated. The DenseNet network combines the advantages of

Reset and Inception, but simply improves the performance of

the DenseNet network by combining them, but directly from

the perspective of optimal features. By using the two structures

of feature reuse and bypass setting, the amount of parameters

of the network can be reduced, and the problem of gradient

disappearance can be alleviated (26, 27).

DenseNet is a densely connected convolutional neural

network, mainly composed of DenseBlock and Transition Layer.

The architecture contains convolutional layers, pooling layers,

and densely connected modules with a growth rate of 4, where

the growth rate is to keep the channel feature dimension

moderate. As shown in Figure 3, DenseNet contains multiple

DenseBlock modules, DenseBlock consists of BN + ReLU

+ Conv (l × 1) + BN + ReLU + Conv (3 × 3), and

the layers between DenseBlocks are called Transition Layers,

which consist of BN + Conv (l × 1) + Average Pooling

(2 × 2). Since the dimension of the output feature map is

too large, an l × 1 convolution is added to the Transition

Layers module for dimensionality reduction, thereby improving

computational efficiency.

In the DenseNet network, there is an inseparable

relationship between any two layers, that is, the input of

any layer in the network is the superposition of the output

results of all previous layers. The result obtained by this layer

will also be transmitted to the next layer as input with the

previous output, which is transmitted down in turn. Use the

feature outputs of all previous layers as the input of the current

layer, that is, X0, X1, . . . Xl−1 are the feature maps from the first

layer to the l-1 layer, pass through the l-th layer through the

cascade connection, and finally use the composite function Hl

(∗) to obtain the output Xl.

Xl = Hl

([

X0,X1, ...,Xl−1
])

(1)

Where Hi is BN + ReLU + 1 × 1 Conv + BN + ReLU

+ 3 × 3 Conv; BN means Batch Normalization; ReLU is the

activation function; Conv is the convolution; [X0, X1,. . . , Xi−1]

means splicing all the feature layers before the i-th layer.
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FIGURE 3

Layer Denseblock network structure.

3.3. E�cient Channel Attention
(ECA-Net)

Chicken cages, troughs, water troughs and other poultry co-

exist within the feeding area are the backgrounds in the actual

production environment, which are complex and diverse. Based

on the backbone network, the efficiency of extracting behavioral

features from images is improved by adding an efficient

attention mechanism to increase the weights of important

features, thus strengthening the poultry heat stress behavioral

features and suppressing the invalid background features. This

study adopts ECA-Net, a lightweight attention module that

can improve the performance of deep convolutional neural

networks. By using the efficient attention module to combine

the depth and spatial information of the feature map, the

extraction of important features can be effectively suppressed

while the extraction of non-important features can be effectively

suppressed, so that the accuracy of target recognition in complex

environments can be effectively improved (28). Figure 4 is the

structure diagram of ECA-Net. C is the number of channels, H

is the height of the input data, W is the width of the input data,

k is the local interaction size of one-dimensional convolution,

GAP is the global average pooling, σ is the sigmoid activation

function. The same below. Firstly, global average pooling was

performed on the input feature map, and a single value was

used to represent the feature layer of each channel; Second,

FIGURE 4

ECA module structure diagram.

used a one-dimensional convolution of size k to generate

weights for each channel, obtained the interdependence between

each channel, and added a sigmoid activation function for

normalization; Finally, the weights generated by each channel

were multiplied onto the input feature map to enhance the

extraction of important features.

ECA-Net uses a one-dimensional convolution of size k to

interact across channels to replace the fully connected layer,

which can effectively reduce the computational complexity and

complexity of the fully connected layer, and then generate

weights for each channel.

ω = δ
(

CIDk

(

y
))

(2)
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where ω is the channel weight, δ is the sigmoid activation

function, and CID is one-dimensional convolution. The more

channels of the input feature map, the greater the k value that

requires local interaction, so the k value is proportional to the

number of channels C. In this paper, the k value is determined

adaptively by a function related to the channel dimension.

C = 2(γ ·k−b) (3)

Therefore:

k =
∣

∣

∣

∣

log2 (C)

γ
+

b

γ

∣

∣

∣

∣

odd
(4)

Where |t|odd is the odd number closest to t, γ, and b is set to

2 and 1, respectively.

3.4. DropBlock regularization

Changes in the surrounding environment may lead to

a reduction in the recognition accuracy and the over-fitting

of the DenseNet-121 network. In this paper, the DropBlock

regularization model was adopted to avoid over-fitting by

randomly hiding some feature maps, so as to extract higher

robust features.

DropBlock is an improved version of Dropout, which can

remove semantic information more effectively than Dropout

(29, 30). DropBlock works on the entire space block. Dropout

regularization generally works by randomly hiding neurons

in fully connected layers (31), however, it is not very

effective when used in convolutional layers. The reason is

that with the deepening of feature extraction, the feature map

gradually becomes smaller, and the receptive field gradually

becomes larger. Each feature on the feature map corresponds

to a receptive field range, and the corresponding semantic

information can be learned through adjacent position elements,

and then loses its effect. On the other hand, DropBlock hides

the feature map by setting the whole block element, blocks

the learning semantic information of adjacent positions, and

normalizes the feature map that is not hidden, so as to achieve

the regularization effect of the convolution layer.

s and γ are two important parameters in DropBlock: s

represents the size of the hidden block. Generally, the network

takes 3, 5, and 7, and the effect is best when s = 7; γ represents

the number of hidden activation units. The relationship between

them is shown in Eq. (5).

γ =
1− ρ

s2
·

f 2s
(

fs − s+ 1
) (5)

FIGURE 5

ECA-DenseBlock structure diagram.

Where ρ represents the activity threshold probability of

the activation unit, and fs represents the size of the feature

map there.

3.5. FPN-DenseNet-SOLO model

The DenseNet-169 network is mainly composed of

DenseBlock and Transition Layer. The number and width

of output feature maps for each convolutional layer in

DenseBlock are lower than the input feature maps. This form of

connection makes the transfer of features and gradients more

efficient. Figure 5 is a structural diagram of ECA-DenseBlock.

DenseBlocks are connected to each other through operations

such as BN-ReLU-conv. The ECA-Net module is added to each

DenseBlock module to calibrate the weight of each channel on

the feature map, increase the weight of important features, and

suppress useless features, thereby strengthening the poultry

features in heat stress state, while suppressing complex poultry

house background features. The ECA-DenseBlock network can

effectively speed up the training speed, improve the accuracy

of the model, and effectively improve the performance of

the network. Since each feature layer contains the output

information of the previous feature layer, the information flow

is enhanced, so only a few feature maps are needed to complete

the network training.
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Figure 6 shows the improved DenseNet-169 network

structure. First, the input color image goes through a

convolutional layer with a 7 × 7 convolution kernel, which

adjusts the number of channels of the image and extracts

effective information. Then connect a DropBlock regularization

module and an ECA-DenseBlock module in turn. The

DropBlock module hides the feature map by setting the whole

block element, blocks the learning semantic information of

adjacent positions, and normalizes the feature map that is not

hidden, so as to realize the regularization of the convolution

layer and improve the generalization ability of the model.

ECA-DenseBlock is the core part of the improved model.

The improved network contains a total of 4 ECA-DenseBlock

modules (the number of dense connections is 6, 12, 32, 32).

A Transition Layer is connected after each ECA-DenseBlock.

Among them, 1× 1 conv and average pooling are used to adjust

the number of channels to prevent the feature dimension from

growing too fast. After the features are extracted by the dense

connection structure with the addition of attention mechanism,

DropBlock regularization is added to prevent overfitting. Using

global average pooling and sigmoid activation function, the

generated weights of each channel are weighted onto the feature

map by multiplication, and finally the processed feature map

is output.

The original SOLOv2 network mainly consists of 5 parts:

fully convolutional networks (FCN), feature pyramid network

(FPN), mask kernel branch, mask feature branch and category

branch. Before the model predicts instance information, it must

perform feature extraction through a convolutional network.

Compared with FCN, Densenet can fuse the features of each

layer of the neural network through dense connections, and the

features are reused, which can reduce the amount of calculation

and the number of parameters. Its jump structure enables the

input feature maps of each layer to be directly connected to

the final loss function, accepting the supervision of the final

loss function, solving the problem of gradient disappearance,

making the network easy to train, and obtaining strong anti-

fitting ability.

In Figure 7, H,W, andWe are the height, width and number

of channels of the output feature map I and mask feature map

F of the feature pyramid, respectively. S represents the height or

width of the feature map after alignment; C is the total number

of semantic categories, which is equivalent to the number of

channels of the semantic branch output feature map; D is the

convolution kernel weight, which is equivalent to the number

of channels of the mask kernel G. The input image is divided

into S × S grids, the total category is C, and the input space is

H × W × E before being sent to the semantic branch through

the feature pyramid, and aligned to S × S × E. After semantic

branch processing (multiple 3 × 3 convolutions), it is expanded

into an output space of S × S × C. It means that S × S C-

dimensional outputs are finally generated, and the semantic

category probability is predicted for each grid. Predict the size

and position of themask in themask branch, and take the output

feature map I of the feature pyramid as the input. Finally, the

mask kernel GǫRS×S×D and mask feature map FǫRH×W×E are

output after two branches of calculation and learning.

4. Experimental results and analysis

4.1. The setup of experiments

The software environment experimental platform is Ubuntu

18.04 LTS 64-bit system. Python 3.6 is selected for programming

language and Pytorch 1.1 is picked up as the deep learning

framework equipped with Intel
R©

Xeon(R)CPU E5-2683 V3

processor and NVIDIA GeForce GTX 1080Ti GPU, respectively.

The parameters of the CNNs were set as follows: Adam

optimizer was used to optimize the model, and the cross entropy

was used as the loss function. The batch size was 64, the number

of iterations was 100, the initial learning rate was 0.01, the

learning rate was reduced to 1/10 of the initial value if the loss

value of the validation set does not decrease after 10 epochs. To

minimize randomness during training, set random seeds to 100.

4.2. Loss function

The selection of the loss function is one of the important

links in the training process of the deep learning network

model. Choosing the correct loss function can provide a better

convergence direction and obtain better training results. The

current general loss function is the L2 loss function, and the

square of the Euclidean norm of the difference between the

minimized prediction result and the true value is used as the

convergence direction. The function definition is shown in

formula (6):

l2

(

⌢̄
y − y

)

=
∥

∥

∥

∥

⌢̄
y − y

∥

∥

∥

∥

2

2
(6)

From the formula, it can be found that when the difference

between the predicted value and the real value is large, the L2
loss function can rapidly decrease the gradient and improve the

convergence speed of the model. However, when the predicted

value is close to the real value, the convergence speed of the

L2 loss function will be greatly reduced, and the gradient

descent will be slow. Therefore, this paper adopts the BerHu loss

function, which can effectively combine the L1 loss function with

the L2 loss function to obtain better convergence. Its definition

is shown in formula (7):

B (x) =

{

|x| |x| ≤ c
x2+c2

2c |x| > c
(7)
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FIGURE 6

Improved DenseNet-169 network structure.

FIGURE 7

Improved SOLOv2 network structure.

The BerHu function takes c as the limit, and works

with the L2 loss function when it is greater than c to

ensure that the gradient decreases rapidly; When it is less

than c, it works with the L1 loss function to ensure that

when the predicted value is close to the real value, the

gradient of the model can also maintain a certain speed of

decline. This paper set c = kmaxi

(
∣

∣

∣

∣

⌢̄
y

∣

∣

∣

∣

− y

)

, and set k to

different values (0.1, 0.5, and 0.2) for testing. The test results

showed that when k = 0.2, the model obtained the best

output results.

4.3. Model training

In the experiment, the poultry heat stress data set

(PoultryHS) was used for training. And the training set,

validation set and test set were obtained by dividing them

according to the ratio of 7:2:1. All three used the same

classification, which was convenient to objectively measure

the model recognition ability. The loss curves of the model

on the training set and validation set were shown in

Figure 8.

The loss curve can intuitively reflect the dynamic process of

training, and can also reflect the convergence of the network

through the change of the loss value. Figure 1 showed the

variation trend of the loss function with the number of iterations

throughout the training process. After the model completed an

epoch training, the parameters of the model were adjusted using

the validation set. As the epoch increased, the Loss curve of the

model gradually decreased and tended to stabilize. Specifically,

during the first 9 epochs, the loss value dropped rapidly. Then

between 9 and 40 epochs, the rate of decline in the loss value

flattened out. Between 40 and 165 epochs, there was a small

fluctuation in the loss value. After 165 epochs, the fluctuation

of the loss value was further reduced, and the overall value had
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FIGURE 8

Loss curve of the model.

become stable, which meant that the network convergence effect

was good. At this point the training loss was 0.0871 and the

validation loss was 0.0881.

4.4. Detection e�ect

Since the farm environment in which the dataset was

collected was a non-open-air poultry house, external weather

factors had little influence on the test results. And the test did

not consider the situation of lights out at night, so there is

no night-time detection in the recognition results. As can be

seen from Figure 9, the FPN-DenseNet-SOLOmodel had a good

detection effect, not only could accurately segment hens from

complex environments, but also could accurately identify the

posture of hens. According to the different postures and standing

angles of hens, the algorithm could show high accuracy and

recognition rate, and could also effectively recognize hens with

less obvious characteristics.

4.5. Comparison of identification results
with classical CNN models

To further analyze the performance of the FPN-DenseNet-

SOLO model, the classic CNNs models (Mask R CNN, Faster

R CNN, SOLOv2) are compared with the improved models

under the same experimental conditions. Use the same training

set, validation set and test set to train and test different CNNs

models. Table 1 showed the comparison of the classification

results of different CNNs models on the test set for poultry

heat stress state. In the table, AP0.5 and AP0.75 represented

the AP indicators when the IoU threshold was 0.5 and 0.75,

respectively; mAP represented the average of AP corresponding

to the increase of the IoU threshold from 0.5 to 0.95 in steps

of 0.05.

Eachmodel trained to convergence was applied to the test set

for instance detection and segmentation of poultry heat stress,

and the final performance evaluation results were obtained as

shown in Table 1. From the table, it could be found that the

recall, AP0.5, AP0.75 and mAP of FPN-DenseNet-SOLO model

on the test set were higher than other networks. The recall

of FPN-DenseNet-SOLO was 0.954, which was 15%, 8.8% and

4.2% higher than the recall of Mask R CNN, Faster R CNN

and SOLOv2, respectively. Compared with the original SOLOv2

network, the model proposed in this paper outperformed in

various average precision (AP0.5, AP0.75, and mAP) metrics,

0.978, 0.934, and 0.909, respectively. Especially when the IoU

threshold was 0.75, the improvement effect was very obvious,

reaching 8.7%. In addition to evaluating the average accuracy of

FPN-DenseNet-SOLO, it is also necessary to consider the time

spent by the algorithm in the actual segmentation, that is, to

reduce the segmentation time while ensuring the accuracy. On

the same Graphics Processing Unit (GPU), Mask R CNN, Faster

R CNN, SOLOv2, and FPN-DenseNet- SOLO models had an

average segmentation time of 0.215, 0.179, 0.078, and 0.092 s

to recognize an image, respectively. SOLOv2 and improved

SOLOv2 were significantly faster in processing than the other

two models, and SOLOv2 model had the shortest split time.

FPN-DenseNet-SOLO was only 0.014s slower than SOLOv2, the

gap was almost negligible. Considering both average precision

and Testing time, the performance of FPN-DenseNet-SOLO is

better than SOLOv2. The above results show that the improved

method of SOLOv2 network is feasible, and the proposed model

can effectively detect the heat stress state of poultry, which

highlights the superiority of the model in the identification of

heat stress in poultry.

4.6. Ablation experiment

According to the comparative analysis of the identification

and classification results of different CNNs models on the

heat stress state of poultry on the test set, the FPN-DenseNet-

SOLO model has the best performance. Therefore, this paper

extracts the features of the improved model and analyzes the

influence of different backbone networks on the detection

results. Ablation experiments were performed on the proposed

model, and the results are shown in Table 2. When the ECA-Net

module and DropBlock regularization module were not added

to the DenseNet-169 network, the original model recognition

accuracy was 0.884. The introduction of the ECA-Net module

increased the recognition accuracy of the model to 0.905. This

shows that the depth and spatial information of the feature

map are combined, which can efficiently extract image feature

information, such as texture, edge and color, and suppress

the extraction of new questions in complex environments. As

the convolutional layers deepen, the visual information in the

feature map will be further reduced, increasing the amount
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FIGURE 9

Model segmentation e�ect. (A) Laying hens in normal state; (B) identification results; (C) laying hens in heat stress state; (D) identification results.

TABLE 1 Recognition results of di�erent CNNs models.

Model Recall AP0.5 AP0.75 mAP Testing time (s)

Mask R CNN 0.804 0.828 0.539 0.641 0.215

Faster R CNN 0.866 0.873 0.646 0.713 0.179

SOLOv2 0.912 0.936 0.847 0.792 0.078

FPN-DenseNet- SOLO 0.954 0.978 0.934 0.909 0.092

of abstract information. The addition of the ECA-Net module

effectively improves the accuracy of the identification and

classification of poultry heat stress in complex poultry house

environments. The model recognition accuracy after using

the DropBlock regularization module is 91.8%. The function

object of this module is the entire space block. By randomly

hiding some feature blocks of poultry images, some continuous

semantic information on the feature map is deleted. In addition,

some independent units can also be randomly discarded, but

the deletion of relevant semantic information is not complete,

and the corresponding feature information can still be passed

to the subsequent network layers. Therefore, the addition of

DropBlock regularization can improve the generalization ability

of the model. Faced with poultry with different postures and

feathers, it can effectively enhance the adaptability of model

recognition. After the introduction of ECA-Net and DropBlock

TABLE 2 Results of ablation experiments.

ECA-Net DropBlock mAP Recall

– – 0.884 0.915

√
– 0.905 0.932

–
√

0.897 0.928

√ √
0.919 0.954

regularization module improvement, the new model has a

recognition accuracy of 0.919 for heat stress in poultry, which

is 3.5% higher than the original model. The experimental

results show that the addition of ECA-Net and DropBlock

regularization module can better extract image features of

poultry heat stress.
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4.7. Limitations

Compared with the original SOLOv2 model, the detection

performance and detection time of FPN-DenseNet-SOLO have

been greatly improved. The model inference speed ensures the

feasibility of real-time detection, and accurate judgment can

be made even when the complex environmental factors of the

poultry house are greatly affected.

Nevertheless, as the FPN-DenseNet- SOLO model was

applied to edge computing and cloud computing, the size of

the model was large, which was not easy to be used in mobile

platforms or embedded development platforms. As a result, the

application scope of the model was limited and the degree of

portability was not high. In future research, we will focus on

reducing the size of the model without losing the accuracy of

model recognition, so that it can be applied to mobile platforms

and embedded development platforms to make the model more

widely applicable.

5. Conclusion

To achieve accurate and rapid identification of poultry heat

stress state, this paper proposes a poultry heat stress detection

algorithm based on FPN-DenseNet-SOLO. The conclusions are

as follows.

(1) In the complex background, the recall, AP0.5, AP0.75
and mean Average Precision of the FPN-DenseNet-SOLO

model on the test set were higher than other networks. The

recall of this model was 0.954, which was 15, 8.8, and 4.2%

higher than the recall of Mask R CNN, Faster R CNN, and

SOLOv2, respectively.

(2) DenseNet-169 was optimized by introducing ECA

and DropBlock regularization, which strengthened the

extraction of poultry heat stress features, improved the

recognition accuracy and the generalization ability of

the network. Taking the SOLOv2 model as the main

framework, the optimized DenseNet-169 was used as the

backbone network to fuse FPN, and instances were detected

and segmented on the semantic branch and mask branch.

(3) The FPN-DenseNet-SOLO model solved the problem of

gradient disappearance, enhanced the anti-fitting ability,

improved the accuracy of the model, and provided

technical support for monitoring the heat stress state of

poultry in actual production.
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