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Objective: Sympathetic remodeling after myocardial infarction (MI) is the

primary cause of ventricular arrhythmias (VAs), leading to sudden cardiac

death (SCD). M1-type macrophages are closely associated with inflammation

and sympathetic remodeling after MI. Long noncoding RNAs (lncRNAs) are

critical for the regulation of cardiovascular disease development. Therefore,

this study aimed to identify the lncRNAs involved in MI and reveal a possible

regulatory mechanism.

Methods and results: M0- and M1-type macrophages were selected

for sequencing and screened for di�erentially expressed lncRNAs. The

data revealed that lncRNA LOC100911717 was upregulated in M1-type

macrophages but not in M0-type macrophages. In addition, the lncRNA

LOC100911717 was upregulated in heart tissues after MI. Furthermore, an

RNA pull-down assay revealed that lncRNA LOC100911717 could interact

with growth-associated protein 43 (GAP43). Essentially, immunofluorescence

assays and programmed electrical stimulation demonstrated that GAP43

expression was suppressed and VA incidence was reduced after lncRNA

LOC100911717 knockdown in rat hearts using an adeno-associated virus.

Conclusions: We observed a novel relationship between lncRNA

LOC100911717 and GAP43. After MI, lncRNA LOC100911717 was upregulated

and GAP43 expression was enhanced, thus increasing the extent of

sympathetic remodeling and the frequency of VA events. Consequently,

silencing lncRNA LOC100911717 could reduce sympathetic remodeling

and VAs.
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1. Introduction

Ventricular arrhythmia (VA) is a common cause of

sudden cardiac death after myocardial infarction (MI) (1).

MI, a major cardiovascular disease (CVD), can lead to many

complications, such as heart failure, cardiac fibrosis, sympathetic

activation, and sympathetic remodeling. Studies revealed that

gene mutations, epigenetic modifications, including DNA

methylation, and other regulatory mechanisms are involved

in the occurrence and development of post-MI complications

(2–7). A cardiac sympathetic imbalance caused by post-MI

sympathetic remodeling is a primary cause of VAs (8–10).

Therefore, it is essential to reduce sympathetic remodeling after

MI to improve patient prognosis.

A growing body of evidence suggests that sympathetic

remodeling after MI is closely associated with inflammation

(11–13) and mainly occurs at the periphery of the infarction,

where inflammatory cells gather and regulate nerve remodeling

by secreting nerve growth factor (NGF). Previous studies

revealed that M1 macrophages can promote inflammation and

play an important role in regulating sympathetic remodeling

(14–17). According to a previous report, inhibition of M1

macrophage function could decrease NGF synthesis and

improve sympathetic remodeling (18). This evidence reveals that

M1 macrophages play a crucial role in sympathetic remodeling.

Long noncoding RNAs (lncRNAs) are longer than 200

nucleotides, cannot encode proteins, and play important roles

in regulating apoptosis, proliferation, and migration (19–

23). Furthermore, increasing evidence revealed that lncRNAs

regulate macrophage polarization (24–26) and the occurrence

and development of CVDs (27–30). Therefore, this study aimed

to identify lncRNAs expressed in macrophages and involved in

MI and determine possible regulatory mechanisms for lncRNAs

in MI.

2. Materials and methods

2.1. RNA sequencing

RNA sequencing (RNA-seq) of lipopolysaccharide (LPS)-

and interferon-gamma (IFN-γ)-stimulated RAW 264.7 and

control cells was performed using the Illumina NovaSeq 6000

platform (Illumina, USA) to identify lncRNAs with different

expression levels in M1 and M0 macrophages. Total RNA

was extracted using the TRIzol reagent (Invitrogen, USA).

RNA integrity was assessed using an Agilent Bioanalyzer 2100

(Agilent Technologies, Inc., USA). Strand-specific libraries

were constructed using the VAHTS total RNA-seq (H/M/R)

library prep kit (NR306-01; Vazyme, China) according to the

manufacturer’s instructions, and StringTie was used to count

the fragments within each gene (31). Finally, a differential

expression analysis of mRNAs and lncRNAs was performed

using the edgeR package of R.

2.2. Gene ontology (GO) and kyoto
encyclopedia of genes and genomes
(KEGG) enrichment analyses of mRNA
targets of lncRNAs

The potential functions of mRNA targets of lncRNAs were

explored using the OmicShare tools (https://www.omicshare.

com/tools). The mouse genome was a background reference to

the GO and KEGG enrichment analyses of the mRNA targets of

lncRNAs. We identified the GO terms, including the biological

process (BP), molecular function (MF), and cellular component

(CC) (P < 0.05), and the top 20 KEGG pathways (P < 0.05).

2.3. Homologous gene analyses

The UCSC LiftOver tool was used to analyze the lncRNA

homologous regions in the rat genome, with the mouse genome

as a background reference. The bedtools getfasta method was

used to determine the lncRNA sequences in rats according to

the homologous regions.

2.4. Cell culture and stimulation

RAW 264.7 cells were cultured in Dulbecco’s modified

Eagle’s medium (Gibco, USA) supplemented with 10% fetal

bovine serum (FBS; Gibco, USA) and NR8383 cells were

cultured in Ham’s F-12K medium (BasalMedia, China)

supplemented with 20% FBS. Both cell lines were cultured at

37◦C under a 5% CO2 atmosphere and stimulated as previously

described (18) with LPS (10µg/ml) and IFN-γ (20 ng/ml)

for 12 h. Subsequently, the cells were collected for reverse

transcription–polymerase chain reaction (RT-PCR) analysis.

2.5. Animals

Male Sprague–Dawley rats (7–8 weeks old; Vital River

Company; Beijing, China) with an average weight of 270 g were

used in this study. All the rats were housed in standard rat cages

supplied with water and food ad libitum with a 12-h light/dark

cycle at room temperature. All animal experiments followed

the guidelines of the Animal Care and Use Committee of the

First Affiliated Hospital of Shandong First Medical University

(Approval number: No. 2020-S359).
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2.6. MI model

All the rats were anesthetized using intraperitoneal injection

of sodium pentobarbital (CSA: 76-74-4, 3%, 30 mg/kg) and were

subjected to tracheal intubation. The hearts of the rats were

exposed by cutting through the third and fourth ribs of the

left thorax. The rat MI model was constructed by ligating the

left anterior descending (LAD) branch of the coronary artery

between the pulmonary artery cone and the left auricle, with a

ligature 2–3mm below the lower edge of the left auricle(32). The

rat electrocardiogram (ECG) showed an ST-segment elevation,

with the left anterior wall of the heart that turned pale, reduced

motility (Supplementary Figure S1A), and a blotchy and pale

appearance in the infarct areas (Supplementary Figure S1B),

demonstrating the successful construction of the MI model.

In addition, Masson staining was used to evaluate MI severity

(Supplementary Figure S1C). The same operation was used in

the sham group, but with only threading without ligation. After

thorax closure, the rats were placed on a warming pad at 37◦C

and in a cage after regaining consciousness.

2.7. Adeno-associated virus infection in
rats

All the rats were anesthetized using sodium pentobarbital

as described previously. Then, tail vein adeno-associated virus

(AAV) injections (1.5 × 1013 particles) were administered

using an AAV with shlncRNA LOC100911717 or a control

virus (AAV with shCtrl). The rats were divided into lncRNA

LOC100911117 knockdown and control groups depending

on the injected virus. The following three RNAi sequences

targeting lncRNA LOC100911717 were used to ensure the gene

silencing efficiency: GCTGCTGTCAGGGTGACATCT,

GCTCCACGTCGGAATGCTAAG, and

GCACCGCCCTCTGCATCCTTC, and the shCtrl sequence was

TTCTCCGAACGTGTCACGT. The AAVs were constructed

by Genomeditech (Shanghai, China) and they expressed the

enhanced green fluorescent protein (eGFP) after 2 weeks.

Thus, eGFP expression in the collected heart tissues indicated

successful AAV transfection (Supplementary Figure S2A).

Furthermore, RT-PCR was performed to verify the virus

function (Supplementary Figure S2B).

2.8. Experimental design

2.8.1. Protocol 1

Thirty rats that survived after the cardiac surgery were

divided into three groups (n = 10 each) according to whether

the LAD branch was ligated or not and depending on the time

when the rats were sacrificed: (a) sham group; (b) MI 3d, 3 days

after MI; and (c) MI 7d, seven days after MI. Total RNA was

extracted from the heart tissue, and the lncRNA expression levels

were detected using RT-PCR.

2.8.2. Protocol 2

The rats were subjected to cardiac surgery 2 weeks after

the AAV injection. The surviving rats were divided into four

groups according to the type of surgery and the injected virus:

(a) sham+ shCtrl, sham-operated+ AAV with shCtrl (n= 18);

(b) sham + shlncRNA, sham-operated + AAV with shlncRNA

LOC100911717 (n= 22); (c)MI+ shCtrl, MI+AAVwith shCtrl

(n = 20); and (d) MI + shlncRNA, MI + AAV with shlncRNA

LOC100911717 (n= 18).

2.9. Tissue collection

The rats were sacrificed seven days postoperatively by

injecting an overdose of 3% sodium pentobarbital, and 2mm

of myocardial tissue around the MI region of the left

ventricle was collected. Heart tissues were either stored at

−80 ◦C for further biochemical analysis or embedded in an

optimal cutting temperature compound (OCT) and frozen

for immunofluorescence.

2.10. RT-PCR

Total RNA was isolated using the TRIzol reagent and

reverse transcription was performed using a PrimeScriptTM RT

kit (R323-01; Vazyme, China). Relative RNA expression levels

were determined using a Bio-Rad iQ5 multicolor real-time

PCR system (Bio-Rad Laboratories, USA) with SYBR Green

(Q711; Vazyme, China). The 2−11Ct method was used to

calculate the relative targeted gene expression. Normalization

was performed with GAPDH. The primer sequences are listed

in Supplementary Table 1.

2.11. RNA pull-down assay

The RNA pull-down assay was performed using a GenSeq R©

RNA Pull-Down Kit (GenSeq Inc., China), according to

the manufacturer’s instructions. A biotin-labeled “positive

probe” or a “negative control probe,” whose sequence was

reverse complementary to the positive probe, was mixed with

streptavidin magnetic beads at room temperature for 30min.

Next, the probe-bound beads were incubated with the protein

extracts of the samples at 4◦C for 1 h and the bound proteins

were recovered with an elution buffer. Finally, the retrieved

proteins were separated via liquid chromatography using an

Easy nLC 1000 system (ThermoFisher, USA) and analyzed using

a Q-Exactive Orbitrapmass spectrometer (ThermoFisher, USA).
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The mass spectra were analyzed using the MaxQuant software

(version 1.5.2.8).

2.12. Programmed electrical stimulation

Programmed electrical stimulation was performed in rats

to determine their susceptibility to VAs. First, the rats were

anesthetized with sodium pentobarbital, and then their hearts

were exposed. Next, electrodes were placed on the left

ventricular surface and the signals were recorded using an

animal biofunctional experiment system. According to our

previous study (33), the electrical stimulation procedure was

performed with a cycle length of 120ms with eight pacing beats

(S0), followed by one to three additional stimulations (S1–S3).

The stimulation was terminated when VAs were induced or

when an effective refractory period occurred. The arrhythmia

scores were calculated as previously described (32).

2.13. Heart rate variability (HRV)
measurement

Rats were connected to an ECG machine, and the data were

continually recorded using a PowerLab physiology system; 30-

min ECG recordings were selected to analyze the HRV using

the LabChart Pro software (AD Instruments). A low frequency

(LF: 0.05–0.75Hz) indicates parasympathetic and sympathetic

tones, while a high frequency (HF: 0.75–2.5Hz) indicates a

parasympathetic tone. An LF/HF ratio increase indicated a

cardiac sympathetic imbalance (34, 35).

2.14. Western blotting

Proteins were extracted from the heart tissue, and the

concentrations were measured using a BCA protein colorimetric

assay kit (E-BC-K165-M; Elabscience, China). The protein

samples were separated on 12.5% SDS polyacrylamide gels

and transferred onto polyvinylidene difluoride membranes

(IPVH00010; Millipore, MA, USA). The membranes were

blocked for 1 h in 5% non-fat milk diluted in TBS and

then incubated with rabbit polyclonal anti-growth-associated

protein 43 (GAP43) (GTX127937; GeneTex, 1:5,000) and rabbit

monoclonal GAPDH (5174; Cell Signaling Technology, 1:1,000)

primary antibodies overnight at 4◦C and subsequently with a

goat anti-rabbit IgG-HRP (abs20040; Absin, 1:5,000) secondary

antibody for 1 h at room temperature. Protein bands were

detected using an ECL chromogenic substrate (WBKLS0500,

Millipore, USA) and analyzed using a chemiluminescence

apparatus (Bio-Rad, USA).

2.15. Immunohistochemistry

Heart tissue was collected, embedded in paraffin, and cut

into 5-µm sections. The tissue slices were incubated with a

rabbit polyclonal anti-CD68 antibody (GB113109; Servicebio,

China, 1:400) at 4◦C overnight, followed by incubation with a

goat anti-rabbit HRP-conjugated antibody (G1213; Servicebio,

China, 1:200) for 1 h at room temperature. Finally, the slices

were incubated with a DAB chromogenic kit (G1212; Servicebio,

China) and counterstained with hematoxylin. The number of

positive cells was observed under a microscope and calculated

using the ImageJ software (version 1.8), and the mean was

recorded for subsequent analysis.

2.16. Immunofluorescence staining

Heart tissue was cut into 7-µm-thick sections and fixed with

acetone at 4◦C for 10min. Next, the sections were incubated

with rabbit polyclonal anti-GAP43 (GTX127937; GeneTex,

1:200) and sheep polyclonal anti-tyrosine hydroxylase (TH)

(AB1542; Millipore, 1:400) primary antibodies overnight at 4◦C

followed by incubation with Alexa 488-conjugated donkey anti-

sheep (A-11015; Invitrogen, 1:400) and Alexa 594-conjugated

donkey anti-rabbit (A-21207; Invitrogen, 1:400) secondary

antibodies for 2 h at room temperature. Then, the cell nuclei

were stained with DAPI (ab104139; Abcam, UK). Finally, the

sections were blocked with an anti-fluorescence quencher. The

areas of GAP43 and TH expressions were calculated using the

ImageJ software (version 1.8).

2.17. Masson staining

Heart tissue was collected along the cross-section of the left

ventricular infarction zone, embedded in paraffin, cut into 5-µm

sections, and stained with aMasson’s trichrome stain kit (G1346;

Solarbio, Beijing, China) according to the manufacturer’s

instructions (Supplementary Figure S3). The infarct size was

then calculated using the ImageJ software (version 1.8).

2.18. TUNEL staining

TUNEL staining was performed to assess the degree of

myocardial apoptosis. Heart tissues were embedded in paraffin,

cut into 5-µm sections, and stained using a DAB (SA-HRP)

TUNEL cell apoptosis detection kit (G1507; Servicebio, China)

according to the manufacturer’s protocol. The proportion of

the positive cells was calculated using the ImageJ software

(version 1.8).
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FIGURE 1

Di�erentially expressed lncRNAs and mRNAs in M0-type macrophages and M1-type macrophages. (A) lncRNAs Heat map. M0-type

macrophages (M0-1, M0-2, and M0-3) and M1-type macrophages (M1-1, M1-2, and M1-3). (B) lncRNA Volcano plot. (C) mRNA Heat map.

M0-type macrophages (M0-1, M0-2, and M0-3) and M1-type macrophages (M1-1, M1-2, and M1-3). (D) mRNA Volcano plot. Green or blue

points represent upregulated or downregulated lncRNAs/mRNAs (log2 FC>1 and P < 0.05 and log2 FC<−1 and P < 0.05) and red indicates no

significant di�erence.

2.19. Hematoxylin-eosin (HE) staining

The histopathological examination of heart tissues was

performed using HE staining. Heart samples were put in a

10% formaldehyde solution, dehydrated in an ethanol gradient,

embedded in paraffin, and cut into 4-µm sections. After

deparaffinization, the sections were stained with hematoxylin

(G1005-1; Servicebio, China) and eosin (G1005-2; Servicebio,

China) and then mounted and observed under a microscope

(Olympus, Japan).
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FIGURE 2

GO and KEGG enrichment of lncRNA target mRNAs. (A) The bar plot shows the top 20 GO enrichment results of lncRNA target mRNAs in MFs.

(B) The bar plot shows the top 20 KEGG enrichment results of lncRNA target mRNAs.

2.20. 2,3,5-Triphenyltetrazolium chloride
(TTC) staining

Heart tissues were cut into 2 mm-thick sections and

incubated with 2% TTC (G3005; Solarbio, Beijing, China) at

37◦C for 30min. After TTC staining, the surviving myocardia

were red, and the infarct area was white. The infarct size was

calculated using the ImageJ software (version 1.8).

2.21. Measurement of cardiac function by
echocardiography

Measurements were performed on rats using

an echocardiography machine (Fujifilm Vevo 3100,

Japan). The left ventricular ejection fraction (EF%)

and fractional shortening (FS%) were calculated

using the M-model recording of the parasternal

long-axis view.

2.22. Statistical analysis

Data were analyzed using the edgeR, heatmap,

and ggplot2 packages in R and GraphPad Prism and

expressed as mean±standard deviation. An unpaired

Student’s t-test compared differences between both

groups. In addition, analysis of variance (ANOVA)

compared more than two groups followed by Tukey’s

test. Statistical significance was set at a P-value

of <0.05.

3. Results

3.1. Identification of di�erent lncRNA and
mRNA expression profiles

Differences in the lncRNA and mRNA expression profiles

were detected between M0- and M1-type macrophages

using whole-transcriptome sequencing. According to the

expression profiles, 5,794 lncRNAs (2,918 upregulated and

2,876 downregulated) and 11,401 mRNAs (6,083 upregulated

and 5,318 downregulated) were differentially expressed

(log2 FC>1 and P < 0.05 and log2 FC<−1 and P < 0.05).

Figures 1A, B present the lncRNA heatmap and volcano

plots and Figures 1C, D illustrate the mRNA heatmap and

volcano plots.

3.2. GO and KEGG enrichment analyses
of target mRNAs of upregulated lncRNAs

According to the genomic locations of lncRNAs, their

lengths and expression profiles were obtained. In total,
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TABLE 1 Di�erent expression levels of lncRNAs in macrophages.

lncRNA ID AveExp log2FC Q-value

NONMMUT042032.2 4.26831713 7.143943624 <0.000001

NONMMUT147304.1 1.066735589 5.747978423 0.001879

ENSMUST00000181915 1.284953978 5.464138197 <0.000001

NONMMUT035084.2 3.500736986 4.463792591 <0.000001

ENSMUST00000181460 1.858593443 4.284292215 <0.000001

NONMMUT028804.2 1.851182601 3.999796624 0.000791

NONMMUT113494.1 3.060769578 3.779887996 0.000386

NONMMUT043538.2 3.51628241 3.446744258 0.000009

NONMMUT011901.2 2.492471252 3.367476373 0.000213

NONMMUT152633.1 2.655573976 2.998264175 0.000074

40 upregulated lncRNAs and their target mRNAs were

screened (Supplementary Table 2). In addition, GO and

KEGG enrichment analyses were performed to explore the

potential functions of the target mRNAs of the upregulated

lncRNAs. The GO enrichment analysis revealed that the

target mRNAs of the lncRNAs were mainly enriched in

the protein tyrosine/threonine phosphatase activity in

the MF category (Figure 2A). The enrichment of KEGG

pathways, including three inflammation-related pathways

(the MAPK, JAK/STAT, and IL-17 signaling pathways), is

illustrated in Figure 2B and the 10 lncRNAs are presented in

Table 1.

3.3. Upregulation of lncRNA Ptgs2os in
M1-type macrophages and homologous
gene analysis

Based on the expression profiles of lncRNAs from whole

transcriptome sequencing and bioinformatics analysis,

RT-PCR verified the expression levels of lncRNAs in M0-

and M1-type macrophages. We observed that lncRNA

Ptgs2os (Gene ID: ENSMUST00000181460) was highly

expressed in M1-type macrophages (Figure 3A). According

to a previous report, rat MI models mimic human MI

better than mice MI models. They can easily reproduce

the VA incidence (36). Therefore, upon homologous gene

analysis from mice to rats, the lncRNA LOC100911717

is a homologous gene of lncRNA Ptgs2os in rats with

86.25% (389/451) alignment to the nucleotide sequence

(Figure 3B). In addition, RT-PCR confirmed that lncRNA

LOC100911717 was upregulated in rat M1-type macrophages

(Figure 3C).

3.4. Increases in myocardial apoptosis,
inflammation degree, and lncRNA
LOC100911717 expression levels in rat
hearts after MI

The percentage of TUNEL-positive cells and the

number of CD68-positive macrophages in the MI and

sham groups indicated the degrees of myocardial apoptosis

and inflammation, respectively. The comparison of the

MI and sham groups revealed that myocardial apoptosis

and inflammation levels significantly increased in the

infarcted border after MI (Figures 4A–D). The RT-PCR

results revealed that the lncRNA LOC100911717 expression

levels increased at 3 days and remained elevated at seven

days post-MI compared with those in the sham group

(Figure 4E).

3.5. Silencing of lncRNA LOC100911717
reduced GAP43 expression

MI rat heart tissue was used for lncRNA LOC100911717

pull-down experiments. Mass spectrometry proteomics

validated the pulled-down proteins. GAP43 was the first

protein related to sympathetic remodeling among the top 10

proteins of the pull-down assay result (Supplementary Table 3).

In addition, western blotting revealed that GAP43 was

downregulated in the sham + shlncRNA group, while its

level was significantly higher in the MI + shCtrl group than

in the sham + shCtrl group and was reduced in the MI +

shlncRNA group (Figures 5A, B). Meanwhile, silencing lncRNA

LOC100911717 decreased Gap43mRNA expression in the sham

+ shlncRNA group compared with that in the sham + shCtrl

group (Figure 5C).

3.6. Silencing of lncRNA LOC100911717
reduced sympathetic remodeling and
decreased the susceptibility of rats to VAs
post-MI

In rat hearts, the sympathetic nerve density and morphology

were assessed using immunofluorescence staining to further

explore whether lncRNA LOC100911717 silencing participates

in sympathetic sprouting and remodeling after MI. The density

of GAP43 was significantly higher in the MI+shCtrl group

than in the sham+shCtrl group, while it was reduced in the

MI+shlncRNA (Figures 6A, B). Similarly, the density of TH was

significantly reduced in the MI + shlncRNA group in which

the lncRNA LOC100911717 was knocked down (Figures 6C, D).

Furthermore, programmed electrical stimulation, which was

performed to determine the susceptibility of rats to VAs, showed
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FIGURE 3

Comparison of lncRNA expression between the M0- and M1-type macrophages or between the sham group and the MI group and nucleotide

sequence alignment. (A) Comparison of lncRNA expression between M0- and M1-type macrophages. (B) lncRNA LOC100911717 and lncRNA

Ptgs2os nucleotide sequence alignment. (C) Comparison of lncRNA LOC100911717 expression between M0- and M1-type macrophages. *A

P-value of <0.05 compared with M0-type macrophages.

FIGURE 4

(A) Representative image of TUNEL staining of heart tissues, the amount of which reflects the degree of myocardial apoptosis. The apoptotic

cells were stained brown and the neuron was stained blue (100HFP), bar = 100 µm. (B) Representative image of immunohistochemical staining

for macrophage marker CD68 (brown) and nuclei (blue) (100HFP), bar = 100 µm. (C) The percentage of apoptotic cells at the infarcted border

zone. **A P-value of <0.01 compared with the sham group. (D) Quantification of infiltrated macrophages at the infarcted border zone. **A

P-value of <0.01 compared with the sham group. (E) Comparison of lncRNA LOC100911717 expression between the sham and MI7d groups. n

= 3 per group. **A P-value of <0.01 compared with the sham group.

significantly higher arrhythmia scores in the MI + shCtrl group

than in the sham groups. Meanwhile, the arrhythmia scores were

significantly lower in the MI + shlncRNA group than in the MI

+ shCtrl group (Figures 6E–G). In addition, compared with the

MI+shCtrl group, theMI+shlncRNA group had downregulated

the LF/HF ratio (Figures 6H, I).
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FIGURE 5

LncRNA LOC100911717 silencing inhibits GAP43 expression after MI. (A) Representative picture of the protein bands of MI myocardium from the

four groups, sham+shCtrl, sham+shlncRNA, MI+ shCtrl, and MI+ shlncRNA; n = 4 per group. (B) Normalized GAP43 compared with GAPDH.

**A P-value of <0.01 compared with the sham+shCtrl group and #A P-value of <0.05 compared with the MI+ shCtrl group. (C) Comparison of

GAP43 mRNA expression between the sham+shCtrl and sham+shlncRNA groups. n = 3 per group. **P < 0.01 compared with the sham group.

3.7. Silencing of lncRNA LOC100911717
reduced the infarcted heart area and
improved cardiac function post-MI

The MI size and cardiac function were also analyzed to

determine the consequent effect of lncRNA LOC100911717

(Figures 7A–D). The infarct size in the MI + shlncRNA group

was reduced compared to that in the MI + shCtrl group

(Figures 7A, B). The echocardiography data revealed reduced

EF% and FS% in the MI + shCtrl group vs. the sham +

shCtrl group and the MI + shlncRNA group vs. the sham

+ shlncRNA group; however, the lncRNA LOC100911717

knockdown rescued EF% and FS% (Figures 7A, C, D). HE

staining showed deformed nuclei and clear damage to the

myocardium in the MI + shCtrl group. By contrast, these

pathological changes were markedly improved in the MI +

shlncRNA group (Figure 7E). Moreover, the percentage of

apoptotic cells and the number of CD68-positive macrophages

were higher in the MI+ shCtrl group than in the sham+ shCtrl

group, and these increases were significantly attenuated by the

lncRNA LOC100911717 knockdown (Figures 7F–I).

4. Discussion

Sympathetic remodeling is one of the most important

causes of VAs after MI (37, 38). Therefore, it is important

to explore the factors influencing sympathetic remodeling

to reduce VA incidence and improve the prognosis of

patients with MI. This study used bioinformatics analysis to

screen for upregulated lncRNAs and explore their regulatory

mechanisms in MI. Consequently, a new possible mechanism

of lncRNA involvement in sympathetic remodeling after MI

may have been found. The specific results of this study are as

follows: (a) lncRNA LOC100911717 was upregulated in M1-

type macrophages and in the infarct border zone after MI

in rats; (b) the lncRNA LOC100911717 knockdown reduced
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FIGURE 6

lncRNA LOC100911717 silencing reduces sympathetic remodeling after MI. (A–C) Immunofluorescence staining of GAP43 and TH in the MI

border region (magnification 200×). (a) Sham+shCtrl, (b) sham+shlncRNA, (c) MI+ shCtrl, and (d) MI+ shlncRNA, bar = 50 µm. (B–D) Fraction

(%) of nerve density area, n = 5 per group. (E–F) Normal electrocardiographic recordings and typical inducible VAs. (G) Arrhythmia scores from

the four groups, sham+shCtrl, sham+shlncRNA, MI+ shCtrl, and MI+ shlncRNA; n = 6 per group. (H–I) Are statistical plots of the HRV analysis

for each group of rats. *A P-value of <0.05 compared with the sham group, **A P-value of <0.01 compared with the sham group, #A P-value of

<0.05 compared with the MI+ shCtrl group.

GAP43 expression; (c) the lncRNA LOC100911717 knockdown

decreased sympathetic remodeling and reduced the incidence of

VAs; and (d) the lncRNA LOC100911717 knockdown reduced

the infarcted heart area and improved post-MI cardiac function.

As a recognized neurogenesis marker, GAP43 is expressed

during neuronal development and synaptogenesis. It plays

a crucial role in axonal outgrowth and synaptic plasticity

(39, 40). For instance, GAP43 expression can be elevated via

the activation of the geniposidic acid PI3K/AKT pathway.

It can improve nerve injury (41). In addition, a recent

study demonstrated that GAP43 affects cancer development

(42, 43). Carvedilol, a nonselective β-blocker, can suppress

GAP43 expression and ameliorate sympathetic nerve sprouting

and electrical remodeling after MI (44). The AAV-shlncRNA

construct had an effect similar to that of carvedilol. As a

novel diagnostic and therapeutic strategy, nanomaterial-based

technology can be used for drug delivery (45). Therefore, the

conjugation of lncRNA-silencing elements with nanoparticle

drug carriers may lead to macrophage-targeting nanodrug

development and contribute to new therapies. It is becoming

increasingly clear that lncRNAs function through various

mechanisms during the onset and progression of CVDs, such

as MI and arrhythmia, cardiac remodeling, and heart failure

(46–48). However, the potential molecular mechanism has not

been cleared. This study utilized bioinformatics and molecular

biology methods to explore and verify the biological functions

of the lncRNA LOC100911717 and identified a new mechanism

of lncRNAs as drivers of CVD development.

The data of this study indicated that the lncRNA

LCO100911717 was upregulated after MI and could affect

GAP43 expression. However, the lncRNA LOC100911717

knockdown suppressed GAP43 expression and sympathetic
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FIGURE 7

lncRNA LOC100911717 silencing improves cardiac function post-MI. (A) TTC staining, Masson staining, and parasternal long axis view of M-type

echo of rat heart in the sham+shCtrl, sham+shlncRNA, MI+ shCtrl, and MI+ shlncRNA groups. (B) Comparisons of the infarcted area in the MI+

shCtrl and MI+ shlncRNA groups, n = 3 per group. (C, D) Comparisons of the left ventricular EF and left ventricular FS between the four groups,

(Continued)
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FIGURE 7 (Continued)

n = 3 per group. (E) The HE staining results showed that inhibition of the lncRNA LOC100911717 relieved heart tissue damage (100HFP), bar =

100 µm. (F) Representative image of TUNEL staining of heart tissue, the amount of which reflects the degree of myocardial apoptosis. The

apoptotic cells were stained brown and the neuronal cells were stained blue (100HFP), bar = 50 µm. (G) Representative image of the

immunohistochemical staining for macrophage marker CD68 (brown) and nuclei (blue) (100HFP), bar = 50 µm. (H) The percentage of apoptotic

cells at the infarcted border zone between the four groups, n = 3 per group. (I) Quantification of infiltrated macrophages at the infarcted border

zone between the four groups, n = 3 per group. *P < 0.05 compared with the sham group and #P < 0.05 compared with the MI+ shCtrl group.

FIGURE 8

Graphical representation of lncRNA LOC100911717 functions in sympathetic remodeling after MI.

remodeling. These findings are significant because the lncRNA

LOC100911717 knockdown decreased the susceptibility of rats

to VAs, which is beneficial for MI prognosis. However, rescue

experiments with GAP43 overexpression are needed to confirm

the effect of lncRNA LOC100911717 on GAP43-mediated post-

MI sympathetic remodeling. Furthermore, the pull-down mass

spectrometry proteomics results showed that many proteins

interacted with lncRNA LOC100911717. Hence, other proteins

cannot be excluded as intermediate molecules participating in

post-MI sympathetic remodeling. Therefore, future studies are

needed to explore the detailed mechanism of GAP43 regulation

and other biological functions of lncRNA LOC100911717.

4.1. Outlook

To the best of our knowledge, this is the first study

to report that lncRNA LOC100911717 interacts with GAP43

and increases sympathetic remodeling after MI. In addition,

this study identified a mechanism through which lncRNAs

regulated post-MI sympathetic remodeling, thus improving the

understanding of the pathogenesis of sympathetic remodeling.

In this study, only interactions between lncRNA LOC100911717

and GAP43 were verified; consequently, the participation of

other molecules should be explored in future studies.

4.2. Limitations

This study’s data were obtained in animal models, and

there may be human differences. Hence, these data should

be cautiously extrapolated to humans. In addition, a tail vein

injection of AAV-shlncRNA caused lncRNA LOC100911717

silencing inmany types of rat tissues, not only in the heart, which

may have led to a bias in the results.

5. Conclusion

This study demonstrated that lncRNA LOC100911717 was

upregulated and enhanced GAP43 levels post-MI expression,

thereby increasing post-MI sympathetic remodeling and the

incidence of VA events (Figure 8). Conversely, silencing the

lncRNA LOC100911717 reduced sympathetic remodeling and

the incidence of VAs. These results pave the way for

further studies investigating lncRNAs that drive sympathetic

remodeling after MI.
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