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Osteosarcoma is a commonmalignant bone tumor in children and adolescents. The
overall survival of osteosarcoma patients is remarkably poor. Herein, we sought to
establish a reliable risk prognostic model to predict the prognosis of osteosarcoma
patients. Patients ’ RNA expression and corresponding clinical data were downloaded
from the Therapeutically Applicable Research to Generate Effective Treatments
(TARGET) and Gene Expression Omnibus databases. A consensus clustering was
conducted to uncover novel molecular subgroups based on 200 hypoxia-linked
genes. A hypoxia-risk models were established by Cox regression analysis coupled
with LASSO regression. Functional enrichment analysis, including Gene Ontology
annotation and KEGGpathway analysis, were conducted to determine the associated
mechanisms. Moreover, we explored relationships between the risk scores and age,
gender, tumor microenvironment, and drug sensitivity by correlation analysis. We
identified two molecular subgroups with significantly different survival rates and
developed a risk model based on 12 genes. Survival analysis indicated that the high-
risk osteosarcoma patients likely have a poor prognosis. The area under the curve
(AUC) value showed the validity of our risk scoring model, and the nomogram
indicates themodel’s reliability. High-risk patients had lower Tfh cell infiltration and a
lower stromal score. We determined the abnormal expression of three prognostic
genes in osteosarcoma cells. Sunitinib can promote osteosarcoma cell apoptosis
with down-regulation of KCNJ3 expression. In summary, the constructed hypoxia-
related risk score model can assist clinicians during clinical practice for
osteosarcoma prognosis management. Immune and drug sensitivity analysis can
provide essential insights into subsequent mechanisms. KCNJ3 may be a valuable
prognostic marker for osteosarcoma development.
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Introduction

Osteosarcoma is widely acknowledged as the most common primary bone tumor, especially
in adolescents (.8–1.1 per 100,000 per year at age 15–19 years) (Whelan et al., 2012; Valery et al.,
2015). Osteosarcoma tends to occur in the metaphysis of long bones, with a high metastasis and
recurrence rate. It is well-established that the lungs represent the most common metastatic site,
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posing a severe threat to the health of adolescents (Casali et al., 2018).
Surgery, radiotherapy (RT), and multimodal chemotherapy (ChT)
remain the mainstay of treatment for osteosarcoma patients (Casali
et al., 2018). Despite recent advances in medicine, the prognosis of
osteosarcoma is still poor. It has been reported that the aggregate
event-free survival rate of patients with recurrent, unresectable
osteosarcoma was only 12% at 4 months (Lagmay et al., 2016). In
addition, due to genetic heterogeneity, patients with the same clinical
manifestations and pathological types often have different prognoses
after receiving the same treatment scheme (Wu et al., 2020). Therefore,
a reliable new prognostic model is pivotal to ensuring targeted therapy
and improving osteosarcoma treatment efficacy, which aligns with the
concept of precision medicine.

Over the past years, experts have attached great importance to
hypoxia, a feature of the tumor immune microenvironment. The rapid
proliferation of cancer cells, desmoplastic fibrotic stroma, and non-
functional angiogenesis lead to increased oxygen consumption and
decreased oxygen supply (Gola et al., 2020; Tao et al., 2021a). Ample
evidence has confirmed that tumor hypoxia has an indispensable effect
on apoptosis, cell proliferation, vascularization, immune responses,
metabolism, genomic instability, andmetastasis (Wigerup et al., 2016).
Moreover, hypoxia promotes dihydropyrimidine dehydrogenase
expression in macrophages, resulting in chemotherapy resistance in
colorectal cancer (Malier et al., 2021). It is generally believed that bone
is prone to hypoxia. An increasing body of studies has shown that
hypoxia in the tumor microenvironment is a driver for resistance to
chemotherapy, tumor growth, cell survival, and metastasis in
numerous solid tumors, such as osteosarcoma (Prudowsky and
Yustein, 2020; Jiang et al., 2021). Studies have shown that hypoxia
can induce HIF-1α, NUSAP1, and NDUFA4L2 expression and
promotes the survival, epithelial-mesenchymal transition
progression, migration, and invasion of osteosarcoma cells (Xu
et al., 2020; Zhang et al., 2021). Hence, we should concentrate on
differences in hypoxia genes to examine the biological mechanisms of
osteosarcoma and reclassify tumor subtypes.

Hypoxia plays an indispensable role in tumor development and
the anti-tumor process. However, the relationship between hypoxia
and osteosarcoma prognosis remains further unexplored. We
conducted a comprehensive analysis of hypoxia-related genes in
osteosarcoma to understand the role of hypoxia in tumor genesis
and development. Herein, we retrieved genes associated with hypoxia
from the MSigDB database (Zhou et al., 2021). Consensus clustering
analysis is a popular method for identifying new tumor molecular
subtypes (Zuccato et al., 2022). Importantly, we used hypoxia gene
expression as the input of consensus clustering to place a unique
molecular subtype of osteosarcoma. We established a model for
estimating patient prognostic risk based on this subtype.
Furthermore, we analyzed the immune microenvironment and
chemosensitivity of osteosarcoma. Finally, we further studied the
expression and role of some predictive genes in osteosarcoma in vitro.

Materials and methods

Data collection

84 osteosarcoma samples, containing RNA-Seq data and
corresponding clinical information, were downloaded from the
Therapeutically Applicable Research to Generate Effective

Treatments (TARGET) database (https://ocg.cancer.gov/programs/
target). The clinical characteristics of the samples are shown in
Supplementary Table S1. The osteosarcoma dataset GSE21257 was
obtained from the GEO database (https://www.ncbi.nlm.gov/geo) as a
validation cohort. The hypoxia-linked genes (shown in Supplementary
Table S2) were retrieved from the hallmark gene sets in the Molecular
Signature Database3 (MSigDB).

Cluster analysis based on hypoxia-related
genes

The R package “ConsensusClusterPlus” was performed to cluster the
samples based on mRNA expression levels of 200 hypoxia-related genes.
The lowest intergroup correlation and the highest intragroup correlation
were shown when clustering variable (k) = 2. R packages “survival” and
“survminer” (v3.6.1) were used to analyze the overall survival time between
the two subtypes. The clinical characteristics and related genes between the
two clusters were displayed in a heatmap using the R package.

Development and validation of a hypoxia
subtype-related gene prognostic model

23 differentially expressed genes (DEGs) between the hypoxia-
related subtypes were identified for downstream analyses using the
screening criteria |log2FC| ≥ 2 and FDR < .05. We uncovered genes
related to individual survival and prognosis of osteosarcoma through
Cox regression analysis in the TARGET cohort. A p-value of .05 was
set as the threshold. LASSO (Least absolute shrinkage and selector
operation) Cox regression was conducted to uncover significant
prognostic genes for prognostic model using the R package
“glmnet”. Ultimately, we retained the 12 genes coupled with their
coefficients, and the penalty parameter (λ) was determined via the
minimum criteria. The risk score formula was calculated as follows:

Risk Score � ∑
n

i�1
Coefi p xi

According to the median risk score, osteosarcoma patients from
the TARGET cohort were stratified into low- and high-risk groups.
Based on the 12-gene signature, we performed the PCA (principal
component analysis) and t-SNE (t-distributed stochastic neighbor
embedding). The Kaplan-Meier analysis was conducted to compare
survival possibility and overall survival time between the high- and
low-risk groups. The R package “timeROC” was used to draw the
time-based ROC curve. The area under the curve (AUC) was
calculated to assess the sensitivity and specificity of the risk score
system. Additionally, we underwent external validation for the gene
signature model in the GSE21257.

Independent prognostic analysis and a
nomogram

We applied the univariate and multivariable Cox regression
analysis (“survival” R package) to assess the risk score combined
with clinical information (age, gender and metastatic status) in the
TARGET cohort. Combined with prognostic signature, a nomogram
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was presented to predict 1, 3, and 5-year overall Survival (OS) of
osteosarcoma patients.

Tumor immune microenvironment and
functional enrichment analysis

We employed the single sample gene set enrichment analysis
(ssGSEA) in low- and high-risk groups to explore the infiltrating
scores of immune cells and immune pathways. Benjamini-Hochberg
(BH) correction method was used to calculate the adjusted p-value.
We utilized the estimate algorithm to calculate the infiltration levels of
immune and stromal cells. We applied Spearman correlation analysis
to analyze the relationships between risk score and immune and
stromal cells. Screening of DEGs between the low- and high-risk
groups was done using the criteria |log2FC|≥1 and FDR < .05. The
package “clusterprofiler” was used for Gene Ontology (GO)
annotation and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis.

Drug sensitivity analysis

We downloaded the NCI-60 human cancer cell lines from the
CellMiner database (https://discover. nci.nih.gov/cellminer) (Luna
et al., 2021). Then Pearson correlation analysis was conducted to
determine the correlation between prognostic genes and drug
sensitivity.

Cell lines and cultures

We purchased one human osteoblast cell line (hFOB1.19) and two
human osteosarcoma cell lines (U20S and 143B) from the National
Collection of Authenticated Cell Cultures (Shanghai, China).
Dulbecco’s modified Eagle’s medium (DMEM, Gibco) contains 1%
penicillin/streptomycin (Thermo Fisher Scientific) and 10% fetal
bovine serum (FBS). We cultured hFOB1.19 cells in DMEM at
34°C with 5% CO2 and U20S and 143B cells at 37°C with 5% CO2.

Treatment and cell viability analysis

Osteosarcoma cells were treated with a range of concentrations of
sunitinib (0, 10, 20, and 30 μM). According to operational guidelines,
we used the Cell Counting Kit-8 (CCK-8) assay (MedChemExpress;
NJ, the United States) to evaluate cell viability. Briefly, the second-
generation osteosarcoma cells were grown on 96 well plates (5 × 103

cells/well) and exposed to different concentrations of sunitinib.
Osteosarcoma cells were incubated in DMEM at 37°C with 5%
CO2 for 24 h. Next, we rinsed cells with PBS and added 10 μL
CCK8 to the medium for another 2 h. Finally, a microwell plate
(Thermo Fisher) reader detected the absorbance at 450 nm.

TUNEL staining

Apoptotic DNA fragmentations of osteosarcoma cells were
detected with One-step TUNEL in Situ Apoptosis Kit (E-CK-

A321, Elabscience, Wuhan, China). Osteosarcoma cells were
treated with sunitinib (0, 10, 20, and 30 μM) for 24 h. Following
the manufacturer’s guidelines, cells were fixed in 4%
paraformaldehyde for 30 min at room temperature and then
incubated with 3% H2O2 and .2% Triton X-100 for 10 min.
Next, we washed with PBS three times and stained the nuclei
with DAPI. Finally, we used an Olympus fluorescence
microscope (Tokyo, Japan) to observe apoptotic cells (TUNEL-
positive cells).

Western blotting

We extracted total cellular protein from osteosarcoma cells
using RIPA lysis buffer with 1 mM PMSF and determined their
concentrations with the BCA Protein Assay Kit (Beyotime,
Shanghai, China). Next, proteins were separated by PAGE and
transferred to PVDF membranes. After blocking with skim milk
(5%, w/v) for 2 h at room temperature, membranes were incubated
with the following primary antibodies (1: 1,000) overnight at 4°C:
RASGRP2 (ABclonal, A15381), KCNJ3 (Abcam, ab129182),
ACTG2 (Abcam, ab231802), CASP3 (Proteintech, 19677-1-AP),
Bcl-2 (Proteintech, 26593-1-AP), Bax (Proteintech, 50599-2-Ig),
and GAPDH (ABclonal, AC001). Membranes were then incubated
with HRP-labeled IgG secondary antibody (1:2000, Beyotime,
A02080) for 2 h at 25°C. Protein bands on the membrane were
visualized using the ECL Plus kit (Meilunbio). Finally, the band
intensity was quantified via Image Lab 6.1 software (BioRad,
Hercules, CA, USA).

Statistical analysis

R software (Version:3.6.1) and GraphPad Prism (Version:
7.00) were conducted to perform all statistical analyses.
Pearson chi-square test, t-test, the Mann-Whitney test, and
analysis of variance (ANOVA) were used to calculate and
compare the two groups. a p-value < .05 was statistically
significant.

Results

Tumor classification based on the hypoxia-
related genes

In the TARGET dataset, consensus clustering was conducted
for all osteosarcoma patients to study the relationship between the
expression of 200 hypoxia-related genes and osteosarcoma
subtypes. After setting the clustering variable (k) value of 2, the
patients could be stratified into two groups (Figure 1A). We found
a significant difference in the overall survival rate between the two
subtypes (p = .029, Figure 1B), and the cluster 2 had a significantly
better overall survival than cluster 1. The relationship between the
expression of these genes and the clinical characteristics, including
gender, age, metastasis status, and primary tumor site, is displayed
in a heatmap. However, no significant differences in clinical
characteristics were observed between the two clusters
(Figure 1C).
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Construction of a prognostic gene model in
the TARGET cohort

DEGs were identified between the two clusters using the
screening criteria |log2FC| ≥ 2 and FDR < .05. Univariate Cox
regression was used for the initial determination of survival-
linked genes. 23 genes that met the criteria of p < .05 were
retained for subsequent analyses. Of these, 4 genes (FAP,
GFPT2, POSTN, ACTG2) were protective genes with an HR <
1, while the remaining 19 genes were associated with increased
risk (HRs > 1) (Figure 2A). LASSO Cox regression was used to
create a 12-gene signature based on the optimum λ value (Figures
2B, C). Computation of the risk score was done using the formula:
risk score= (−.175* CYFIP2 exp.) + (−.503* RASGRP2 exp.) +
(−.320* DKK1exp.) + (−.645* DLX2 exp.) + (−.130* GFPT2exp.)
+ (−.670* KCNJ3 exp.) + (−.019* ACTG2exp.) + (−.204*
CHMP4C exp.) + (−.544* KLK1 exp.) + (−.588* NRXN1 exp.)
+ (−.305* ABCA4 exp.) + (−.734* CORT exp.). According to the
median risk score, the 84 osteosarcoma patients were stratified
into high-and low-risk subgroups (Figure 2D). PCA and the
t-SNE analysis exhibited that patients with high or low risks
were well separated into two classes (Figures 2E, F). In contrast
with the high-risk group, the low-risk group experienced fewer
deaths and exhibited longer survival (Figure 2G, left side of dotted
line). The Kaplan-Meier curve showed that overall survival time
and possibility were significantly lower in the high-risk group (p <
.001, Figure 2H). Then ROC analysis was applied to determine the
sensitivity and specificity of the prognostic model. We found that
the value of the area under the ROC curve (AUC) was .749 for 1-
year, .786 for 3-year, and .797 for 5-year survival prediction
(Figure 2I).

External validation of the risk score

53 osteosarcoma patients from a GEO cohort (GSE21257) were
extracted as the external validation set. The gene expression data were
normalized with the R function “Scale”. Based on the median risk score of
the TARGET model, 28 patients were regarded as the high-risk group,
while the other 25 were at low risk (Figure 3A). High-risk patients had
higher mortality and shorter overall survival time (Figure 3B on the right
of the dotted line). The PCA plot and the t-SNE results showed that the
two groups were separated (Figures 3C, D). Besides, there were significant
differences in survival time between the high-OS and low-OS risk groups
(p = .012, Figure 3E). ROC curve analysis of the GEO dataset showed that
our model had an excellent prediction power, with AUC values for
survival at 1, 2, and 3 years of .837, .678, and .689, respectively (Figure 3F).

Independent prognostic value of the risk
model

We employed univariate and multivariable Cox regression to assess
independent prognostic factors of the gene-based risk score and clinical
characteristics. The univariate Cox regression data illustrated that the risk
score andmetastatic status were independent predictors of poor survival in
the TARGET cohort (p < .001, Figure 4A). After correcting for
confounding factors, the results of multivariate cox regression indicated
that risk score (HR= 4.665, p< .001) andmetastatic status (HR=3.596, p<
.001) were still independent predictors of the prognosis of osteosarcoma
patients (Figure 4B). Moreover, we provided a heatmap to show gene
expression and clinical characteristics between low- and high-risk groups
(Figure 4C). Two genes (GFPT2 and ACTG2) were downregulated, while
the remaining genes were upregulated in the high-risk subgroup.

FIGURE 1
Tumour classification based on the hypoxia-related genes. (A) 84 osteosarcoma patients were grouped into two clusters according to the consensus
clustering matrix (k = 2). (B) Kaplan–Meier overall survival curves for the two clusters. (C) A heatmap (blue: low expression level; red: high expression level) for
the connections between clinicopathologic features and the clusters.

Frontiers in Pharmacology frontiersin.org04

Han et al. 10.3389/fphar.2022.1088732

https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org
https://doi.org/10.3389/fphar.2022.1088732


Nomogram

According to the prognostic model and clinical factors (age,
gender, and metastatic status), we developed a risk estimation
nomogram in the TARGET cohort (Figure 5A). 1-, 3-, and 5-year
calibration curves showed that the nomogram consistently predicted
the survival rate (Figure 5B).

Immune status and tumor microenvironment

We calculated these two clusters’ enrichment scores of diverse
immune cell sub-populations by ssGSEA. Significant differences in
aDCs cells and Tfh cells were found between the high and low-risk
groups (Figure 6A). Meanwhile, we indicated that the immune score of
APC_co_stimulation was decreased in high-risk group, compared to

the low-risk group (Figure 6B, p < .05). Moreover, correlation analysis
illustrated that the risk score was positively correlated to stromal score
(p < .001, Figure 6D), while no significant relationship was observed
between the immune score and risk score (p > .05, Figure 6C).

Functional analyses of the risk model

To further assess differences in gene functions and cascades
between the sub-clusters classified via the risk model, the R
package “limma” was used to screen DEGs with an FDR <
.05 along with |log2FC |≥1. We identified 73 DEGs between low-
OS and high-OS risk groups in the Target cohort. Of these, 50 genes
were upregulated, and 23 genes were downregulated in the high-risk
group (Supplementary Table S3). These DEGs underwent GO and
KEGG analyses. We found that biological processes linked to hypoxia

FIGURE 2
Construction of risk signature in the TARGET cohort. (A)Univariate cox regression analysis of overall survival for each hypoxia-related gene, and 23 genes
with p < .05. (B) LASSO regression of the 12 overall survival-related genes. (C) Cross-validation for tuning the parameter selection in the LASSO regression. (D)
Distribution of patients based on the risk score. (E) PCA plot for osteosarcoma based on the risk score. (F) The t-SNE analysis based on the risk score. (G) The
survival status for each patient (left side of the dotted line: low-risk population; right side of the dotted line: high-risk population). (H) Kaplan–Meier
curves for the overall survival of patients between the high- and low-risk groups. (I) ROC curves demonstrated the predictive efficiency of the risk score.
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FIGURE 3
Validation of the risk model in the GEO cohort. (A) Distribution of patients in the GEO cohort based on the median risk score of the TARGET cohort. (B)
The survival status for each patient (left side of the dotted line: low-risk population; right side of the dotted line: high-risk population). (C) The PCA plot for
osteosarcoma. (D) The t-SNE analysis based on the risk score. (E) Kaplan–Meier curves for comparison of the overall survival between low- and high-risk
groups. (F) Time-dependent ROC curves for osteosarcoma.

FIGURE 4
Independence detection of the constructed risk prediction model. (A)Univariate analysis for the TARGET cohort. (B)Multivariate analysis for the TARGET
cohort. (C) A heatmap (blue: low expression; red: high expression) for the connections between clinicopathologic features and the risk groups.
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FIGURE 5
Construction of the predictivemodel. (A) A prognosticmodel to predict overall survival in the TARGET cohort. (B)Calibration curves of theOS nomogram
model in the TARGET set.

FIGURE 6
Immune status between different risk groups and the association between risk score and tumor microenvironment. (A) Comparison of the enrichment
scores of 16 types of immune cells between low- (blue box) and high-risk (red box) group in the TARGET cohort. (B) Comparison of the enrichment scores of
13 types of immune functions between low- (blue box) and high-risk (red box) group in the TARGET cohort. (C) The relationship between risk score and
immune score. (D) The relationship between risk score and stromal score. (*p < .05).
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FIGURE 7
Functional analysis based on the DEGs between the two-risk groups in the TARGET cohort. (A) Bubble graph for GO enrichment (the bigger bubble
means the more genes enriched, and the increasing depth of red means the differences weremore obvious; q-value: the adjusted p-value). (B) Barplot graph
for KEGG pathways (the longer bar means the more genes enriched, and the increasing depth of red means the differences were more obvious).

FIGURE 8
Scatter plot of relationship between prognostic gene expression and drug sensitivity. The top 16 correlation analyses are shown based on the p-value.
The horizontal axis represents the gene expression; The vertical axis represents changes in gene expression after administration.
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(i.e., organization of extracellular matrix, organization of extracellular
structure, and organization of external encapsulating structure) were
significantly enriched. (Figures 7A, B).

Sensitivity to chemotherapy

We further investigated the sensitivity of 12 predictive hypoxia-
related genes to chemotherapeutic drugs. At the same time, we
downloaded data from the NCI-60 panel of human cancer cell
lines. Results for the top 16 correlation analysis were shown based
on the p-value (Figure 8). KCNJ3 is sensitive to multiple
chemotherapeutic agents, including LOXO-101, NMS-E628, and
sunitinib (all p < .001). Results showed that RASGRP2 is sensitive
to nelarabine, hydroxyurea, asparaginase, cyclophosphamide,
fludarabine, pipobroman, chlorambucil, and cladribine (all
p < .001). Besides, ACTG2 is susceptible to zoledronate (p < .001).
Please see Supplementary Table S4 for details.

Detection of three predictive hypoxia-related
markers in osteosarcoma

We investigate the expression levels of three hypoxia-related genes
in osteosarcoma cells using western blotting analysis. Results showed
higher expression levels of RASGRP2 and KCNJ3 in two osteosarcoma
cell groups (U20S and 143B) compared to the osteoblast cell group
(hFOB). In contrast, ACTG2 was down-regulated in osteosarcoma
groups (Figures 9A, B). Such results validated the abnormal expression
of three prognostic genes in osteosarcoma.

Sunitinib down-regulated KCNJ3 expression
and promoted apoptosis in osteosarcoma
cells

To evaluate the therapeutic effect of sunitinib on osteosarcoma, we
treated two types of osteosarcoma cells (U20S and 143B) with various
doses of sunitinib (10, 20, or 30 μM). Sunitinib demonstrated a

cytotoxic effect on osteosarcoma cells in a dose-dependent manner
(Figure 10A; Figure 11A). Western blotting was used to determine the
level of KCNJ3 in U20S and 143B osteosarcoma cells with various
doses of sunitinib. Results indicated the expression of KCNJ3 was
down-regulated after sunitinib treatment (Figures 10B, C; Figures 11B,
C). Western blot results demonstrated that the expression levels of Bax
and CASP3 were enhanced with the increasing sunitinib
concentration, while the expression of Bcl-2 decreased (Figures
10D, E); (Figures 11D, E). Additionally, TUNEL was used to assess
sunitinib treatment for osteosarcoma cells. As expected, the number of
TUNEL-positive cells was upregulated with the increase of sunitinib
concentration (Figures 10F, G).

Discussion

Osteosarcoma is the most common primary tumor with early
metastasis and rapid progression, accounting for the poor survival
rates (Simpson et al., 2017). Despite remarkable medical
advancements achieved in recent years, little progress has been
made in improving osteosarcoma patients’ prognosis, considering
that the current clinical approach is still based on conventional
methods and is often ineffective (Ouyang et al., 2020). Precision
medicine is widely acknowledged as a medical model that adjusts
disease prevention and treatment methods according to the individual
differences of each patient. In recent years, with the rapid development
of tumormolecular biology and genomics, the understanding of tumor
molecular phenotype has been improving. Accordingly, the
development of targeted therapy based on specific molecular
phenotypes has become the preferred treatment method for
advanced cancer, accounting for the increase in the momentum of
precision medicine for clinical tumor treatment (Konig et al., 2017).
High throughput sequencing is the cornerstone of precision medicine.
A comprehensive understanding of tumor molecular phenotype is
significant for rapid and accurate diagnosis, treatment efficacy, and
prognosis prediction (Heather and Chain, 2016). An increasing body
of evidence shows that hypoxia is indispensable in promoting survival,
epithelial-mesenchymal transition (EMT) progression, invasion of
osteosarcoma cells, and drug resistance (Prudowsky and Yustein,

FIGURE 9
The expression levels of three hypoxia-related genes between osteosarcoma cell lines and osteoblasts. (A) Western blotting of the expressions of
RASGRP2, KCNJ3, and ACTG2 in hFOB, U20S, and 143B groups. GAPDH serves as an internal standard. The gels have been run under the same experimental
conditions. (B) A histogram of the OD values of RASGRP2, KCNJ3, and ACTG2 in each group (n = 3 per group). The obtained data are represented as mean ±
SE. Significance: ***p-value < .001, vs. hFOB group.
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2020; Fu et al., 2021; Li et al., 2022a). Therefore, in this study, patients
with osteosarcoma were classified based on the expression of hypoxia-
related genes.

Based on these 200 hypoxia-related genes, osteosarcoma patients
were divided into C1 and C2 types to determine the differentially
expressed prognostic genes. To further evaluate the prognostic
significance of these genes, univariate Cox regression and LASSO
Cox regression analysis were applied to establish a 12-gene risk
signature. The good performance of the signature was validated in
an external dataset. CYFIP2 is well-recognized as a p53-driven pro-
apoptotic protein with low expression levels in gastric cancer (Jackson
et al., 2007; Jiao et al., 2017). Similar to the conclusions of He Y et al.
(He et al., 2021), we believe that RASGRP2 is a risk factor for the
prognosis of osteosarcoma patients. RASGRP2 can inhibit apoptosis
by activating Rap1 to down-regulate the production of TNF-induced

ROS (Takino et al., 2019). Another study demonstrated that
DKK1 upregulation could accelerate the deterioration of bone
microstructure related to the occurrence of femoral head necrosis
and osteosarcoma (Chen et al., 2021). DLX2, a homeobox
transcription factor, plays an indispensable role in tumor
progression and metastasis in TGF-β-exposed cancer cells (Park
et al., 2021). Overexpression of DLX2 has been documented to
promote osteoblast differentiation (Zeng et al., 2020). Moreover, it
has been reported that GFPT2 is involved in the developing colorectal
cancer (Liu et al., 2020). Besides, the potassium channel gene
KCNJ3 has been upregulated in non-small cell lung cancer,
pancreatic cancer, and breast cancer. KCNJ3, a gene encoding
G-protein activated inwardly rectifying K (+) channel (GIRK1), is
related to lymph node metastasis and prognosis in breast cancer
patients (Kammerer et al., 2016; Rezania et al., 2016). In addition,

FIGURE 10
Sunitinib can decrease KCNJ3 expression and enhance apoptosis in U20S osteosarcoma cells. (A) Evaluation of U20S osteosarcoma cell viability using
CCK-8 assay after exposure to various concentrations of sunitinib for 24 h. (B,C) The expression level of KCNJ3 protein of osteosarcoma cells in control and
sunitinib treatment groups. (D,E) The protein expression levels of Bax, Bcl-2, and caspase3 in osteosarcoma cells in the sham (0μM) and sunitinib treatment
groups. (F,G) TUNEL staining was used to detect osteosarcoma cell apoptosis after sunitinib treatment (bar: 50 μm; nuclei: blue; positive cells: green). All
experiments were repeated in triplicates (n = 3). The obtained data are represented asmean ± SE. Significance: @ p-value < .05, @@ p-value < .01, @@@ p-value <
.001, vs. sham (0 μM) group. # p-value < .05, ## p-value < .01, ### p-value < .001.
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the differential expression of ACTG2 may play an essential role in the
development of osteosarcoma (Lauvrak et al., 2013). Moreover,
CHMP4C promotes the viability and motility of cervical cancer cells
by regulating epithelial-mesenchymal transition (Lin et al., 2020). KLK1,
a member of the Kalinin gene family, can increase extracellular matrix
degradation and enhance tumor cells’ survival, proliferation, and
invasion (Avgeris et al., 2012). Interestingly, the cell adhesion
molecule neurexin-1 (NRXN1) is considered a new potential target
for tumor cells (Li et al., 2022b; Feng et al., 2022). ABCA4 has been
extensively studied in retinal diseases (Scortecci et al., 2021), with few
studies on tumors warranting further research. We performed
immunoblot in vitro for RASGRP2, KCNJ3, and ACTG2 genes to
further verify our results’ reliability. The expression levels of
RASGRP2 and KCNJ3 were upregulated in osteosarcoma cells, while
the expression of ACTG2 was decreased.

Over the years, few studies have focused on immunotherapy and
immune cell infiltration for osteosarcoma. Accordingly, exploring the
immune cell infiltration and immune status in osteosarcoma is crucial
to better understanding the molecular mechanism. By comparing the
immune cell infiltration in the low-and high-risk groups, we found
that the infiltration level of aDCs in the high-risk group was
significantly higher. In comparison, the infiltration level of Tfh
cells was considerably lower. Consistently, Tao Z et al. found that
the expression of Tfh in thymoma tissues decreased while the
expression of aDCs increased (Tao et al., 2021b). Indeed, the
primary function of Tfh cells is to participate in information
transmission during the process of B-cell differentiation and assist
in B-cell activation. Tfh cells are abundant in inflammatory infiltrates
of breast cancer, and the presence of Tfh cells can improve survival

and reduce immunosuppression (Gu-Trantien et al., 2013). Besides,
regulating Tfh cell infiltration may provide a therapeutic way for
colorectal cancer treatment (Overacre-Delgoffe et al., 2021).
Accordingly, we believe that high infiltration levels of Tfh cells in
tumor tissues may benefit osteosarcoma patients’ prognosis. Overall,
these results indicate that the tumor immune microenvironment plays
an important role in tumor therapy.

We further conducted GO and KEGG pathway enrichment analysis
to understand the possible biological functions of these prognostic genes.
Our results illustrated that these genes were remarkably abundant in the
extracellular matrix and extracellular structures, indicating a significant
correlation between hypoxia-related genes and osteosarcoma prognosis.
Subsequently, we evaluated gene therapy targets’ sensitivity to drugs for
future treatment. Based on data analysis of sixty different cell lines, the
elevated expressions of 12 prognostic genes influence sensitivity or
resistance to chemotherapy drugs approved by the Food and Drug
Administration. For example, with the increased KCNJ3 expression,
cancer cells were sensitive to LOXO-101, NMS-E628, and sunitinib.
CORT up-regulation is a useful biomarker for cancer cells sensitive to
ifosfamide. At present, clinicians generally use ifosfamide in
osteosarcoma chemotherapy. Therefore, these findings may provide a
new perspective for precision treatment for osteosarcoma.

We found that KCNJ3 expression in tumor cells significantly
decreased after administering sunitinib through drug sensitivity
analysis. KCNJ3 expression was reduced in osteosarcoma cells
(U20S and 143B) in a dose-dependent manner of sunitinib.
Meanwhile, sunitinib significantly promoted osteosarcoma cell
apoptosis. One study reported that sunitinib could reduce PD-L1
expression and remodel the immune system, thus inhibiting the

FIGURE 11
Sunitinib promotes apoptosis in 143B osteosarcoma cells with decreased expression of KCNJ3. (A) 143B osteosarcoma cell viability evaluation viaCCK-8
assay. (B,C) The expression level of KCNJ3 protein. (D,E) The protein expression levels of Bcl-2, Bax, and caspase3. All experiments were repeated in triplicates
(n = 3). The obtained data are represented as mean ± SE. Significance: @@@ p-value < .001, vs. sham (0 μM) group. # p-value < .05, ## p-value < .01, ###

p-value < .001.
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migration and invasion of osteosarcoma cells (Duan et al., 2020).
Another study showed that sunitinib can activate immune cells for
sarcoma treatment (Ocadlikova et al., 2021). Local implantation of
sunitinib and chlorin e6 can promote 143B osteosarcoma cell
apoptosis (Yu et al., 2020). We believed sunitinib might provide
better treatment for osteosarcoma with elevated KCNJ3 expression.

Nevertheless, there are some limitations to our study. Firstly, our
risk score model was constructed and validated based on public
databases. Therefore, we need a multicenter extensive sample
survey to evaluate the clinical application of our model. Moreover,
the mechanism of these 12 predictive genes isn’t precise in
osteosarcoma. We will conduct comprehensive functional
experiments and multi-omics analysis in future research.

Conclusion

In conclusion, we uncovered a novel molecular subgroup via
consensus clustering in the present study. Subsequently, we established
a prognostic model and nomogram for osteosarcoma patients to predict
the prognosis based on 12 hypoxia-related DEGs. The prognostic
signature reflected the different risk groups’ immune characteristics
and chemotherapeutic drug sensitivity. Our model may guide the
clinical application and patients’ prognostic management. Of note,
KCNJ3 may be a reliable prognostic biomarker for clinical application.
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