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Pulmonary arterial hypertension (PAH) is a disease characterized by elevated

pulmonary vascular resistance and pulmonary artery pressure. Mortality

remains high in severe cases despite significant advances in management

and pharmacotherapy. Since currently approved PAH therapies are unable to

significantly reverse pathological vessel remodeling, novel disease-modifying,

targeted therapeutics are needed. Pathogenetically, PAH is characterized by

vessel wall cell dysfunction with consecutive remodeling of the pulmonary

vasculature and the right heart. Transcription factors (TFs) regulate the process

of transcribing DNA into RNA and, in the pulmonary circulation, control the

response of pulmonary vascular cells to macro- and microenvironmental

stimuli. Often, TFs form complex protein interaction networks with other

TFs or co-factors to allow for fine-tuning of gene expression. Therefore,

identification of the underlying molecular mechanisms of TF (dys-)function

is essential to develop tailored modulation strategies in PAH. This current

review provides a compendium-style overview of TFs and TF complexes

associated with PAH pathogenesis and highlights their potential as targets for

vasculoregenerative or reverse remodeling therapies.
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Introduction

Pulmonary arterial (PA) hypertension (PAH), whether
idiopathic (IPAH), hereditary (HPAH), or associated with
other conditions (APAH), is a rare, serious and progressive
pulmonary vascular disease. Despite improvements in the
management of PAH, overall 5-year mortality remains
around 30% (1).

PAH is characterized by elevated resistance and pressure in
precapillary pulmonary vessels leading to right heart failure, if
untreated (2, 3). Pathophysiologically, PAH is characterized by
an initial loss of small pulmonary microvessels via endothelial
cell (EC) apoptosis in combination with neointima formation
through the uncontrolled growth of smooth muscle cell
(SMC)-like cells, adventitial fibroblasts (AF), pericytes
and mesenchymally transdifferentiated endothelial cells
(endothelial-mesenchymal transition, EndMT) (4–6). Although
the origin of hyperproliferative neointimal cells in PAH
is still not fully understood, recent lineage-tracing studies
suggest that the neointima mainly consists of propagating
SMC, while EndMT can be detected in a smaller fraction of
pathologically remodeled lung vessels (7). Upon persistent
vascular inflammation, PAECs also undergo a phenotypic
switch from initially increased propensity to apoptosis toward
a more apoptosis-resistant and hyperproliferative state
thereby further contributing to intraluminal PA obstruction
(4, 8).

Currently available pharmacological options in PAH
comprise vasodilatory drugs with selectivity for the pulmonary
vasculature that attenuate disease progression; namely
endothelin receptor antagonists (ERA: bosentan, ambrisentan,
and macitentan), phosphodiesterase 5 inhibitors (PDE5i:
sildenafil, tadalafil), or soluble guanylate cyclase (sGC:
riociguat) stimulator in addition to prostanoids/prostacyclin
receptor agonist (epoprostenol, iloprost, treprostinil, selexipag)
(9, 10). However, all of the currently available drugs fail to
meaningfully reverse PAH-associated structural remodeling
of pulmonary blood vessels and lung transplantation
remains the only cure. Therefore, novel therapeutic
approaches are needed to attenuate PAH progression
but also reverse prevalent structural remodeling of the
pulmonary vasculature.

In this light, disease-modifying drugs have been an
important research focus in PAH over the last few years.
Bone morphogenic protein receptor type II (BMPR2) has
evolved as a promising molecular target (11, 12). BMPR2 is a
transmembrane serine/threonine receptor kinase and a member
of the transforming growth factor (TGF)-β superfamily and
is a pivotal player in differentiation, inflammation, apoptosis,
and proliferation pathways of the pulmonary vasculature (4,
13–15). Pathogenic variants in the BMPR2 gene account for
approx. 75% of HPAH cases and for ∼20% of IPAH cases

(16, 17). In addition to germline mutations, BMPR2 expression
and BMPR2 signal transduction is universally impaired in
all PAH forms, including APAH (16, 18–20) and other
precapillary PH forms such as chronic thromboembolic PH and
interstitial lung disease associated PH (21, 22) by a plethora of
pathological mechanisms [reviewed in (23)]. Pharmacological
strategies to re-activate or re-balance BMPR2 signaling in the
pulmonary vasculature have been able to restore PA endothelial
function, suppress PASMC proliferation and successfully treat
PH in experimental models (24–28) and early clinical trials
(29–31).

Downstream of BMPR2, non-canonical transcription
factors (TFs) can be pharmacologically harnessed to reverse
experimental PH (28, 32–35) and repair prevalent DNA
damage in PAEC from PAH patients harboring BMPR2
mutations (28) uncovering an additional BMPR2-dependent
disease-modifying approach.

This review, therefore, summarizes the current knowledge
regarding the role of TFs in PAH pathogenesis and explores their
therapeutic potential as disease modifiers in PAH.

Transcription factors: Molecular
basics

TFs are key cellular components that—as molecular
switches—control gene expression: TFs are DNA-binding
proteins that relay external and internal cellular stimuli to
a molecular function enabling gene transcription (36). These
processes require modification in chromatin structure by
chemical modification of DNA and histones as well as other
ribonucleoproteins. Therefore, TFs are part of a finely tuned
interaction network with chromatin remodeling or histone-
modifying proteins to regulate gene transcription (37). TFs
bind to highly specific regulatory DNA elements, so called
“motifs,” within promoter or enhancer regions of their target
genes to either activate or repress transcription (38, 39).
TFs can regulate transcription either by recruiting chromatin
remodeling proteins to induce conformational changes of
chromatin to provide DNA accessibility or by directly binding
to promotors and enhancers to facilitate the recruitment of
additional components of the transcriptional machinery for
transcription initiation (37). In this regard, TFs have much
higher (> 1,000-fold) affinity to their specific DNA-binding
sites within a target gene (= TF-binding site, TFBS) than to
surrounding, non-specific DNA sequences (40). These TFBS (or
“motifs”) are usually found as DNA repeats in cis-regulatory
and non-coding DNA elements (see above) (41). As TFs
are pivotal to integrating a plethora of cellular processes,
TF dysfunction, e.g., through mutations, or (epigenetic)
inactivation, contributes to the pathogenesis of numerous
diseases (41–45).
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Transcription factors: Key
regulators in PAH pathogenesis

In the pulmonary vasculature, TFs regulate crucial cellular
functions such as proliferation, differentiation, inflammation,
cell death, repair, and regenerative programs (39, 45). In
PAH, TFs are responsible for altered expression of multiple
disease-related genes thereby contributing to defective cellular
homeostasis and vascular remodeling (46, 47). Members
from eight out of ten TF superclasses (48) are crucially
involved in PAH pathophysiology. In this section, we provide
a short compendium of the most relevant TFs of each
superclass with relevance to PAH (please also see Table 1 and
Figures 1A,B).

TF superclass 1

TFs belonging to the basic domains group superclass (S1) bind
DNA through a basic region which becomes folded in an alpha-
helically manner if added to DNA (48). At least six members of
this superclass contribute to PAH pathogenesis.

CREB
Cyclic adenosine monophosphate (cAMP) response element

binding protein (CREB) functions as an anti-proliferative TF
in healthy PASMC. In PAH and associated oxidative stress
with excessive production of reactive oxygen species (ROS)
like H2O2, CREB is downregulated leading to enhanced
proliferation of PASMC (49).

HES5
The hes family bHLH transcription factor 5 (HES5) binds to

the Notch-receptor and promotes proliferative signals (50). In
PASMCs, HES5 inactivation reverses the proliferative effect of
NOTCH3 and induces a shift in gene expression toward a more
differentiated phenotype (51).

MYC
MicroRNAs (miR/miRNA) regulate numerous disease

pathways in the pulmonary vasculature and have been linked
with PAH development (52–54). In this context, Zhang et al.
showed that miR-449a-5p, which is downregulated in PAH,
represses the activity of the TF MYC proto-oncogene (MYC).
Lack of MYC repression in PAH PASMC is associated with
mitochondrial and metabolic dysfunction as well as phenotype
transformation (55).

TWIST1
Expression of Twist-related protein 1 (TWIST1) is increased

in the lungs of PAH patients and TWIST1 has been shown to
mediate EndMT thereby contributing to pathological vascular
remodeling in PAECs (56, 57).

TF superclass 2

The TF superclass 2 contains TFs with Zinc-coordination
DNA-binding domains. Such zinc fingers, consisting of a repetitive
pattern of cysteine and histidine residue, represent the most
frequent DNA-binding motifs found in eukaryotic TFs (48). The
frequency of zinc fingers among DNA-binding motifs is also
represented by the many members of the TF superclass 2 that play
a role in PAH.

PPARG
Peroxisome proliferator-activated receptor gamma (PPARγ)

is a member of the nuclear hormone receptor superfamily
of ligand-activated TFs. It is pivotal for the regulation of
mulitple central processes in pulmonary vascular cells (47,
58–61). PPARγ, which is ubiquitously expressed, represents
probably the best-studied TF in pulmonary hypertension.
Norbert Voelkel and his group were first to demonstrate that
PPARγ is downregulated in lungs from PAH patients and
in PAH-associated vascular lesions (62). PPARγ dysfunction
in PAEC or PASMC facilitates the hyperproliferative vascular
phenotype typical for PAH (47, 63).

In PASMC, a downregulation of PPARγ by short interfering
RNA leads to increased proliferation, decreased mitochondrial
mass and increased mitochondrial ROS generation (47, 63),
which is in part mediated by decreased levels of TFAM, GRP75,
and MFN2 (47) and by NF-kB dependent NOX4 upregulation
(64). In contrast, pharmacological PPARγ activation is sufficient
to reverse experimental PH (58, 65).

In this regard, Hansmann et al. showed that PPARγ-
mediated anti-proliferative BMP-2 signaling in PASMC and
that loss of PPARγ function in PASMC was associated with
the spontaneous onset of experimental PH. PPARγ agonists
were able to restore anti-proliferative signaling in wildtype and
BMPR2-mutant PASMC, suggesting early on that activation
of PPARγ signaling may reverse PAH (66). Mechanistically,
in PASMC this is mediated by BMP2-dependent upregulation
of a protective autocrine PPARγ—Apolipoprotein E (ApoE)—
Low density lipoprotein receptor-related protein 1 (LRP1) axis
(66) and inhibition of TGF1-mediated SMAD3/4 and STAT3-
FOXO1 signaling (see below) (67). In these studies, Chakraborty
et al. used Cre-constructs driven by the Tagln/Sm22-promoter to
delete PPARγ in SMC instead of more SMC-specific promoters
such as Myh11 (68). The Tagln/Sm22 promoter has been shown
to also be active in cardiomyocytes and non-muscle tissues such
as myeloid cells and platelets [reviewed in: (68)]. Therefore,
future studies need to evaluate to what extent PPARγ’s protective
function to reverse experimental PH relates to rehabilitation of
SMC-specific signaling or also includes effects on additional cell
types such as cardiomyocytes as suggested by a recent study of
the same group (32).

In PAECs, Vattulainen-Collanus et al. suspected that a
lack of PPARγ could result in increased expression of E2F1,
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TABLE 1 Transcription factors in PAH.

TF superclass (S1–6) TF name Cell type Expression and function in PAH References

S1: Basic domains group CREB PASMC Expression: ↓
Function: proliferation↓, migration↓, hypertrophy↓,
dedifferentiation↓ and ECM production↓

(49)

TWIST1 PAEC Expression: ↑
Function: EndMT↑, vascular remodeling↑

(56)

MYC PASMC Expression: ↑
Function: regulates mitochondrial and metabolic function (in PAH:
under hypoxia-induced phenotype transformation proliferation↑
and hypoxia-induced mitochondrial dysfunction↑)

(55)

HIF1A PAEC, PASMC Expression: ↑
Function: metabolic shift↑ (anaerobic glycolysis),
angiogenesis↑, proliferation↑, inflammation↑, apoptosis↓

(150, 155, 156,
167–169)

HIF2A PAEC, LVEC Expression: ↑
Function: EndMT↑ via SNAI1/2↑, vascular remodeling↑, occlusive
lesions↑, influences vascular resistance

(172)

HES5 PASMC Expression: ↑
Function: proliferation effect of NOTCH3↑, gene expression shift
into undifferentiated phenotype↑

(51)

AP1 PASMC Expression: c-fos↑, c-jun ↑
Function: involved in proliferative response via ET1

(147)

S2: Zinc-coordination
DNA-binding domains

PPARγ PAEC Expression: ↓
Function: cell cycle progression↑, cell survival↑, apoptosis↓

(32, 46, 47, 60,
63, 66, 70)

PASMC Expression: ↓
Function: vessel remodeling↓, proliferation↓, mitochondrial
integrity↑, apoptosis↑

SNAI2 PAEC Expression: ↑
Function: EndMT↑ via HMGA1 after BMPR2↓

(57)

EGR1 PASMC, PAAF Expression: ↑
Function: vessel remodeling↑, medial hypertrophy↑

(73, 75, 233)

ZNF740 PAEC Expression: ↑
Function: proliferation↑, angiogenesis↑

(76)

KLF2 PAEC Expression: ↓
Function: proliferation↓, apoptosis↓, inflammation↓, vasodilation↑

(80–82)

KLF4 PAEC Expression: ↓
Function: vessel protection↑, regulation of vasodilation,
inflammation↓, coagulation↓, and oxidative stress, chromatin
accessibility for vasculoprotective genes↑

(83, 84, 234)

KLF5 PASMC Expression: ↑
Function: proliferation↑, apoptosis↓

(85)

PPARGC1A (PGC1A) PBMC Expression: ↑ under hypoxia
Function: Regulates total antioxidant status via CYTC and SOD,
inflammation by activating CYTC

(20, 87, 88)

PASMC Expression: ↓
Function: mitochondrial integrity ↑, maintains
proliferation-apoptosis rheostat

(88)

PAEC Expression: Under BMPR2-loss and normoxia↑, hypoxia↓
hypoxia-reoxygenation↓↓
Function: Promotes mitochondrial health and integrity upon
oxidative stress via NRF2-TFAM cascade

(20)

GATA6 PAEC Expression: ↓
Function: transcription regulator of genes controlling vascular tone,
inflammation and vascular remodeling

(89)

S3: Helix-turn-helix domains FOXO1 PASMC Expression: ↓
Function: proliferation↓

(93)

FOXM1 PASMC Expression: ↑
Function: proliferation↑, DNA-repair↑, resistance to apoptosis↑

(90, 92, 235)

(Continued)
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TABLE 1 (Continued)

TF superclass (S1–6) TF name Cell type Expression and function in PAH References

ELK1 PAEC Expression: ↑
Function: proliferation↑

(95)

MSX1 Lymphocytes Expression: ↑ (under BMPR2-loss)
Function: capillary regression↑

(96)

OCT4 PASMC Expression: ↑ (PSG1 + 5: ↓)
Function: proliferation↑ under hypoxia

(98)

S4: Other all-alpha-helical
DNA binding domains

SOX17 PAEC Expression: ↓
Function: Regulates Notch-signaling in pulmonary EC
development, PA remodeling↓, SNPs in SOX17 enhancer associated
with impaired survival in PAH?

(101, 102, 105)

TFAM PAEC Expression: under BMPR2-loss: normoxia↑, reoxygenation↓
Function: modulates inflammatory response, mtDNA integrity↑,
EC survival↑

(20)

NFY PASMC Expression: ↑
Function: regulates genes for proliferation, glycolysis,
apoptosis-resistant phenotype↑

(106)

S5: alpha-Helices exposed by
beta-structures

MEF-2 PAEC Activity: ↓
Function: regulates expression of transcriptional targets involved in
vessel homeostasis

(107)

S6: Immunoglobulin fold NFAT PASMC Expression: ↑
Function: proliferation↑, migration↑, apoptosis-resistant
phenotype↑, Warburg-phenotype↑

(58, 109, 110,
236)

RUNX1 EPC Expression: ↓
Function: EHT↑

(111)

RUNX2 PASMC Expression: ↑
Function: proliferation↑, vascular remodeling↑, calcification in PA
lesions↑, resistance to apoptosis↑, transdifferentiation into
osteoblast-like cells↑

(116)

p53 PASMC Expression: under hypoxia↓
Function: aerobic glycolysis↓, mitochondrial respiration↑,
proliferation↓

(20, 128)

PAEC Expression: under BMPR2-loss and normoxia↑, hypoxia↓,
hypoxia-reoxygenation↓
Function: p53↓: mtDNA deletion↑, apoptosis↑
p53↑: mitochondrial membrane potential↑, ATP production↑,
glycolysis↑, production of cytokines↑

NF-KB PAEC, PASMC Expression: ↑
Function: inflammation by activation of macrophages, lymphocytes
and endothelial cells↑, vascular remodeling↑, EndMT↑

(131)

TBX4 − TBX4 mutation associated with childhood-PAH and PAH with lung
parenchymal maldevelopment

(136)

STAT3 PASMC Expression: ↑
Function: proliferation↑,
resistance to apoptosis↑

(137, 184)

STAT1 PAEC Expression: ↑
Function: proliferation↑,
migration↑, inflammation↑

(138)

S7: beta-Hairpin exposed by
an alpha/beta-scaffold

SMAD3 PASMC Expression: ↓
Function: proliferation↓, migration↓, vascular remodeling↓

(139)

PAEC Expression: ↓ (↑ under HERV-K dUTPase stimulation)
Function: proliferation↓, migration↓, EndMT↑

(132)

S8: beta-Sheet binding to
DNA

HMGA1 PAEC Expression: ↑
Function: EndMT into SM-like phenotype↑ (with SNAI2)

(57, 139)

TFs by superclass as determined by comparison with the Human Transcription Factor Database (Animal TFDB 3.0; 232) and TFclass (48).
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FIGURE 1

Transcription factor pathways in PAEC and PASMC associated with PAH. Overview of pathogenetically relevant transcription factor (TF)
pathways in (A) pulmonary arterial endothelial cells (PAEC) and (B) pulmonary arterial smooth muscle cells (PASMC) upon activation by cell
membrane anchored receptor signaling or cellular stress events. Depending on the pulmonary vascular cell type TF activation mediated gene
transcription elicits cell-type specific downstream responses. Blue box represents cell membrane. Ca2+, Calcium; IP3, Inositol
1,4,5-trisphosphate; ET-RA/B, Endothelin Receptor Type A and B; TGFBR1/2/3, TGF-ß receptor 1/2/3; −p, Phosphorylation.

which is associated with a dysregulated Wnt pathway and
disturbed angiogenesis and migration (69). PPARγ may also
play a role in PAEC’s response to DNA damage (70). In

cellular studies, depletion of PPARγ was sufficient to promote
the development of a PH phenotype by upregulation of cell
cycle- and angiogenesis-related genes (71). In an EC-specific
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PPARγ knockout mouse model (using the Tie2 promoter),
experimental PAH developed spontaneously (63). Additional
information on the beneficial effects of PPARγ on the
pulmonary vasculature can be found further down in the section
on PPARγ TF complexes.

SNAI2
Snail family transcriptional repressor 2 (SNAI2), also known

as Slug, a highly conserved zinc finger TF, has been implicated
in epithelial-mesenchymal transition (EMT) and EndMT (72).
In PAEC, loss of BMPR2 leads to increased expression of
High-mobility group protein 1 (HMGA1) and Slug, which is
associated with upregulation of SMC markers and EndMT (57).

EGR1
Expression of early growth response protein 1 (EGR1) is

increased in plexiform lesions of PAH (73, 74), is triggered by
tissue damage and is associated with pathological remodeling
of the lung vessel wall (75). Interestingly, EGR-1 is negatively
regulated by PPARγ agonists (75).

ZNF740
Zinc finger proteins (ZNFs) bind classically to DNA, RNA,

proteins, and other small molecules and are highly conserved
in their binding specificity of a particular protein. Yu et al.
identified a novel signaling pathway involved in proliferation
and angiogenesis of PAECs and in vascular remodeling in vitro.
This new signaling axis consists of ZNF740, GDF11, TGF-β-
receptor I, and SMAD, which is also involved in the imbalance
of pulmonary vascular homeostasis in PAH (76).

KLF2
Krüppel-like Factor 2 (KLF2) is a vasculoprotective factor

expressed in endothelial cells that is activated by laminar
shear stress and is pivotal for normal lung vessel formation
(77). Heterozygous germline missense mutations in KLF2
have recently been associated with HPAH (Table 2) (78–
80) and KLF2 mRNA expression is strongly downregulated
in lungs from rodents and humans with PAH (80, 81).
Loss of KLF2 impairs NO synthesis and thereby contributes
to the severity of hypoxia-induced PH in Apelin-deficient
mice (82). In contrast, adenoviral transduction mediates anti-
inflammatory, anti-apoptotic, and anti-proliferative effects in
PAEC under nutrient stress (80). Additionally, miRNA isolated
from exosomes derived from KLF2-overexpressing PAEC can be
therapeutically harnessed to attenuate experimental PH in the
Sugen/hypoxia mouse model (80).

KLF4
Krüppel-like Factor 4 (KLF4), a protective PAEC

maintenance factor, is inactivated by posttranslational
modification upon nitrosative stress, thereby disabling its
protective function in the pulmonary vasculature (83). Recently,

KLF4 was identified as an interaction partner of the SWI/SNF
complex to increase accessibility of enhancer sites which
regulate genes essential for endothelial homeostasis under
laminar shear stress (84).

KLF5
Krüppel-like Factor 5 (KLF5) has been linked with an

apoptosis-resistant and proliferative phenotype in PASMCs
(85), as an upstream regulator of HIF1 in PASMC (86). In
addition, KLF5 and HIF1 might form a TF complex with yet
unknown function (86).

PGC1A
PPARγ coactivator-1α (PGC1A/PPARGC1A), which

normally regulates oxidative metabolism and mitochondrial
biogenesis, was found to regulate inflammation in blood cells of
IPAH patients by activating cytochrome complex (CYTC) under
hypoxia (87, 88). In PASMC, PGC1A regulates the expression
of the Mitofusin-2 gene MFN2 to maintain mitochondrial
integrity. PAH PASMC lacking PGC1A and MFN2 show
heightened mitochondrial fragmentation associated with
increased PASMC proliferation (88). In PAEC, PGC1A
promotes EC survival and sustains mitochondrial membrane
potential upon oxidative stress downstream of a non-canonical
BMPR2-p53 axis (20).

GATA6
GATA sequence binding protein 6 (GATA6), a member

of the ZNF TF family, is upregulated in inactive vasculature
and downregulated during vascular injury (89). In PAECs,
GATA6 directly regulates ET1 receptor type A (ETA), a gene
for controlling vascular tone, as well as pro-inflammatory
genes like 5-lipoxygenase-activating protein PAI-1, which
is involved in vascular remodeling and increased vascular
muscularization (89).

TF superclass 3

The helix-turn-helix superclass (S3) of TFs comprises a DNA-
recognition helix that fits into the major DNA groove. Some
important TFs regarding their relevance to PAH belong to this
superclass.

FOXO1 and FOXM1
Forkhead box proteins O1 (FOXO1) and M1 (FOXM1)

have opposing roles in PAH pathogenesis. While FOXM1
is overexpressed in PASMC of PAH patients and promotes
hypoxia-induced proliferation as well as resistance against
apoptosis and DNA repair (90–92), FOXO1, which integrates
multiple vasculoprotective pathways, shows reduced expression
and/or is inactivated in PAH PASMC (93).
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TABLE 2 Genetic variants in transcription factors associated with PAH pathogenesis.

Gene symbol Identifier Location Mode of inheritance Gene-disease validity assertion

SMAD9 HGNC:6774 Chr 13 (36844831.36920854) Autosomal dominant Definitive (ClinGen)
high evidence (Genomics England)
high evidence (BRIDGE consortium)

TBX4 HGNC:11603 Chr 17 (61452422.61485110) Autosomal dominant Definitive (ClinGen)
high evidence (Genomics England)
n/a (BRIDGE consortium)

SOX17 HGNC:18122 Chr 8 (54457935.54460892) Autosomal dominant In scope (ClinGen)
high evidence (Genomics England)
n/a (BRIDGE consortium)

SMAD1 HGNC:6767 Chr 4 (145480770.145559176) (Pseudo-)
autosomal dominant

In scope (ClinGen)
low evidence (Genomics England)
high evidence (BRIDGE consortium)

SMAD4 HGNC:6770 Chr 18 (51030213.51085042) (Pseudo-)
autosomal dominant

In scope (ClinGen)
low evidence (Genomics England)
high evidence (BRIDGE consortium)

KLF2 HGNC:6347 Chr 19 (16324826.16328685) Autosomal dominant In scope (ClinGen)
n/a (Genomics England)
n/a (BRIDGE consortium)

TFs are sorted by evidence level of variant-disease association as determined by three consortia (ClinGen Genomics England and BRIDGE consortium). Chr, Chromosome; HGNC,
HUGO Gene Nomenclature Committee.

ELK1
ETS Like-1 protein (ELK1) is a member of the E-twenty-

six (Ets) ternary complex family of TFs known to stimulate
the expression of immediate early response genes involved in
cellular proliferation and apoptosis (94). Phosphorylation of
Elk-1 in concert with p38-mitogen-activated protein kinase
(MAPK) induces PAEC proliferation (95).

MSX1
Msh homeobox 1 (MSX1) is upregulated in lymphocytes

of IPAH patients and EC of BMPR2-deficicent mice. Lack of
BMPR2-mediated suppression derepressed MSX1 expression
which correlates with upregulation of MSX1 target genes in
IPAH (96).

OCT4
The octamer-binding TF 4 (OCT4) is a marker for

undifferentiated cells, highly expressed in human embryonic
stem cells. Even though OCT4 is frequently silenced in
differentiated somatic cells (97), Firth et al. detected weak
expression of OCT4 isoforms A and/or B mRNA and strong
expression of OCT4 pseudogene (PSG) 1 and 5 mRNA in
PASMC from healthy controls. In PASMCs under hypoxia or
isolated from IPAH patients, mRNA expression of OCT4A/B
is upregulated, whereas OCT4 PSG 1 and 5 are downregulated
(98). OCT4A/B upregulation in IPAH PASMC might be
mediated by HIF2α, which has been shown to directly bind
to the OCT4 promoter (99), and is a key regulator of the
pro-proliferative response in PAAF (100). This is in line
with a study by Bertero et al. showing that HIF2α-dependent
OCT4 activation promotes early vascular stiffening as a central

pathological event in PAH via induction of microRNA 130/301
(53). Therefore, hypoxia-associated OCT4 upregulation might
also contribute to a hyperproliferative, dedifferentiated PASMC
phenotype in IPAH.

TF superclass 4

TF superclass 4 comprises transcription factors with alpha-
helical DNA-binding domains. At least three members of this
superclass have important functions in PAH pathogenesis.

SOX17
SRY-related HMG-box (SOX) 17 is an endothelial-specific TF

pivotal for cardiac and pulmonary development by integrating
and regulating VEGF, WNT and NOTCH signaling [reviewed
in (101)]. Activation of SOX17 represses PA remodeling in the
monocrotaline PH model (102). Using genome-wide association
studies in PAH, rare pathogenic variants within the coding
region of SOX17 and SNPs in an enhancer region have been
associated with PAH (103–105).

TFAM
Transcription Factor A, Mitochondrial (TFAM) is a crucial

modulator of the inflammatory response to oxidative stress and
maintains mitochondrial DNA integrity and cell survival in
PAEC under oxidant stress downstream of the non-canonical
BMPR2-p53 signaling axis (20).

NFY
Nuclear factor Y (NFY) is epigenetically activated in PASMC

isolated from PAH patients to induce pro-proliferative and
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glycolysis genes to facilitate the cancer-like hyperproliferative
and glycolytic-switch phenotype of PAH PASMC (106).

TF superclass 5

Members of the alpha-helices exposed by beta-structures (S5),
as the name suggests, possess alpha helices exposed by a scaffold
of beta-strands (48). To our knowledge, there is a single TF of this
group with a well-established role in PAH.

MEF2
Transcriptional activity of myocyte enhancer factor 2

(MEF2) is inhibited in PAEC isolated from PAH patients
by nuclear accumulation of histone deacetylases 4 and 5.
Thereby, expression of vasculoprotective factors miR-424, miR-
503, connexins 37 and 40 as well as KLF2 and 4 is impaired
contributing to PAH pathogenesis (107).

TF superclass 6

The Immunoglobulin fold TF superclass (S6) comprises TFs
that are characterized by a beta-core structure that induces a DNA
contact. Many TFs of this group play a role in the context of PAH.

NFAT
Nuclear factor of activated T cells (NFAT), discovered

approx. three decades ago (108), is increased in PAH and
regulates PASMC calcium homeostasis in conjunction with
calcineurin (CaN) as interaction partner (109). Increased
CaN/NFAT promotes PASMC proliferation, survival and
migration in chronic hypoxia and MCT-induced PAH (109).
In addition, NFAT is upregulated by DNA-damage mediated
PARP-1 activation facilitating pulmonary vascular remodeling
which was reversible by PARP-1 inhibitors (110).

RUNX1
Liang et al. reported that bone-marrow derived endothelial

progenitor cells (EPC) undergo endothelial-to-hematopoietic
transition (EHT) to promote pulmonary arterial hypertension.
Inhibition of the critical hematopoietic transcription factor
Runt-related transcription factor 1 (RUNX1), also known as
acute myeloid leukemia 1 protein (AML1), blocked EHT
in vivo, and attenuated progression of experimental PH
by preventing bone-marrow egression of EPC (111). In
addition, RUNX1 mediates expression of neutrophil elastase
in PASMC contributing to ECM remodeling in the pulmonary
vasculature (112).

RUNX2
RUNX family transcription factor 2 (RUNX2) promotes

vascular remodeling and stiffening in vascular disease (113–
115). RUNX2 activation promotes vascular calcification.

Excessive proliferation of PASMCs in PAH is sustained over
time by the loss of miR-204-mediated upregulation of RUNX2
contributing to the development of proliferative and calcified
PA lesions (116).

TP53
Tumor protein p53 (p53), the Guardian of the Genome

(117), is a crucial TF highly conserved in multicellular
vertebrates, where it functions as a tumor suppressor by
maintaining genome integrity and stability (118). In general,
p53 controls many central cellular functions such as cell
cycle, DNA repair, apoptosis as well as inflammatory and
metabolic homeostasis via its numerous (direct) target genes
(119, 120). In the vasculature, depending on the context,
p53 exerts both, detrimental (121–123) and regenerative
effects (124, 125). In the pulmonary vasculature, p53
fulfills protective functions: Mizuno et al. demonstrated
that mice with global p53 knockout developed more
severe PH upon chronic hypoxia (126). This is in concert
with data showing that pharmacological inhibition of p53
transcriptional activity by Pifithrin-α was sufficient to
spontaneously induce PH in rats and to aggravate MCT-
induced PH (127). In addition, Wakasugi et al. found that
reduced p53 expression in PASMC led to increased aerobic
glycolysis and downregulation of mitochondrial respiration
thereby contributing to the cancer-like hyper-proliferative
“Warburg phenotype” found in PASMC isolated from PAH
patients. PASMC-specific p53-knockout, however, did not
aggravate hypoxia-induced PH (128). Activation of p53
in PASMC by Nutlin-3, on the other hand, prevented
and reversed experimental PH mice (129). In PAEC, p53
is a non-canonical effector downstream of BMPR2 (20,
28). Under oxidative stress, BMPR2-defective PAEC are
unable to stabilize and transcriptionally activate p53 and
p53-dependent TFs PGC1A, nuclear factor erythroid 2-
related factor 2 (NRF2), and mitochondrial transcription
factor A (TFAM). Loss of BMPR2-p53 signaling destabilizes
mitochondrial DNA integrity and biogenesis causing adenosine
triphosphate (ATP)-crises-mediated PAEC apoptosis which
is associated with an inability to recover from hypoxia-
induced PH (20). While, strictly speaking, p53 itself is a TF
complex by auto-multimerization, fine-tuning of cellular
effects depends on additional context-specific interaction
partners (120). In the pulmonary vasculature, in response
to oxidative stress and other DNA-damaging agents, p53
forms a transcriptionally active, vasculoprotective complex
with PPARγ in PAEC, PASMC, and PAAF which is BMPR2-
dependent (28). This is discussed further in the section on TF
complexes of this review.

NF-kB
Strictly speaking, nuclear factor kappa-light-chain-

enhancer of activated B cells (NF-κB) resembles a TF
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complex, best studied in cancer, that mediates transcription
of proinflammatory cytokines and thus promotes unfavorable
cell phenotypes (130). In advanced PAH, NF-κB is active
in PAEC, PASMC and perivascular macrophages and
lymphocytes of large and small pre-capillary vessels and is
correlated with expression of pro-inflammatory cytokines
(131). In PAEC, NF-κB contributes to leucocyte adhesion
and inflammation facilitating EndMT (132). In contrast,
genetic and pharmacological inhibition of NF-κB reversed and
prevented experimental PAH in rodent models, respectively
(133, 134). This indicates that targeting might be a reasonable
therapeutic strategy.

TBX4
T-box TF 4 (TBX4) is necessary in embryonal development

and a gene mutation leads into an autosomal-dominant disorder
called small patella syndrome (135). Kerstjens-Frederikse et al.
showed that genetically depleted TBX4 is associated with
childhood-onset PAH, which, with 0.7 cases per million, is an
even rarer disease than PAH (136).

STAT3
Several physiological processes, like cell growth and

apoptosis, are affected by the pro-survival TF signal transducers
and activators of transcription-3 (STAT3) and an inhibition
always leads to dramatic changes in biological processes. In
PASMCs, Paulin et al. demonstrated that STAT3 activation
induces proliferation and resistance to apoptosis by activating
NFAT (137).

STAT1
Gairhe et al. showed that Signal Transducer and Activator

of Transcription 1 (STAT1) is elevated in PAECs with caveolin1
loss-of-function. This results in a proliferative, hypermigratory
phenotype (138). Also Otsuki et al. showed, that PAECs
stimulated with human endogenous retrovirus K (HERV-
K) dUTPase have a TLR4-STAT1-dependent inflammatory
response (132).

TF superclass 7

This superclass features an alpha-/beta-scaffold in the DNA-
binding domain (48).

SMAD3
SMADs, in particular phospho-SMAD1/5/8 are important

downstream TF of BMPR2 signaling in the pulmonary
vasculature (23). SMAD family member 3 (SMAD3) is
downregulated in lungs from PAH patients or animal models.
Loss of SMAD3 is associated with a hyperproliferative and
pro-migratory PASMC and PAEC phenotype in a myocardin-
related transcription factor (MRTF)-dependent manner (139).

In PAEC stimulated with HERV-K dUTPase, activation of
SMAD3 can induce EndMT via SNAIL (132). More details
about SMAD signaling can be found in the section on TF
complexes of this review.

TF superclass 8

In this superclass, DNA binding occurs through β-sheets (48).
A single TF from this superclass has been associated with PAH
pathogenesis.

HMGA1
High Mobility Group AT-hook 1 (HMGA1) is upregulated

in PAECs of PAH patients, which is associated with a loss
of BMPR2. By inducing SLUG expression, HMGA1 promotes
EndMT of PAECs into an SMC-like mesenchymal phenotype in
the vasculature of BMPR2-mutant PAH patients (54).

Newly identified transcription factors
with unknown impact

In addition to the above-listed TFs with well-established
implications for PAH, there are other TFs that might
contribute to the disease. A recent comprehensive analysis
of chromatin remodeling in PAEC identified 18 novel
TFs with differential activity in PAH compared with
healthy control donors (more active in PAH: ATF1, ATF7,
E4F1, CREB5, RFX3, RFX4, FOSL1, FOSL2, JUN, JUND,
BATF; more active in controls: ARI3A, FOXG1, FOXJ3,
FOXL1, TBX3, PITX2). These TFs are not discussed further
in this review as the exact molecular mechanisms and
associated pathophysiological ramifications remain to be
elucidated (140).

Pathogenic genetic transcription
factor variants in pulmonary arterial
hypertension

Specific variants in at least 22 genes have been associated
with PAH pathogenesis (78, 105, 141, 142). Of these, six genes
code for TFs, namely KLF2, SMAD1, SMAD4, SMAD9, SOX17,
and TBX4. Variants in two of these genes show definitive
associations with PAH pathogenesis as classified by independent
expert panel working groups (Table 2).

Transcription factor complexes:
Basics

Finely tuned regulation of transcription requires sequence-
specific DNA binding of TFs and co-factors. The combination
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of multiple TFs is termed combinational control. Cooperation
between multiple copies of the same TF, or between different
TFs, can stimulate transcriptional synergy in which the
regulatory effect of TFs working together is greater than the sum
of the individual TFs (143). Cooperative TFs typically generate
transcriptional output through such multi-protein complexes
(144). A distinction must be made between (1) complexes
that consist of several TFs, i.e., individual TFs that have a
potentially transcriptional modulatory effect on their own, and
(2) complexes in which TFs are influenced in their function by
cofactors. Depending on the binding partner and cell type, a
single TF can thus influence various signaling pathways through
complex formation (145). Whether a TF complex consisting of
at least two TFs is referred to as a TF complex, TF dimer, or
TF multimer, or to what extent a distinction is made between
TF-TF complex and TF-co-factor complexes has not yet been
defined uniformly.

Transcription factor complexes in
the pathogenesis of pulmonary
arterial hypertension

Although a multitude of TF complexes are known to affect
pulmonary cells, only a few of them have been identified to play
a pivotal role in the pathogenesis of PAH or harbor therapeutic
potential. A descriptive overview of the best-described TF
complexes in PAEC and PASMC is given below and summarized
in Figure 2.

AP1 complex

The activator protein 1 (AP1) TF complex, which is
composed of c-JUN-c-FOS and c-JUN–c-JUN dimers, is
regulated by many extracellular stimuli like peptide growth
factors, pro-inflammatory cytokines, and other forms of cellular
stress (146). In the vessel wall of lungs from IPAH patients,
higher levels of total and phosphorylated c-FOS and c-JUN were
detected, which results in an altered proliferative response in
PASMCs mediated by the potent vasoconstrictor endothelin-1
(ET1) (147).

NOTCH1/RBP-Jκ TF-complex

The transmembrane protein Neurogenic locus notch
homolog protein 1 (NOTCH1), which can be activated
by extracellular ligands or hypoxia, releases the Notch
intracellular domain (NICD) through proteolytic cleavage,
which then translocates to the nucleus. There, NICD binds
to the Recombinant Signal Sequence Binding Protein J kappa
(RBP-Jκ) to form a heterodimeric TF complex. This complex

positively influences the proliferation of PAEC and exerts
anti-apoptotic effects (148). In addition, PAEC-PASMC contact,
mediated by BMPR2-activated NOTCH1, induces transcription
of endothelial regeneration genes, and coordinates the link
between PAEC metabolism and chromatin remodeling to
activate vascular homeostasis and repair in response to
endothelial injury (149).

Hypoxia-inducible factor complexes

Hypoxia-inducible factor (HIF) represents a TF complex that
is highly responsive to subtle changes in the environmental
oxygen content of the lung. The HIF complex is permanently
formed and degraded under normoxic conditions (150) and HIF
complex dynamics are finely tuned: With decreasing ambient
oxygen content the complex is rapidly stabilized and is also
degraded within minutes when reoxygenation occurs (150, 151).
In the lung, HIF isoforms HIF1α and HIF2α, individually form
a TF complex with HIF1β (also known as aryl hydrocarbon
receptor nuclear translocator, ARNT) (152–154).

Under hypoxia, HIF1 (= HIF1α/HIF1β complex) recruits
another co-factor, CREB/p300 to bind to the hypoxia-responsive
element (HRE) in the promoter region of its target genes (151)
to transcriptionally regulate angiogenesis, vascular tone and
remodeling (150, 151, 155, 156).

HIF1 is the predominant hypoxia sensor in PASMC and
promotes a hyperproliferative PASMC phenotype (157). HIF1α

expression is increased in pulmonary arteries of PAH patients
(158) and contributes to the hyperproliferation of PASMC by
modulating the vascular tone through altered expression of
membrane ion channels in PASMC (159, 160). HIF1 directly
induces expression of angiogenetic genes like VEGF (156) via
nitric oxide (NO) synthases 2 (NOS2) which synthesizes the
most potent vasodilator NO (158, 161, 162). Under conditions
of reduced NOS2 expression or impaired activity, the relaxing
effect of NO on the PA vascular bed is attenuated thereby
facilitating vascular remodeling and neointima formation via
increased PASMC proliferation and resistance to apoptosis
(163, 164). In addition to NO synthesis, Wang and Ying
describe another mechanism influencing vascular tone: Loss
of HIF1α induces expression of miRNA-543, which then
downregulates Twist1 resulting in increased expression of the
potent vasoconstrictor ET-1 in PASMC (44). Mitogenic effects
of ET-1 have been shown to be associated with PA remodeling
(165). Vascular remodeling in the lung is further facilitated by
HIF1 via transcriptional repression of miRNA-223 in PASMCs
leading to increased PARP-1 expression (166), via a feedback
loop with KLF5 (see above, 86) and by HIF1-dependent
upregulation of plasminogen activator inhibitor-1 (PAI-1) (167)
and Ras association domain-containing protein 1A (RASSF1A)
to promote hypoxia-signaling to PASMC in PAH thereby likely
conferring a cancer-like PASMC phenotype (168). Interestingly,
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FIGURE 2

Transcription Factor Complexes in the Pulmonary Vasculature related to PAH. Overview of most relevant TF complex pathways in the
pulmonary vasculature. TF complex formation upon complex inducing microenvironmental stimuli and downstream TF complex mediated
gene transcription programs are shown. Yellow box represents nucleus. Blue box represents cell membrane. Dotted ovals indicate cell
membrane anchored receptors. ub, Ubiquitin residue/Ubiquitination; –p, Phosphorylation.

PASMC proliferation caused by the transient HIF1 activation
is attenuated by treatment with PPARγ activator rosiglitazone
(169). HIF1α also mediates a metabolic shift to a cancer-like
Warburg phenomenon in PAEC (158). Nevertheless, in PAEC
HIF2α appears to be the predominant HIF isoform (147, 148).

HIF2α is increased in lung vascular ECs (LVECs) of
IPAH patients which was associated with downregulation
of HIF2α degrading enzyme prolyl hydroxylase domain
protein 2 (PHD2). This resulted in induction of SNAI1/2
expression facilitating EndMT and formation of pulmonary
vascular lesions (170). Endothelial-specific KO of PDH2 leads
to experimental PH under normoxia which was dependent
on HIF2α but not HIF1α (171). HIF2α also influences
vascular resistance in the pulmonary vasculature. Mice with
heterozygous global KO of HIF2α were protected from
hypoxia-induced PH in an ET-1- and plasma catecholamine-
dependent manner (172). Endothelial HIF2α disturbs EC
NO homeostasis by upregulation of Arginase and mice with
endothelial deletion of HIF2α were protected from hypoxia-
induced PH (173). On the other hand, an activating mutation in
the HIF2α gene is associated with erythrocytosis and pulmonary
hypertension (174, 175), which, interestingly, seems to be
mostly related to a phenotypic switch of PASMC but not
PAEC (176).

It is likely that the HIF complex also interacts with
additional TFs in the pulmonary vasculature to fine-tune
hypoxia-associated gene expression. In this light, Palmer

et al. suggest that HIF1α cooperates with activating
Transcription Factor 1 (ATF-1) and/or CREB-1 either
in the form of a complex or to functionally replace the
two TFs in hypoxia (151). Additional interaction partners
and their role in PA maintenance and remodeling remain
to be elucidated.

SMAD complexes

Dysfunction of the BMPR2 signal transduction is found
in all forms of PAH (24, 177, 178). Normally, BMPR2
activation triggers a canonical signaling pathway resulting
in phosphorylation of Receptor-regulated Small Mothers
Against Decapentaplegic Homolog Family members (R-SMADs,
SMAD 1/5/8) (23). Activated R-SMADs form a heteromeric
complex with common mediators (Co-SMADs, SMAD4). The
R-SMAD-Co-SMAD complex translocates into the nucleus
(179). SMAD proteins are crucial for cell development, the
transcription of specific vasculoprotective target genes (180)
and growth regulation by activating the TGF-β superfamily.
While R/Co-SMADs activate the TGF-β pathway, I-SMADs
disrupt the TGF-β pathway. Disturbed SMAD signaling
leads to increased MSX1, which seems to be associated with
IPAH and HPAH pathogenesis (96). The BMPR2-Smad axis
is a promising therapeutic target as SMAD signaling can
be pharmacologically reactivated on the BMPR2 level by
tacrolimus (24, 181).
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STAT3 homodimer

Signal transducer and activators of transcription-3 (STAT3)
is a cytoplasmatic transcription factor, which is activated in
response to cytokines (IL-6), growth factors (PDGF), and
agonists (ET1) and mediates its function as a homodimer
(182). It plays an important role in regulating the expression
of multiple proteins and TFs associated with the pathogenesis
of PAH such as HIF1α, Pim1, and NFAT. STAT3 signaling
confers a cancer-like, hyperproliferative, anti-apoptotic
phenotype to PAH PASMC (183). Functionally, STAT3
promotes pro-inflammatory processes by increasing the
recruitment of inflammatory cells through induction of
interleukin-6 (IL-6). In addition, STAT3 activation increases
proliferation and migration of vascular SMCs in response
to vascular injuries (184). STAT3 also regulates the miR-
cluster17/92 and miR-204, which regulates BMPR2 translation.
Via induction of KLF5, STAT3 augments transcription
of the anti-apoptotic gene BIRC5 (survivin) to increase
PASMC proliferation (184, 185). Another way, STAT3
promotes a pro-proliferative PASMC phenotype found in
PAH patients is by increasing PIM1 gene expression and
Nuclear Factor of Activated T Cells 2 (NFATC2) activity
(183, 185).

YAP/TAZ/TEAD complex

Transcriptional co-regulators Yes-associated protein
1 (YAP) and Transcriptional Co-Activator with PDZ-
Binding Motif (TAZ, official gene symbol: WWTR1) form
complexes with TEA domain (TEAD) transcription factors
and function as mechanotransducers and -effectors of the
Hippo signaling cascade (186). Altered mechanobiological
properties are a well-established pathological feature of PAH
and stiffening of the ECM initiates a vicious circle of vessel wall
remodeling that is further promoting ECM rigidity [reviewed
in: (187)]. In this context, Bertero et al. have shown that
ECM remodeling activates YAP/TAZ, which then induces
expression of miRNA-130/301 independent of TEAD (188).
miRNA-130/301 then promoted PA collagen deposition,
lysyl oxidase (LOX) activation with subsequent release of
pro-fibrotic factors causing proliferation of PAEC, PASMC,
and PAAF and subsequent vessel wall remodeling, ECM
stiffening and thus further YAP/TAZ activation (188). In
addition, pulmonary vascular stiffening-associated YAP/TAZ
activation also promoted metabolic reprogramming of
PAEC through direct transcriptional regulation of the
key enzyme of glutaminolysis, GLS1 (189). YAP/TAZ
activation also contributes to PAH severity by suppressing
anti-inflammatory and vasodilatory cyclooxygenase-2
and prostaglandin F1α in a TEAD-dependent fashion in
PASMC (190).

PPARγ/RXRα complex

Peroxisome proliferator-activated receptors (PPARs) belong
to a family of nuclear hormone receptors called nuclear factors.
Different PPAR isoforms (α, β/δ, γ) are ubiquitously expressed,
while PPARγ represents the main isoform in pulmonary
vascular cells (66, 191). PPARs usually bind to a nuclear receptor
response element (NRRE) in the promoter region of their target
genes in complex with a co-repressor or co-activator and a
histone deacetylase. Interaction with PPAR ligands forces co-
repressor dissociation to activate the transcription machinery
(192). Likewise, co-activators heavily influence the cellular
response of this TF-complex by chromatin acetylation thereby
making it accessible to RNA polymerase II (61). Typically,
PPARs form heterodimers with their canonical interaction
partner, retinoid X receptor (RXR), to control transcription
of target genes that play a critical role in energy balance,
including triglyceride and fatty acid metabolism and glucose
homeostasis: processes that are dysregulated in obesity, diabetes,
and atherosclerosis (58, 60, 61, 193, 194). It is highly likely, that
most anti-inflammatory and vasculoprotective PPARγ effects
in the pulmonary vasculature for which no exclusive PPARγ

interaction partners have been identified are mediated by the
PPARγ/RXRα complex (34, 59, 194).

PPARγ/MRN and PPARγ/UBR5
complexes

Although not a classical TF-TF complex, another DNA-
associated PPARγ protein complex is of special interest for
PAH pathogenesis. Upon genotoxic stress, PPARγ interacts
with the DNA damage-sensing heterotrimer MRE11-RAD50-
NBS1 (MRN) to facilitate DNA repair via the ATM pathway.
This also requires the interaction of PPARγ with UBR5, an
E3 ubiquitin-protein ligase, responsible for damage-associated
degradation of ATM inhibitor (ATMIN) (70). Interestingly, the
PPARγ-UBR5 interaction is disturbed in PAEC of PAH patients.
This corresponds to an inability to activate the DNA damage
response pathway upon genotoxic stress and to repair DNA
damage (70).

PPARγ/β-catenin complex

The protein β-catenin is normally involved in cell adhesion
and gene transcription. In PAECs, PPARγ forms a BMPR2-
mediated TF complex with β-catenin (PPARγ/β-catenin
complex). In PAH patients with a dysfunctional BMPR2-
signaling, the expression of PPARγ//β-catenin inducible
vasculoprotective genes such as Apelin is reduced. Apelin-
deficient PAECs are prone to apoptosis and promote PASMC
proliferation (46).
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PPARγ/SMAD3 and PPARγ/STAT3
complexes

Two other interesting complexes are related to
PASMC proliferation and metabolism: PPARγ/SMAD3
and PPARγ/STAT3. On the one hand, PPARγ inhibits the
well-known canonical TGF-β1-pSMAD3/4 signaling pathway
through interactions with SMAD3 and, on the other hand,
the non-canonical TGF-β/STAT3-FoxO1 signaling, which is
mostly unknown (33). Interestingly, the direct interaction
between PPARγ-SMAD3 (cytoplasm) and PPARγ-STAT3
(nucleus) inhibits TGF-induced phosphorylation and shuttling
of SMAD3/4 and STAT3/FoxO1 through pioglitazone which
resulted in altered proliferation and metabolism (67).

PPARγ/p53 complex

Under conditions of genotoxic stress PPARγ and p53
form a TF complex in various cell types (28, 195). In the
pulmonary vasculature, PPARγ and p53 interact physically
in all cell types across the vessel wall, namely PAEC,
PASMC, and PA adventitial fibroblasts, to activate a vasculo-
regenerative gene transcription program, which in PAEC is
BMPR2-dependent (20, 28). Of note, the PPARγ-p53 TF
complex can be harnessed pharmacologically as Nutlin-3, a
p53-stabilizing compound, induces complex formation even
under conditions of dysfunctional or lacking BMPR2, thereby
salvaging impaired transcription of vasculoprotective genes
including but not limited to genes promoting EC metabolism,
survival, angiogenesis, and DNA repair (28). In a genetic
PAH model with endothelial cell-specific BMPR2 knockout
Nutlin-3 induces formation of the PPARγ-p53 complex and
upregulation of complex target genes in lung microvascular
EC was associated with reversal of persistent pulmonary
hypertension, PA remodeling, and regeneration of pulmonary
microvessels (28).

Therapeutic potential of
transcription factors in pulmonary
arterial hypertension

Despite the many advances in recent decades, PAH remains
a disease with a poor long-term prognosis. If left untreated,
around 2–10% of patients die in the first year after diagnosis
(196). Current therapies can only delay, but not prevent
or reverse progression to right heart failure (11). Currently
approved PAH-specific therapies target four different pathways:
(1) the endothelin pathway promotes vasoconstriction and
proliferation, therefore endothelin receptor blockers (ERA)
are used, (2) prostacyclins or prostanoid receptor agonists

directly promote vasodilatation and partially exert anti-
proliferative effects, (3) activation of the NO-sGC-cGMP
pathway has vasodilatory and anti-proliferative effects, and
(4) in the subset of vasoresponsive PAH patients voltage-
dependent calcium-channel blocker are used (196, 197). An
early and upfront combination of these drugs is recommended
to improve long-term outcomes (198). Thus, although long-
term mortality has significantly improved, it remains high
(199, 200).

Currently approved pharmacological options for PAH
mainly influence the vascular tone. Therefore, current
medication cannot significantly reverse the pathologically
dysregulated signaling pathways that lead to vascular
remodeling through inflammation, growth factor signaling, and
metabolic dysfunction (10). New treatment options for PAH
patients are therefore needed to further improve outcome.

In this light, TF-based therapies might pave way for
reverse remodeling strategies. TFs are involved in numerous
pathological conditions like cancer, diabetes, or cardiovascular
diseases. However, TFs were long deemed “undruggable,” yet
targeting transcription factors for therapy has become reality
(201). Strategies include the use of small molecule compounds
to modulate TF activity, e.g., by inhibition of TF (-co-
factor) complex formation or DNA binding or promotion
of TF degradation [reviewed in (202)]. For some diseases,
TF targeting therapies are clinically well established like
TZD therapy in type 2 diabetes mellitus (203). For PAH,
multiple novel compounds are currently in clinical trials
with promising candidate TF pathways still in preclinical
phases (204).

One such candidate is FOXO1 (205). Loss of FOXO1
function in PASMCs promoted a disease phenotype in vitro
and in vivo and caused experimental PAH. On the other
hand, pharmacological activation of FOXO1 was associated with
reconstitution of a healthy PASMC phenotype and reversal of
experimental PH (93). The multitude of routes and options
for pharmacological FOXO1 activation (206) augurs well for
FOXO1-based PAH treatment strategies (93, 206).

HIF has been a TF of interest as a therapeutic target for
PAH for many years (150, 157). Early evidence indicated that
pharmacological inhibition of HIF1 and HIF2α attenuated
hypoxia-induced pulmonary hypertension, RV hypertrophy
and PA remodeling by inhibiting intracellular Ca2+ release
and pH changes upon hypoxia in PASMC (207). In general,
at least 12 different pharmacological inhibitors of HIF1
and HIF2α were able to attenuate, prevent or reverse
experimental pulmonary hypertension in rats or mice [reviewed
in (157)] and multiple strategies appear feasible: Besides
pharmacological inhibition of HIF signaling, destabilization
of HIF via activation of HIF-degrading enzyme cascades
or disruption of HIF complexes have all shown promising
results as potential therapeutic strategies in experimental
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PH (and, partly, in ECs isolated from PAH patients) (208–
210). In addition, HIF augurs well for novel combination
therapies since pharmacological inhibition of HIF2α with
simultaneous activation of p53 was more effective in
reversing experimental PH and vascular remodeling than
either treatment alone (211). This is particularly interesting, as
pharmacological activation of p53 has been shown to reverse
experimental PH by PASMC- (129) and PAEC (28)-specific
mechanisms (see below).

The YAP/TAZ/TEAD pathway can also be harnessed
as a therapeutic target in PAH. Pharmacological blunting
of YAP/TAZ activation by glutaminase inhibitors, LOX
inhibitors, ApoE activators or gene therapy using adeno-
associated viruses expressing shRNA against the newly identified
YAP/TAZ upstream regulator HSP110 attenuated or reversed
experimental PH in rodent models (188, 189, 212).

Despite recent evidence that emphasizes the beneficial
role of HIF2α inhibition (in endothelial cells) as a
therapeutic target for pulmonary hypertension (208–210),
thorough selection of patients to test proof-of-concept of
these results in humans will be necessary as endothelial
HIF2α appears to be crucial for vascular survival and
maintenance of a functional alveolar structure (213, 214).
As an alternative, targeting HIF1 in PASMC might be a
reasonable approach (157).

As mentioned before, PPARγ is pivotal for maintaining
pulmonary vascular homeostasis via complex formation
with various interaction partners. PPARγ activation through
endogenous ligands or pharmacological compounds has
been shown to convey a broad spectrum of beneficial
functions in the pulmonary vasculature from facilitation
of normal cell signaling to maintaining pulmonary vascular
cell homeostasis and promoting reverse remodeling of
pathological vascular changes associated with PAH (28,
32–34, 46, 53, 63, 66, 67, 69, 215–219). In PAH studies,
pharmacological activation of PPARγ is achieved by using
thiazolidinediones (TZD, including Rosiglitazone and
Pioglitazone), a class of drugs that has been under scrutiny
for some time due to unwanted and potentially harmful side
effects (34).

Earlier studies mostly used Rosiglitazone showing beneficial
effects in various animal models of PH (53, 66, 216, 219).
The first evidence in PAH came from Hansmann et al.
who showed a complete reversal of right ventricular and
pulmonary arterial remodeling by inhibition of proliferation
and promotion of insulin sensitization in PASMC (66, 216).
This was further substantiated in additional PH animal
models by Liu et al. (219) as well as Bertero et al. (53). In
a PAEC-dependent mechanism, Rosiglitazone restored miR-
98 expression to attenuate ET-1-mediated hypoxia-induced
PH (220). Due to the more favorable side effect profile,
recent PH studies have used Pioglitazone (34). Pioglitazone
also reversed PA and RV remodeling through beneficial

effects on PASMC and cardiomyocytes (32, 33, 67, 217)
by inhibiting canonical and non-canonical TGFβ1 signaling
(33, 67), restoring mitochondrial homeostasis and improving
cellular energy production by optimization of β-oxidation and
glucose utilization (32).

Recently, we have also shown that PPARγ signaling
is essential for Nutlin-3-mediated vasculoregeneration
by modulating PAEC-protective p53 signaling (28). The
small molecule compound Nutlin, currently in clinical
trials for various cancers (221–223), induces activation
of the PPARγ/p53 complex and a vasculo-regenerative
gene transcription program in PAEC, PASMC, and PAAF
(28). This resulted in reversal of persistent pulmonary
hypertension in mice with endothelial-specific loss of BMPR2
via restoration of endothelial function and regeneration of
pulmonary microvessels (28). In PAECs harboring BMPR2
mutations that were isolated from patients with PAH, Nutlin-
induced PPARγ/p53 target genes facilitated the repair of
prevalent DNA damage (28). In PASMC-based PH models,
Nutlin-3 was also successful in preventing and reversing
experimental PH by inhibiting PASMC proliferation through
induction of a quasi-senescent phenotype (129). Since the
PPARγ/p53 TF complex is also formed in PASMC (28) it
would be interesting to see to which extent the beneficial
effects of Nutlin-3 on PASMC are mediated by PPARγ/p53
complex target genes.

In addition to the direct targeting of TFs, the therapeutic
potential of modulating TF co-factors or epigenetic factors
which alter TF DNA is currently being investigated
[reviewed in (45)].

In light of the recent advances in molecular strategies to
modulate TF function, it appears to be only a matter of time
before TF-based therapies will become a clinical reality in PAH
treatment regimens (35).

Conclusion

A growing body of evidence highlights the central role
of TFs in the pathogenesis of PAH. Currently approved
therapies mainly modulate vascular tone, but fail to significantly
reverse pathological vascular changes in pulmonary arteries
and microvessels or the right ventricle/heart. Dysregulation of
TF function is closely associated with pathological remodeling
of the pulmonary vasculature and the right heart. Multiple
TFs have been identified that are related to either maintaining
pulmonary vessel homeostasis or, if dysfunctional, contributing
to vascular pathology. Even well-studied, pathways commonly
dysbalanced in PAH such as BMPR2 and TGFβ signaling, often
disembogue in a highly intertwined network of downstream
TFs. These TFs often form complex protein-protein interaction
networks (e.g., PPARγ) to elicit cell-specific, in part opposing
functions, adding complexity.
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However, critical knowledge gaps remain. Most importantly,
available data suggest that TFs operate through elaborate
networks comprising multiple TFs and Co-factors (28, 53,
70). Investigation of individual TFs may not fully reflect their
biological function in the pulmonary vasculature and how
they integrate a multitude of intracellular and extracellular
signals. Therefore, additional systems biology approaches are
needed to dissect the pathobiology of complex TF networks.
An additional layer of complexity is added by chromatin
remodeling phenomena in PAH, which directly affect TF activity
(84, 140). In the pulmonary vasculature, it is thus necessary
(a) to fully understand the underlying epigenetic mechanisms
that facilitate three-dimensional chromatin conformation and
accessibility and (b) how exactly epigenetic modifications affect
TF networks. This is especially important in light of epigenetic
modifiers emerging as druggable targets in PAH (224, 225).

While current data suggest that transcriptional dysfunction
is an early event in PAH pathogenesis (4, 226, 227), the spatial
resolution of TF dysfunction is less understood. Even though
there is growing evidence that (microvascular) endothelial
dysfunction precedes the pathological changes in PASMC and
PAAF (228), it remains unclear what microniche-specific factors
contribute to cell-type specific TF functions. In this regard,
the application of single-cell epigenomics and multi-omics
technologies will help uncover cell-type specific TF networks.

Therefore, the characterization of molecular TF functions,
binding partners, and modes of action are essential for
understanding PAH pathogenesis and identification of new
therapeutic targets. Current experimental TF-based therapeutic
strategies focus on modulating individual TF function, stability,
or TF interaction partner network formation with very
promising results.

Although specific targeting of dysregulated TF pathways in
PAH is advantageous over the currently available broad and
rather symptomatic therapeutic approaches, off-target effects
need to be mitigated when using systemic drug strategies (229).
Hence, utilizing gene therapy approaches with high selectivity
(tropism) for specific pulmonary vascular cell types might be
useful to overcome this (230, 231).

In summary, recent advances in our understanding of
the underlying molecular mechanisms as well as tailored
modulation of TF function pave the way for TF-based vasculo-
regenerative or reverse remodeling therapies. The clinical

usability of TF-based therapies needs to be validated in
upcoming clinical trials.
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