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In contrast to the advanced development of the left ventricular assist device

(LVAD) therapy for advanced heart failure, the mechanical circulatory support

(MCS) with biventricular assist device (BVAD) and total artificial heart (TAH)

options remain challenging. The treatment strategy of BVAD and TAH therapy

largely depends on the support duration. For example, an extracorporeal

centrifugal pump, typically referred to as a temporary surgical extracorporeal

right ventricular assist device, is implanted for the short term with acute right

ventricular failure following LVAD implantation. Meanwhile, off-label use of a

durable implantable LVAD is a strategy for long-term right ventricular support.

Hence, this review focuses on the current treatment strategies and clinical

outcomes based on each ventricle support duration. In addition, the issue of

heart failure post-heart transplantation (post-HT) is explored. We will discuss

MCS therapy options for post-HT recipients.
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1. Introduction

The clinical data of mechanical circulatory support (MCS) for biventricular heart
failure (BHF) is limited due to the low prevalence of treating severe right heart
failure (RHF). The complexity of the BHF treatment strategy also makes the situation
challenging. The reason for the complexity is that the BHF treatment strategy will be
determined with the consideration of support duration for both ventricles. Furthermore,
the clinical scenario will be important to determine the device; for example, the device
selection may differ with the Interagency Registry for Mechanically Assisted Circulatory
Support (INTERMACS) patient profiles and baseline patient characteristics, including
the diagnosis (1, 2).

BHF support conditions have combinations of chronic/temporary support duration
and left/right ventricle, which is as follows: (1) Chronic left ventricular (LV) support
with chronic right ventricular (RV) support; (2) Chronic LV support with temporary RV
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support; (3) Temporary LV support with chronic RV support;
and (4) Temporary LV support with temporary RV support. In
this review, we will focus on 1, 2, and 4, because the temporary
LV support with chronic RV support situation is quite rare due
to RHF pathogenesis (3).

Lastly, this review article will discuss populations in
need of BHF support among post-heart transplantation (post-
HT) patients (4). Since the first successful human heart
transplantation (HT) reported in 1967 in South Africa, over
120,000 patients have received HT therapy (5). HT volumes
have been increasing steadily for more than a decade (6). Also,
the survival rate is improving, as median survival after adult
HT performed in 2002–2008 now exceeds 12 years; therefore,
the number of post-HT patients are increasing. However, the
leading causes of death among post-HT patients, remain the rate
of graft failure and infection (6). We will discuss the possibility
of indications for BHF support MCS in this situation.

2. Devices for chronic LV support
with chronic RV support

There are two options for chronic LV support with chronic
RV support: using a continuous-flow (CF) left ventricular
assist device (LVAD) and using one more LVAD as a right
ventricular assist device (RVAD); or a total artificial heart
(TAH). Patients requiring RVAD after LVAD implantation, or
lower INTERMACS patient profile patients with biventricular
failure diagnosis, are the most frequent example for this
clinical situation.

Regarding the first listed population (patients requiring
RVAD after LVAD implantation; biventricular assist device,
BVAD), according to the Twelfth INTERMACS Report,
approximately 2,700–3,000 patients in the United States (US)
receive an LVAD implant each year; and, in 2020, CF LVADs
have accounted for the most (7). In the HeartMate 3 R© (HM3)
(Abbott, Abbott Park, IL, USA) pivotal and post-pivotal trial
study, 4.1 and 7.4% of patients, respectively required BVAD
(8). Several reasons for RHF during the LVAD therapy have
been hypothesized. For instance, the shift of the interventricular
septum (IVS) to the left side by LVAD therapy reduces the septal
contribution of the RV contraction and thus increased workload
is a concern for worsening RV function (9–12). In addition, the
shift of the IVS may distract the septal papillary muscle with
systolic restriction of septal leaflet motion, which may intensify
the tricuspid regurgitation (13). Furthermore, increased venous
return created by increased cardiac output from the LVAD may
worsen the potential RV dysfunction that LVAD patients already
have to some degree (14).

One of the keys to a successful BVAD therapy may
be estimating the support duration. In HM3 patients,
approximately 40% of those upgrading to BVAD were
performed within 0–2 days after HM3 implantation, and 23%

of upgrades were performed within 3–14 days (8). The severe
late RV failure among LVAD patients, which is defined by
the requirement for an RVAD at 3–12 months from LVAD
implant, is very rare (15). In addition, over 60% of successful
RVAD weaning rates were reported with a median support
duration of 13–17 days (16–19). Therefore, paradoxically,
if BVAD intervention after LVAD implantation took place
in an earlier period, BVAD support duration is expected to
be short (up to 17 days). An investigation using the United
Network for Organ Sharing (UNOS) database showed that 1%
of LVAD patients were transitioned to durable BVAD support,
and 0.2% of LVAD patients were transitioned to TAH support
(20). Appropriate timing for the intervention is also critical.
Preoperative hemodynamic parameters are used to assess the
RV function after LVAD implantation (Table 1) (21). For
example, with preoperative central venous pressure (CVP)
greater than 15 mm Hg and CVP/pulmonary capillary wedge
pressure (PCWP) greater than 0.63, a significantly higher risk
of RHF was reported (17). The preoperative RV stroke work
index (RV SWI) was reported as another predictor for RVAD
implant function, which suggests that RV SWI was lower in
the RVAD group (22, 23). The preoperative pulmonary artery
pulsatility index was reported as a predictor for early RV failure
with a cutoff value of 2.0 (23, 24). Also, using echocardiography,
the RV global longitudinal strain predicted an early acute and
post-implant RV failure with a cutoff value of −9.7% (25).
However, a single parameter still may not be sufficient in
predicting the RHF after LVAD implantation (26).

Using durable implantable CF LVAD as RVAD, such as HM3,
currently is an off-label use. There is a lack of a proven, long-
term MCS devices except for the dual Berlin Heart EXCOR R©

system (Berlin Heart, GmbH, Berlin, Germany), which is mainly
used in pediatric patients. Due to anatomical and physiological
limitations (12), a modified technique was used to implant dual
HM3 (27, 28). The clinical outcome for dual HM3 varied among
two studies; the survival at 18 months was 54.6–91.7% (28,
29). Another retrospective study using INTERMACS database
(n = 38, multi-center) described that survival outcomes among
the BVAD patients (BVAD was defined as LVAD and RVAD
implanted in the same operation) were 68% at 6 months and
62% at 12 months (30). This study found that 11 patients died
with device in place, 9 patients survived to reach HT, and
18 patients were alive on support at the mean follow-up of
5.08 months.

Another option for chronic LV support with chronic RV
support is TAH. SynCardia R© TAH (Figure 1A) (SynCardia
Systems. LLC, Tucson, Arizona, USA) is the most commonly
used TAH. It is a pneumatically driven FDA-approved, volume
displacement pump TAH with a size line-up of 50 mL and
70 mL. The clinical data reported that the TAH patient mortality
while waiting for HT was 7.4%, while 87% of patients reached
HT (20). An analysis from the INTERMACS database (n = 450,
all patients received SynCardia 70 ml TAH) showed that survival
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at 1 year was 53.2% and 33.9% at 2 years (2). HT was
performed in 266 patients, and 162 patients died on support.
Among those, 80% of patients in this study were INTERMACS
patient profiles 1 or 2, and 20% of patients were supported
with extracorporeal membrane oxygenation (ECMO). Notably,
survival was superior in the earlier era (2006–2011) than the
most recent era (2012–2017), which suggests that the difference
in survival was largely influenced by the experience of the facility
(31); therefore, the TAH survival may improve with surgical and
patient management experience including the patient selection
and the timing of intervention (2). Furthermore, the baseline
condition of the TAH cohort was sicker than LVADs patients,
which may have affected the survival. Currently, the largest
difference between BVAD and TAH is the strategy implemented.
TAH implantation procedure resect both ventricles; therefore, a
bridge to recover treatment concept is not feasible, and HT is the
only way forward. However, destination therapy with SynCardia
70 mL TAH, in which a clinical trial is ongoing in 2022, may
change the future strategy.

Aeson R© TAH (Figure 1B) (Carmat SA, Vélizy-Villacoublay,
France), is a volume displacement, electro-hydraulically driven
TAH which has recently been approved by the FDA to conduct
an early feasibility study (32). Currently, the only clinical data
available for Aeson R© TAH is an implantation report for four
patients, which describe a support period of 20–270 days, with
two patients being discharged to return home (33). In addition,
several TAHs are in development, such as Cleveland Clinic CF
TAH (CFTAH) (Cleveland Clinic, Cleveland, OH, USA) (34–
36), BiVACOR R© TAH (BiVACOR, Inc., Houston, TX, USA)
(37–39), and Realheart R© TAH (Scandinavian Real Heart AB,
Vesteras, Sweden) (40–42).

3. Devices for chronic LV support
with temporary RV support

For chronic LV support with short to intermediate RV
support duration (0–30 days), an extracorporeal centrifugal
pump has been widely used. Customarily, this configuration is
called a surgical extracorporeal RVAD (sRVAD). In sRVAD, the
inflow cannula is placed directly, or (via the femoral vein) into
the right atrium (RA), and the outflow cannula is placed directly,
or (via a sutured prosthesis graft) into the pulmonary artery (PA)
(16, 43). Both cannula will pass through the skin, and the circuit
will be connected to a centrifugal pump system, such as the
CentriMag R© blood pump (Abbott, Abbott Park, IL, USA). The
advantage of this system is that it is easy to place, so if RV failure
presents during the HM3 implantation procedure, the sRVAD
can be placed through a sternotomy. Also, this system is able to
provide much larger flows than a veno-arterial extracorporeal
membrane oxygenation system. The disadvantage of this system
is that it may require a re-sternotomy to explant the sRVAD,
which increases the risk of infection.

The RVAD implantation following LVAD implantation
occurs within 0–2 days (8), and a study reported that 86%
of patients who received sRVAD after LVAD implantation
were successfully weaned from support with a duration of
16.4 ± 9.6 days (44). Another analysis using the INTERMACS
database reported that the 1-, 6-, and 12-month survival rates for
the chronic BVAD patients were 89, 68, and 62%, respectively,
and there was no significant difference between the patients with
chronic LV support with temporary RV support (30).

Sternotomy for HM3 implantation allows easy access to
both RA and PA for sRVAD implantation; however, an effort
to implant HM3 with minimally invasive surgery, preferably
by thoracotomy, is under review (45); therefore, access to
the RA and PA would be limited. Since the most common
support duration is temporary to intermediate (0–15 days),
percutaneous RV assist device (p-RVAD), such as Impella RP R©

(Figure 1C) (Abiomed, Danvers, MA, USA) and LifeSPARC R©

Pump with ProtekDuo R© dual-lumen cannula (Figure 1D)
(LivaNova, Houston, TX, USA), may be a good solution.
A prospective cohort study, which includes patients who
received Impella RP implantation following LVAD implantation
(n = 31), described that 77.4% of patients reached the primary
end-point which was survival at 30 days, or discharge after
device explant, or induction of anesthesia for a long-term
therapy (46). Another retrospective study reported that 27
LVAD patients received the LifeSPARC Pump with ProtekDuo
dual-lumen cannula system implantation, and device weaning
occurred in 86% of patients, with 15% resulting in-hospital
mortality (47). Those outcomes seems acceptable; thus, in cases
of unplanned p-RVAD implantation, and if high-risk RV failure
patients are having surgery, it may be better to perform LVAD
implantation surgery in the hybrid operating room.

4. Devices for temporary LV
support with temporary RV
support

There are emergent, acute scenarios that require temporary
BVAD support. The percutaneous LVAD (p-LVAD), such as
Impella R© (Abiomed, Danvers, MA, USA), has been increasingly
used as temporary LV support, and sometimes it is used in
combination with a p-RVAD. In a retrospective study among 5
U.S. hospitals (n = 20),with a combination of left side Impella
and Impella RP, called BiPella (48), it was reported that in-
hospital mortality was 50% (49). The advantage of this system
is its ease to implant and explant the device; however, a concern
of this therapy is adequate LV unloading and it should be
monitored to ensure appropriate support is supplied. If not,
the pulmonary vasculature is over-pressurized due to the high
pulmonary resistance resulting from high left atrial pressure.
The combination of left side Impella and LifeSPARC Pump with
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TABLE 1 Preoperative predictors for right ventricle failure following
left ventricular assist device (LVAD) implantation.

Parameters Description

CVP > 15 mm Hg OR: 2.1 (IQR 1.2–3.6)

CVP/PCWP > 0.63 OR: 2.5 (IQR 1.4–4.6)

RV SWI RVAD [151 ± 75 (mm Hg × mL/m2)] > no RVAD
[368 ± 245 (mm Hg × mL/m2)] (p = 0.01)

PAPi < 2.0 AUC, 0.77; sensitivity, 74%; specificity, 67%

RV GLS > −9.7% AUC, 0.86; sensitivity, 89%; specificity, 78%

CVP, central venous pressure; OR, odds ratio; IQR, interquartile range; PCWP,
pulmonary capillary wedge pressure; RV SWI, right ventricle stroke work index; RVAD,
right ventricle assist device; PAPi, pulmonary artery pulsatility index; AUC, area under
curve; RV GLS, right ventricle longitudinal strain.

ProtekDuo dual-lumen cannula has been described in several
reports (21, 50–52).

5. Devices for post-heart
transplantation biventricular
failure

HT is one of the de facto goals of current end-stage
HF treatment, which has an overall median survival of
12.5 years, and a conditional survival curve of 14.8 years for
those who survived the first year (53). Hospitalization due
to late graft failure was observed in 33% of patients (54).
Among those populations, some may progress to cardiogenic
shock, and may need a MCS. Notably, a retrospective study
(n = 26) reported that 42% of patients with late graft failure
were treated with BVAD and TAH (4). Among the patients
with BVAD implantation in this study, 60% received dual
CentriMag configuration, 20% received dual implantable LVAD
configuration (details unknown), 10% received dual HVAD, and
10% received HVAD with sRVAD. The outcomes were that 23%

were weaned (including single VA-ECMO), 19% underwent Re-
heart transplantation (Re-HT), and 15% were discharged with
durable MCS. The mortality rate was 42%.

Re-HT may be an option for patients who develop refractory
graft failure. The indication is rare, but the population receiving
second and third Re-HT has increased (55). Although MCS
is not commonly performed as a bridge to Re-HT, the TAH
is theoretically an ideal option because the antigen would be
removed from the body; however, the outcome for the TAH
as a bridge to Re-HT is reported as very high risk, and the
potential for improving survival remains uncertain (56). In
addition, TAH as a destination therapy may change future
treatment strategies.

6. Discussion

In this review, we mainly discussed biventricular failure
with post-LV failure pathogenesis based on the classification of
support duration. The treatment strategy differed in support
duration, and there is an interesting, ongoing effort in both acute
and chronic biventricular MCS. In addition, congenital heart
disease is still another condition that may require biventricular
support. The most widely used MCS among congenital heart
disease population is the Berlin Heart EXCOR R© system, which
offers a variety of pump sizes. Treatment strategies for the
pediatric population may differ due to patient growth.

Regarding chronic BVAD, dual HM3 is the most commonly
used configuration. The adverse event most noted is RVAD
pump thrombosis, which has been consistently reported with
occurrence of 36–37% (12, 57, 58). However, it seems lesser
than previous reports (28, 29), which can be explained by
the low thrombosis risk of the HM3. HM3 is a centrifugal
pump with a displacing volume of 80 mL, and it is slightly
larger than HeartWare R© Ventricular Assist Device (HVAD)

FIGURE 1

Mechanical circulatory support (MCS) devices for right ventricular/biventricular failure. (A) SynCardia R© total artificial heart 70 cc (left) and 50 cc
(right), re-use from Villa et al. (60), (B) Aeson R© total artificial heart (Image from Carmat SA, used with permission), (C) Impella RP R© (Image from
Impella RP instruction manual, used with permission), and (D) LifeSparc R© pump with ProtekDuo R© cannula (Image from Livanova Investor Day
2021 presentation, used with permission).
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(Medtronic Inc., Minneapolis, MN, USA) (50 mL); this size
difference influences device location inside the patient’s chest.
HM3 is likely to be implanted into the free wall of the RA.
The pump is wrapped in Gore-Tex R© (W.L. Gore, Flagstaff, AZ,
USA), or a polytetrafluoroethylene sheet, and is placed as it
protrudes into the right thoracic cavity through a slit in the
pericardium (27, 29). Although the relationship with pump
positioning was uncertain, the evacuation of a right hemothorax,
effusion, and Aspergillus species infection in the RVAD cavity
were reported. On the other hand, HVADs were implanted into
either the RA (38%) or RV (63%) (59). RA-implanted HVAD was
supported longer than RV HVAD (p = 0.02), and did not show
significant differences in postoperative complications, such as
pump thrombosis. Therefore, a small, durable pump implanted
into the RA appears to be a viable option for RVAD used in
chronic BVAD.

In conclusion, the percutaneous temporary RVAD may
increase its prevalence in temporary biventricular support.
As for long-term biventricular support, the development of
a durable, specifically designed RVAD, with a wide operation
range and suitable inflow cannulas, is expected. Furthermore,
the development of a durable BVAD, including TAH, may
provide a valid solution for the management of heart failure
among post-HT patients.
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