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Comorbidity is defined as the coexistence of two or more diseases in

a person at the same time. The mathematical analysis of the COVID-19

model with comorbidities presented includes model validation of cumulative

cases infected with COVID-19 from 1 November 2020 to 19 May 2021 in

Indonesia, followed by positivity and boundedness solutions, equilibrium point,

basic reproduction number (R0), and stability of the equilibrium point. A

sensitivity analysis was carried out to determine how the parameters a�ect

the spread. Disease-free equilibrium points are asymptotically stable locally

and globally if R0 < 1 and endemic equilibrium points exist, locally and

globally asymptotically stable if R0 > 1. In addition, this disease is endemic in

Indonesia, with R0 = 1.47. Furthermore, two optimal controls, namely public

education and increased medical care, are included in the model to determine

the best strategy to reduce the spread of the disease. Overall, the two control

measures were equally e�ective in suppressing the spread of the disease as

the number of COVID-19 infections was significantly reduced. Thus, it was

concluded that more attention should be paid to patients with COVID-19

with underlying comorbid conditions because the probability of being infected

with COVID-19 is higher and mortality in this population is much higher.

Finally, the combined control strategy is an optimal strategy that provides an

e�ective guarantee to protect the public from the COVID-19 infection based

on numerical simulations and cost evaluations.

KEYWORDS
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1. Introduction

The COVID-19 virus was reported in the Wuhan-Hubei Province of China

in December 2019 and was spread rapidly to various parts of the world [1–

6]. Symptoms are usually mild and appear gradually. In general, the symptoms

of COVID-19 are fever, dry cough, and tiredness. In addition, there are other

symptoms such as chest pain and tenderness, nasal congestion, headache, conjunctivitis,

diarrhea, loss of sense of taste or smell, skin rash, or discoloration of the

fingers or toes [6]. The symptoms experienced are usually mild and appear

gradually. Furthermore, moderate and severe infection symptoms can occur in
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humans and appear gradually, such as having fever and

cough accompanied by difficulty in breathing or shortness of

breath, chest pain, and others [1, 6]. Individuals with previous

comorbidity (such as diabetes, lung, and heart disease) are

more likely to develop severe disease with stronger COVID-

19 symptoms than individuals who do not have a comorbidity

[7, 8]. In the case of COVID-19 comorbidity in Indonesia, 12

different diseases have been recorded, which range from the

most at risk to the least at risk, namely hypertension, diabetes

mellitus, heart, pregnancy, lung, kidney, immune disorders,

cancer, other respiratory disorders, asthma, tuberculosis, and

liver [9].

The first case in Indonesia was reported directly by

President Jokowi Widodo on 2 March 2020 and there were

as many as two people infected, namely a mother and

child suspected of contracting it from a Japanese citizen

[10]. Data from web [11], on 2 October 2020, to be

precise, indicate that Indonesia was ranked 23 out of 215

countries reported being infected with 295,499 confirmed

cases, 10,972 reported deaths, and 221,340 reported recoveries.

Meanwhile, according to data on 14 June 2021, Indonesia

was ranked 18 out of 222 countries reported being infected,

with 1,919,547 confirmed cases, 53,116 reported deaths, and

1,751,234 reported recoveries.

The increasing number of COVID-19 cases requires a

control strategy to control the COVID-19 outbreak. Control

technique isolation and individual quarantine are the most

efficient measures whenever a new outbreak occurs in a

region without a vaccine or therapy [12, 13]. Several appeals

or mitigations from WHO to control COVID-19 are social

distancing, use of masks in public places, and intensive contact

tracing (tracing) followed by quarantine of individuals who have

the potential to contract the disease, and isolation of infected

individuals in hospitals or independently [14]. Therefore, public

education plays an important role in controlling the outbreak

because it can convey information regarding how to prevent and

reduce the transmission of COVID-19.

Furthermore, it is necessary to use mathematical modeling

to determine the spread of COVID-19 infection and whether

the control measures are effective. WHO also acknowledges

that mathematical modeling can help health decision-makers

(doctors or health professionals) and policymakers make

decisions or find solutions (governments) [15]. The Susceptible-

Infected-Removed (SIR)model is a mathematical representation

of how diseases spread. The SIR model was first developed

in 1927 by Kermack and McKendrick, who established it as a

reference work and contributed significantly to the development

of the mathematical theory of disease transmission [16, 17].

Several studies are related to the spread of disease, for example,

research on the Coronavirus that caused SARS [18] and MERS

[19, 20].

Soewono [21] applied the SEIR model, which has four

subpopulations: susceptible (S), exposed (E), infected (I),

and recovered (R), to simulate the spread of COVID-19.

This model is an improvement on the SIR COVID-19

model. Furthermore, Das et al. [22] add a subpopulation

of C (infected with comorbidity), so that the population is

divided into five subpopulations, namely S, E, I, C, and

R. The comorbidity referred to in this study is a general

congenital disease, while research from Omame et al. [23] also

proposed a comorbidity COVID-19 model, Omame et al. model

coinfection with comorbidities (especially diabetes mellitus).

So, Omame et al. built a model by dividing the population

into eight subpopulations, namely susceptible (S), susceptible to

comorbidity (Sc), individuals infected with COVID-19 without

comorbidities (I), isolation and hospitalization for individuals

infected with COVID-19 without comorbidity (H), recovered

from COVID-19 but without comorbidity (R), infected with

COVID-19 and comorbidity (Ic), isolation and hospitalization

for those infected with COVID-19 and comorbidity ( Hc),

and recovered from COVID-19 but with comorbidity (Rc). In

another study, Jia et al. [24] by incorporating subpopulations of

isolation (H) and quarantine (Q), the model provided divides

the population into seven subpopulations, namely S, E, I, A,

Q, H, and R. The model is also based on the most recent

data from the WHO, indicating that susceptible individuals

must first be quarantined to stop the further spread. Research

on COVID-19 was also conducted by Prathumwan et al. [25]

by adding quarantine subpopulations (Q) and isolation (H)

as well so that the model constructed has six subpopulations,

namely S, E, I, Q, H, and R. The mathematical model that has

been formed needs control to reduce the number of COVID-

19 infections. Researchers discussing control issues include

Deressa and Duress [26], Olaniyi et al. [27], and Das et al.

[22]. Deressa and Duressa provide three controls, namely public

education, protecting yourself from COVID-19 infection (such

as wearing masks, washing hands, and maintaining distance),

and treating individuals infected with COVID-19 in hospitals.

In comparison, Olaniyi et al. provide two controls, public

education and individual care management in hospitals. Other

researchers, Das et al. [22], provide two controls to reduce the

number of infected with comorbidity and without comorbidity,

namely the control other than using drugs and the vaccination

process. There are many studies related to COVID-19 besides

those mentioned above, see for example the following literature

studies [28–54].

By combining the research of Das et al. [22], Jia et al.

[24], and Prathumwan et al. [25], the COVID-19 model will

be constructed in this study. The discussion is divided into

the following sections: The model formulation is presented

in Section 2 followed by model validation and mathematical

analysis in Section 3. A numerical simulation of the model

without control is given in Section 4. Section 5 presents the

model with controls and its simulation is given in Section 6. The

last discussion on cost evaluation is presented in Section 7. The

study is concluded with some key points in Section 8.
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2. Model formulation

We consider the new COVID-19 model with eight

subpopulations, as shown in the compartment diagram in

Figure 1.

Based on the compartmental diagram in Figure 1 and

the model assumptions, we have the following system of

differential equations:

dS

dt
= π −

β1SI

N
−

β2SC

N
− q1S− µS,

dE

dt
=

β1SI

N
+

β2SC

N
− αE− µE,

dI

dt
= ξαE− h1I − r1I − d1I − µI,

dC

dt
= (1− ξ) αE− h2C − r2C − d2C − µC, (1)

dQ

dt
= q1S−

ρ1β1QI

N
−

ρ2β2QC

N
− r3Q− µQ,

dH

dt
= θh1I + δh2C +

pρ1β1QI

N
+

qρ2β2QC

N
−r4H − d3H − µH,

dJ

dt
= (1− θ) h1I + (1− δ) h2C

+
(1− p)ρ1β1QI

N
+

(1− q)ρ2β2QC

N
− r5J − d4J − µJ,

dR

dt
= r1I + r2C + r3Q+ r4H + r5J − µR.

In this model, the COVID-19 model is divided into

susceptible (S), exposed (E), infected without comorbidity

(I), infected with comorbidity ( C), isolated (Q), treatment

isolated (H), isolated without treatment (J), and recovered (R).

Susceptible subpopulation increases with the recruitment or

birth rate denoted by π and can be infected due to contact with

infected individuals without comorbidity and with comorbidity

denoted by β1 and β2, respectively. Susceptible individuals who

are quarantined are denoted by q1 and cannot be returned to

being susceptible due to the effects of public anxiety, which

make some assumptions or opinions that susceptible individuals

need to be quarantined, so that if quarantine is successful,

then recovery is denoted by r3 and if not successful due

to contact with infected individuals without comorbidity and

with comorbidity, showing symptoms of being infected, then

isolation is denoted by ρ1 and ρ2, respectively. Furthermore,

p and q are the proportion of changes from quarantine to

isolation. The progression from exposed to infection is denoted

α, and ξ is the proportion of change from exposed to infection

without comorbidity. From the infected subpopulation without

comorbidity and with comorbidity, isolation is denoted by h1

and h2. The parameters r1, r2, r3, and r4 indicate the recovery

rate of the subpopulations infected without comorbidity,

infected with comorbidity, quarantine, isolated with treatment,

and isolated without treatment. Furthermore, deaths from each

subpopulation are denoted by µ and deaths from COVID-19 in

subpopulations I, C, H, and J are denoted by d1, d2, d3, and d4.

3. Mathematical analysis

3.1. Model validation

We calibrate our model (Equation 1) using cumulatively

confirmed COVID-19 cases for Indonesia. We have retrieved

COVID-19 case data from the Republic of Indonesia Task Force

(SATGAS) situation report for the period 1 November 2020

to 19 May 2021 [9]. The parameter fitting uses the lsqcurvefit

command, and the value of MAPE = 0.026022 is obtained.

The results of the fitting parameters seem to match the infection

case data as shown in Figure 2, and new parameter values are

obtained according to conditions in Indonesia as follows in

Table 1.

3.2. Positivity and boundedness of
solutions

The change in the total population is given by

dN

dt
=

dS

dt
+

dE

dt
+

dI

dt
+

dC

dt
+

dQ

dt
+

dH

dt
+

dJ

dt
+

dR

dt
,

= π − µN − d1I − d2C − d3H − d4J,

≤ π − µN,

whose solutions give

N(t) ≤
π

µ
+

(

N (0) −
π

µ

)

e−µt .

Consequently as t → ∞, then limt→∞ N (t) ≤ π
µ . So, we can

conclude that N is boundedness to N (t) ≤ π
µ .

Considering the above solutions, we have that the model has

a boundedness solution which is contained in a feasible region

�, where

� =

{

(S, E, I, C, Q, H, J, R) | N (t) ≤
π

µ

}

.

Next, we show the positivity of solving the Equation (1) system

by following Riyapan et al. [42] and Rois et al. [46], as follows:

Theorem 1. Let S, E, I, C, Q, H, J, and R be the system

solutions (Equation 1). If S (0) ≥ 0, E (0) ≥ 0, I (0) ≥ 0,

C (0) ≥ 0, Q (0) ≥ 0, H (0) ≥ 0, J (0) ≥ 0, and R (0) ≥ 0,

then all solutions are positive for every t ≥ 0.

Proof. 1. Take the first equation of the system (Equation 1)

as follows:

dS

dt
= π −

β1SI

N
−

β2SC

N
− q1S− µS.
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FIGURE 1

Compartmental diagram of the COVID-19 model with comorbidity.

FIGURE 2

Parameter fitting results from the COVID-19 model.

TABLE 1 Parameter values according to the fitting of the infected cases of COVID-19 in Indonesia.

Parameter Value Parameter Value Parameter Value

π 3783175.865 r5 0.088554 δ 0.00059843

β1 0.65799 h1 0.007884 p 0.090862

β2 0.79664 h2 0.00034162 q 0.28312

q1 0.16574 ρ1 0.99779 d1 0.00086579

r1 0.0068295 ρ2 0.9533 d2 0.022871

r2 0.0025349 α 0.25098 d3 0.36203

r3 0.030397 ξ 0.022219 d4 0.76233

r4 0.31851 θ 5.812× 10−5 µ 0.0138
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Let η =
β1I
N +

β2C
N .

dS

dt
= π − S

(

η + q1 + µ
)

,

dS

dt
+ S

(

η + q1 + µ
)

= π ,

d
(

e(q1+µ)t+
∫ t
0 ηdsS (t)

)

dt
= πe(q1+µ)t+

∫ t
0 ηds, (2)

then a homogeneous solution is obtained

d
(

e(q1+µ)t+
∫ t
0 ηdsS (t)

)

dt
= 0,

S (t) = ke−(q1+µ)t−
∫ t
0 ηds.

Thus, let us assume that the solution is non-homogeneous

S (t) = ke−(q1+µ)t−
∫ t
0 ηds. (3)

Next, substituting the Equation (3) into the Equation (2)

to get

dk (t)

dt
= πe(q1+µ)t+

∫ t
0 ηds,

k (t) =

∫ t

0
πe(q1+µ)y+

∫ y
0 ηdxdy+ K. (4)

The Equation (4) is substituted into the Equation (3), we get

S (t) =

∫ t

0
πe(q1+µ)y+

∫ y
0 η dxdy× e−(q1+µ)t−

∫ t
0 η ds

+S(0)e−(q1+µ)t−
∫ t
0 η ds.

So, S(t) is positive for t ≥ 0.

2. Take the fifth equation of the system (Equation 1) as follows:

dQ

dt
= q1S−

ρ1β1QI

N
−

ρ2β2QC

N
− r3Q− µQ.

Let ω =
ρ1β1I
N +

ρ2β2C
N .

dQ

dt
= q1S− Q(ω + r3 + µ),

dQ

dt
+ Q (ω + r3 + µ) = q1S,

d
(

e(r3+µ)t+
∫ t
0 ωdsQ (t)

)

dt
= q1Se

(r3+µ)t+
∫ t
0 ωds, (5)

then a homogeneous solution is obtained

d
(

e(r3+µ)t+
∫ t
0 ωdsQ (t)

)

dt
= 0,

Q (t) = ke−(r3+µ)t−
∫ t
0 ωds.

Thus, let us assume that the solution is non-homogeneous

Q (t) = ke−(r3+µ)t−
∫ t
0 ωds. (6)

Next, substituting the Equation (6) into the Equation (5)

to get

dk (t)

dt
= q1Se

(r3+µ)t+
∫ t
0 ωds,

k (t) =

∫ t

0
q1Se

(r3+µ)y+
∫ y
0 ωdxdy+ K. (7)

The the Equation (7) is substituted into the Equation (6),

we get

Q (t) =

∫ t

0
q1Se

(r3+µ)y+
∫ y
0 ω dxdy× e−(r3+µ)t−

∫ t
0 ω ds

+Q(0)e−(r3+µ)t−
∫ t
0 ω ds.

So, Q(t) is positive for t ≥ 0.

3. Take the second equation of the system (Equation 1) as

follows:

dE

dt
=

β1SI

N
+

β2SC

N
− αE− µE ≥ −αE− µE,

or

dE (t)

dt
≥ −E (α + µ) ,

∫

dE (t)

E
≥

∫

− (α + µ) dt,

E (t) ≥ e−(α+µ)t+k,

E (t) ≥ E (0) e−(α+µ)t .

Thus, E (t) is positive for t ≥ 0. Furthermore, in the same

way as proof number 3, I (t) , C (t) , H (t) , J (t), and R (t) can

be shown respectively to be positive.

3.3. Equilibrium point and basic
reproduction number

The equilibrium point of the system (Equation 1) is

obtained by setting the right-hand side to zeros. Therefore,

the first equilibrium point is obtained, namely the disease-free

equilibrium point, as follows:

X0 =

(

S0, E0, I0, C0, Q0, H0, J0, R0
)

=

(

π

a1
, 0, 0, 0,

πq1

a1a5
, 0, 0,

πq1r3

a1a5µ

)

.

Where a1 = q1 + µ and a5 = r3 + µ.

Furthermore, the basic reproduction number, denoted by

R0, is obtained using the next-generation matrix method
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[55, 56]. The constituent components of the next-generation

matrix method only consist of infected subpopulation groups,

namely:

f =







β1SI
N +

β2SC
N

0

0






, and v =







a2E

−ξαE+ a3I

− (1− ξ) αE+ a4C






.

The partial derivative evaluated at X0 gives

F
(

X0
)

=







0
β1a5µ

(a5µ+q1µ+q1r3)
β2a5µ

(a5µ+q1µ+q1r3)

0 0 0

0 0 0







and V
(

X0
)

=







a2 0 0

−ξα a3 0

− (1− ξ) α 0 a4






.

The inverse of the V
(

X0
)

matrix is

V−1 =







1
a2

0 0
ξα
a2a3

1
a3

0
(1−ξ)α
a2a4

0 1
a4






.

Based on the F
(

X0
)

and V−1
(

X0
)

matrices, the next-

generation matrix FV−1 can be formed so that we can obtain

FV−1 =







β1a5µξα

a2a3(a5µ+q1µ+q1r3)
+

β2a5µα(1−ξ)

a2a4(a5µ+q1µ+q1r3)
β1a5µ

a3(a5µ+q1µ+q1r3)
β1a5µ

a4(a5µ+q1µ+q1r3)

0 0 0

0 0 0






.

So, the basic reproduction number is obtained based on the

eigenvalues of the FV−1 matrix as follows:

R0 = ρ (M) =
a5µα (β1ξa4 + β2a3 (1− ξ))

a2a3a4
(

a5µ + q1µ + q1r3
) .

J =





























B1 − B2 − a1 B1 B1 −
β1S
N B1 −

β2S
N B1 B1 B1 B1

B2 − B1 −B2 − a2
β1S
N − B1

β2S
N − B1 −B1 −B1 −B1 −B1

0 ξα −a3 0 0 0 0 0

0 (1− ξ) α 0 −a4 0 0 0 0

q1 + B3 B3 B3 −
ρ1β1Q
N B3 −

ρ2β2Q
N B3 − B4 − a5 B3 B3 B3

−B5 −B5 B6 − B5 B7 − B5 B8 − B5 −B5 − a6 −B5 −B5

−B9 −B9 B10 − B9 B11 − B9 B12 − B9 −B9 −B9 − a7 −B9

0 0 r1 r2 r3 r4 r5 −µ





























(8)

Next, the second equilibrium point is obtained,

namely the endemic equilibrium point X∗ =

(

S∗, E∗, I∗, C∗, Q∗, H∗, J∗, R∗
)

with

S∗ =
πa5

A1R0
,

E∗ =
π

a2R0
(R0 − 1) ,

I∗ =
πξα

a2a3R0
(R0 − 1) ,

C∗ =
(1− ξ) πα

a2a4R0
(R0 − 1) ,

Q∗ =
a2a3a4a5q1π

A3
,

H∗ = (R0 − 1)A4,

J∗ = (R0 − 1)A5,

R∗ = (R0 − 1)A6 +
r3a2a3a4a5q1π

µA3
,

with A1 = a5µ + µq1 + q1r3, A2 = ρ1β1a4µαξ +

ρ2β2a3µα (1− ξ),A3 = A1A2 (R0 − 1)+a2a3a4a5A1R0,A4 =
πα
a6R0

(

θh1ξ
a2a3

+
δh2(1−ξ)

a2a4
+

pρ1β1q1a4a5µξ
A3

+
qρ2β2q1a3a5µ(1−ξ)

A3

)

,

A5 = πα
a7R0

( (1−θ)h1ξ
a2a3

+
(1−δ)h2(1−ξ)

a2a4
+

(1−p)ρ1β1µξa4a5q1
A3

+

(1−q)ρ2β2µa3a5q1(1−ξ)
A3

), and A6 =
r1παξ

µa2a3R0
+

r2πα(1−ξ)
µa2a4R0

+

r4A4
µ +

r5A5
µ .

The existence of the endemic equilibrium point X∗ depends

on the value of R0. If the value of R0 < 1 is taken, then the

endemic equilibrium point X∗ does not exist because it is clear

that E∗, I∗, C∗, H∗, and J∗ are obtained negative. If R0 = 1,

then we get the equilibrium point X∗ = X0, which causes the

equilibrium point X∗ not to exist. Furthermore, if R0 > 1, then

we get S∗, E∗, I∗, C∗, Q∗, H∗, J∗, and R∗ are positive and the

endemic equilibrium point X∗ exists.

3.4. Local stability

The local stability of the equilibrium point

is obtained by linearizing system (Equation 1),

which yields the following jacobian matrix below:

With B1 =
β1SI
N2 +

β2SC
N2 , B2 =

β1I
N +

β2C
N , B3 =

ρ1β1QI
N2 +

ρ2β2QC
N2 , $B4 =

ρ1β1I
N +

ρ2β2C
N , B5 =

pρ1β1QI
N2 +

qρ2β2QC
N2 , B6 =
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θh1+
pρ1β1Q

N , B7 = δh2+
qρ2β2Q

N , B8 =
pρ1β1I

N +
qρ2β2C

N , B9 =

(1−p)ρ1β1QI
N2 +

(1−q)ρ2β2QC
N2 , B10 = (1− θ) h1 +

(1−p)ρ1β1Q
N ,

B11 = (1− δ) h2 +
(1−q)ρ2β2Q

N , and B12 =
(1−p)ρ1β1I

N +

(1−q)ρ2β2C
N .

3.4.1. Local stability of disease-free equilibrium
point

Evaluating (8) at X0 yields

J
(

X0
)

=

























−a1 0 −β1C1 −β2C1 0 0 0 0

0 −a2 β1C1 β2C1 0 0 0 0

0 ξα −a3 0 0 0 0 0

0 (1− ξ) α 0 −a4 0 0 0 0

q1 0 −ρ1β1C2 −ρ2β2C2 −a5 0 0 0

0 0 θh1 + pρ1β1C2 δh2 + qρ2β2C2 0 −a6 0 0

0 0 (1− θ) h1 +
(

1− p
)

ρ1β1C2 (1− δ) h2 +
(

1− q
)

ρ2β2C2 0 0 −a7 0

0 0 r1 r2 r3 r4 r5 −µ

























,

With C1 =
a5µ

(a5+q1)µ+q1r3
and C2 =

q1µ

(a5+q1)µ+q1r3
. The

characteristic equation for the |J
(

X0)− λI
∣

∣ = 0 is as follows:

(−a1 − λ) (−a5 − λ) (−a6 − λ) (−a7 − λ) (−µ − λ)
∣

∣

∣

∣

∣

∣

∣

−a2 − λ β1C1 β2C1

ξα −a3 − λ 0

(1− ξ) α 0 −a4 − λ

∣

∣

∣

∣

∣

∣

∣

= 0. (9)

Based on the Equation (9), we obtain the eigenvalues λ1 = λ2 =

λ3 = λ4 = λ5 < 0. Therefore, the stability of the disease-free

equilibrium point depends on

M1 =

∣

∣

∣

∣

∣

∣

∣

−a2 − λ β1C1 β2C1

ξα −a3 − λ 0

(1− ξ) α 0 −a4 − λ

∣

∣

∣

∣

∣

∣

∣

. (10)

From the Equation (10), we obtain the following

characteristic equation:

λ3 + k1λ
2 + k2λ + k3 = 0, (11)

with

J
(

X∗
)

=































B1 − B13 B1 B1 −
β1S

∗

N B1 −
β2S

∗

N B1 B1 B1 B1

B2 − B1 −B14
β1S

∗

N − B1
β2S

∗

N − B1 −B1 −B1 −B1 −B1

0 ξα −a3 0 0 0 0 0

0 (1− ξ) α 0 −a4 0 0 0 0

q1 + B3 B3 B3 −
ρ1β1Q

∗

N B3 −
ρ2β2Q

∗

N B3 − B15 B3 B3 B3

−B5 −B5 B6 − B5 B7 − B5 B8 − B5 −B16 −B5 −B5

−B9 −B9 B10 − B9 B11 − B9 B12 − B9 −B9 −B17 −B9

0 0 r1 r2 r3 r4 r5 −µ































,

k1 = a2 + a3 + a4,

k2 = a2a3 (1− R0) + a2a4 (1− R0)

+a3a4 +
a4β1αC1ξ

a3
+

a3β2αC1 (1− ξ)

a4
, and

k3 = a2a3a4 (1− R0) .

In the Equation (11), it is clear that k1 > 0, and if R0 <

1, then k2 > 0 and k3 > 0. Therefore, the stability

property of the equilibrium point X0

is established using the Routh–Hurwitz criterion. Furthermore,

the equilibrium point X0 is asymptotically stable if and only if it

satisfies the following criteria:

1. k1 > 0,

2. k3 > 0, and

3. k1k2 − k3 > 0.

Criteria Equations (1) and (2) have been met so that the

disease-free equilibrium point X0 is locally asymptotically stable

if it meets k1k2 − k3 > 0 where

k1k2 − k3 > 0,

(a2 + a3 + a4)
(

a2a4 (1− R0) + a3a4 +
a4β1αC1ξ

a3
+

a3β2αC1 (1− ξ)

a4

)

+a22a3 (1− R0) + a2a
2
3 (1− R0) > 0.

It is clear that the Routh–Hurwitz criteria are satisfied;

thus, the roots of the characteristic Equation (11) have negative

real parts. Therefore, the disease-free equilibrium point is

asymptotically locally stable if R0 < 1.

3.4.2. Local stability of the endemic equilibrium
point

Evaluating (8) at X∗ yields

With B1 =
β1S

∗I∗

N2 +
β2S

∗C∗

N2 , B2 =
β1I

∗

N +
β2C

∗

N ,

B3 =
ρ1β1Q

∗I∗

N2 +
ρ2β2Q

∗C∗

N2 , B4 =
ρ1β1I

∗

N +
ρ2β2C

∗

N , B5 =

pρ1β1Q
∗I∗

N2 +
qρ2β2Q

∗C∗

N2 , B6 = θh1 +
pρ1β1Q

∗

N , B7 = δh2 +

qρ2β2Q
∗

N , B8 =
pρ1β1I

∗

N +
qρ2β2C

∗

N , B9 =
(1−p)ρ1β1Q∗I∗

N2 +
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FIGURE 3

Projection of three orbits of the model on the I− C plane.

(1−q)ρ2β2Q∗C∗

N2 , B10 = (1− θ) h1 +
(1−p)ρ1β1Q∗

N , B11 =

(1− δ) h2 +
(1−q)ρ2β2Q∗

N , B12 =
(1−p)ρ1β1I

N +
(1−q)ρ2β2C

N ,

B13 = B2 + a1,B14 = B2 + a2, B15 = B4 + a5, B16 = B5 + a6,

and B17 = B9 + a7.

The characteristic equation of the |J
(

X∗)− λI
∣

∣ = 0 is

λ8 + k1λ
7 + k2λ

6 + k3λ
5 + k4λ

4 + k5λ
3 + k6λ

2 + k7λ

+k8 = 0, (12)

It is difficult to prove analytically that all eigenvalues of J have

negative real parts for R0 > 1. However, from our numerical

simulations (case R0 > 1), all eigenvalues have negative

real parts.

Figure 3 gives the projection of three orbits of three different

initial conditions when R0 > 1 on the I − C plane. The

component (I, C) of the equilibrium X∗ is not (0, 0). This

simulation indicates that the endemic equilibrium X∗ is locally

asymptotically stable when R0 > 1.

3.5. Global stability analysis

In this study, we prove the global stability of disease-free

and endemic equilibrium points by constructing the suitable

Lyapunov function and following the theorem from Alligood

et al. [57].

3.5.1. Global stability of the disease-free
equilibrium point

Theorem 2. Disease-free equilibrium point X0 is globally

asymptotically stable if R0 < 1 and unstable if R0 > 1.

Proof. Defined Lyapunov function

L = κ1E+ κ2I + κ3C, (13)

where

κ1 = a1a2a3a4,

κ2 =
πβ1a2a4

N
, and

κ3 =
πβ2a2a3

N
.

The function L needs to be proven to determine whether

Lyapunov is strong or weak for X0.

L
(

−→x
∗
)

= L
(

S0, E0, I0, C0, Q0, H0, J0, R0
)

,

L
(

−→x
∗
)

= κ1E
0 + κ2I

0 + κ3C
0 = 0.

It is proven that L
(

−→x
∗
)

= 0. Next,

L
(−→x

)

= κ1E+ κ2I + κ3C,

Because ∀ (S, E, I,C,Q,H, J,R) 6=
(

S0, E0, I0, C0, Q0, H0,

J0, R0
)

, so it is proved that L
(−→x

)

> 0.

Thus, the Equation (13) can be reduced to

∂L

∂t
= κ1

dE

dt
+ κ2

dI

dt
+ κ3

dC

dt

= κ1

(

β1SI + β2SC

N
− a2E

)

+κ2 (ξαE− a3I) + κ3 ((1− ξ) αE− a4C) ,

so, we obtain

= a1a2a3a4

(

β1SI + β2SC

N
− a2E+

πβ1a2a4ξαE

a1a2a3a4N

+
πβ2a2a3 (1− ξ) αE

a1a2a3a4N
−

πβ1I

a1N
−

πβ2C

a1N

)

.

Let S = π
a1
, so we get

∂L

∂t
= a1a

2
2a3a4E (R0 − 1) .

Based on the description above, it can be concluded that
∂L
∂t < 0 if R0 < 1 and ∂L

∂t = 0 if E = 0. Hence, by

Lasalle’s invariance principle, the disease-free equilibrium point

in the spread of COVID-19
(

X0
)

is globally asymptotically stable

if R0 < 1.

3.5.2. Global stability of the endemic
equilibrium point

Theorem 3. If R0 > 1, then the endemic equilibrium point X∗ is

said to be globally asymptotically stable.
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TABLE 2 Stability conditions.

Equilibrium point Existence requirement Global stability type Stability condition

X0 None Asymptotically stable R0 < 1

X∗ R0 > 1 Asymptotically stable R0 > 1 and strong Lyapunov function

Proof. The Lyapunov function is defined as follows:

L =
1

2

[

SS + EE + II + CC + QQ + HH + JJ + RR
]2
, (14)

Where SS =
(

S− S∗
)

, EE =
(

E− E∗
)

, II =
(

I − I∗
)

, CC =
(

C − C∗
)

, QQ =
(

Q− Q∗
)

, HH =
(

H −H∗
)

, JJ =
(

J − J∗
)

,

and dan RR =
(

R− R∗
)

.

The function L needs to be proven to determine whether the

Lyapunov function is strong or weak for X∗.

L
(

−→x
∗
)

= L
(

S∗, E∗, I∗, C∗, Q∗, H∗, J∗, R∗
)

,

L
(

−→x
∗
)

=
1

2

[

S∗S + E∗E + I∗I + C∗C + Q∗
Q +H∗

H + J∗J + R∗R

]2

= 0.

Where S∗S =
(

S∗ − S∗
)

, E∗E =
(

E∗ − E∗
)

, I∗I =
(

I∗ − I∗
)

,

C∗C =
(

C∗ − C∗
)

, Q∗
Q =

(

Q∗ − Q∗
)

, H∗
H =

(

H∗ −H∗
)

, J∗J =
(

J∗ − J∗
)

, and R∗R =
(

R∗ − R∗
)

. It is proven that L
(

−→x
∗
)

= 0.

Next,

L
(−→x

)

=
1

2

[

SS + EE + II + CC + QQ + HH + JJ + RR
]2
.

Because ∀ (S, E, I,C,Q,H, J,R) 6=
(

S0, E0, I0, C0, Q0, H0,

J0, R0
)

, so that it is proven that L
(−→x

)

> 0. Next, we check

that the Equation (14) is reduced to

∂L

∂t
=

[

SS + EE + II + CC + QQ +HH + JJ + RR
]

d

dt
[S+ E+ I + C + Q+H + J + R] ,

=
[

SS + EE + II + CC + QQ +HH + JJ + RR
]

[π − µ (S+ E+ I + C + Q+ H + J + R)

−d1I − d2C − d3H − d4J],

Let π = µ
(

S∗ + E∗ + I∗ + C∗ + Q∗ +H∗ + J∗ + R∗
)

+

d1I
∗ + d2C

∗ + d3H
∗ + d4J

∗. So that it gives

=
[

SS + EE + II + CC + QQ +HH + JJ + RR
]

×[−
[

µ(SS + EE + II + CC + QQ +HH + JJ + RR)+ d1
(

I − I∗
)

+d2
(

C − C∗
)

+ d3
(

H −H∗
)

+ d4
(

J − J∗
)]

],

= −
[

SS + EE + II + CC + QQ +HH + JJ + RR
]

×
[

µ(SS + EE + II + CC + QQ +HH + JJ + RR)+ d1
(

I − I∗
)

+d2
(

C − C∗
)

+ d3
(

H −H∗
)

+ d4
(

J − J∗
)]

].

Based on the description above, it can be concluded that
∂L
∂t < 0 if R0 > 1 and ∂L

∂t = 0 if S = S∗, E = E∗, I = I∗, C =

C∗, Q = Q∗, H = H∗, J = J∗, and R = R∗. Hence, by Lasalle’s

invariance principle, it means that the endemic equilibrium

point in the spread of COVID-19
(

X∗
)

is globally asymptotically

stable if R0 > 1.

The terms of existence and the type of stability of the

equilibrium point of the system of equations are summarized in

Table 2.

3.6. Sensitivity analysis

The sensitivity analysis aims to determine the

parameters that cause the spread of the COVID-19

virus. The sensitivity index of the basic reproduction

number depends on the differentiation of the

parameters contained in the basic reproduction number

[58, 59]. Sensitivity index R0 to the parameters is

as follows:

I
R0
α =

∂R0

∂α

α

R0
=

µ

α + µ
,

I
R0
β1

=
∂R0

∂β1

β1

R0
=

β1ξa4

β1ξa4 + β2a3 (1− ξ)
,

I
R0
β2

=
∂R0

∂β2

β2

R0
=

β2a3 (1− ξ)

β1ξa4 + β2a3 (1− ξ)
,

I
R0
ξ

=
∂R0

∂ξ

ξ

R0
=

β1ξa4 − β2ξa3

β1ξa4 + β2a3 (1− ξ)
,

I
R0
q1 =

∂R0

∂q1

q1

R0
= −

q1

q1 + µ
,

I
R0
h1

=
∂R0

∂h1

h1

R0
=

a4β1h1ξ

−a3 (β2a3 (1− ξ) + β1a4ξ)
,

I
R0
r1 =

∂R0

∂r1

r1

R0
=

β1r1a4ξ

−a3 (β2a3 (1− ξ) + β1a4ξ)
,

I
R0
d1

=
∂R0

∂d1

d1

R0
=

β1d1a4ξ

−a3 (β2a3 (1− ξ) + β1a4ξ)
,

I
R0
h2

=
∂R0

∂h2

h2

R0
=

β2h2a3 (1− ξ)

−a4 (β2a3 (1− ξ) + β1a4ξ)
,

I
R0
r2 =

∂R0

∂r2

r2

R0
=

β2r2a3 (1− ξ)

−a4 (β2a3 (1− ξ) + β1a4ξ)
,

I
R0
d2

=
∂R0

∂d2

d2

R0
=

β2r2a3 (1− ξ)

−a4 (β2a3 (1− ξ) + β1a4ξ)
,
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TABLE 3 Sensitivity analysis.

No Parameter Sensitivity index

1 q1 −0.9761

2 β2 0.9754

3 µ 0.5715

4 d2 −0.5636

5 r2 −0.0625

6 α 0.0522

7 β1 0.0246

8 h2 −0.0084

9 h1 −0.0066

10 r1 −0.0057

11 ξ 0.0025

12 d1 −0.0007

I
R0
µ =

∂R0

∂µ

µ

R0
=

−
(

α ((−2ξ + 2) β2 + 2β1ξ) µ5 + a8 (1− ξ) β2 + β1a9ξ
)

µ4 + 2a10 ((1− ξ) a3β2 + β1ξa4) µ3

a21a
2
2a

2
3a

2
4

−

((

(−a12) q1 + a211
)

α + a211
(

a12 + q1
)

(ξ − 1) β2 −
((

(a11) q1 − a212
)

α − a212
(

a11 + q1
))

β1ξ
)

µ2

a21a
2
2a

2
3a

2
4

−
2
(

a11αq1 (β1ξ + β2 (1− ξ)) a11µ + a12α ((ξ − 1) a11β2 − β1ξa12) q1a11
)

a21a
2
2a

2
3a

2
4

,

With a8 =
(

4d1 + α + d2 + h1 + h2 + q1 + 4r1 + r2
)

,

a9 = d1 + α + 4d2 + h1 + 4h2 + q1 + r1 + 4r2, a10 =
(

d1 + α + d2 + h1 + h2 + q1 + r1 + r2
)

, a11 = h1 + r1 + d1,

and a12 = h2 + r2 + d2.

The parameter sensitivity index is shown in Table 3.

From Table 3, we can see that the most sensitive parameters

are q1 and β2. A positive index means that if we reduce

the parameter by almost 10%, then the value of the basic

reproduction number can decrease by 10%.

4. Simulation of the model without
control

This section presents a numerical solution of system (1)

using the Fourth-order Runge–Kutta method. The parameter

values used in this simulation are shown in Table 1 and three

different initial values. In this simulation, the stability of the

disease-free equilibrium point is shown from the parameter

values given in Table 1, except for the parameter q1 =

0.56574, the value is R0 = 0.456 < 1. Based on the

value of these parameters, the disease-free equilibrium point is

obtained, namely

X0 = (6527542, 0, 0, 0, 83496205, 0, 0, 183499868) .

Next, the graph of the solution R0 < 1 is obtained in

Figure 4.

The analysis results from 3.4.1, and Theorem 2 are illustrated

numerically. Numerical simulations with some initial values

show that the graph solution is toward and close to the disease-

free equilibrium point X0 (converging toward the disease-free

equilibrium point X0). Based on the graph, this means that after

all this time, no individual has been infected with COVID-19.

The numerical results support the analysis that if R0 < 1, then

the disease-free equilibrium point X0 is asymptotically stable

locally and globally given different initial values.

We show the stability of the endemic equilibrium point, the

parameter values in Table 1 are used, and three different values,

so we get R0 = 1.47 > 1. Similarly, the disease-free equilibrium

point is obtained

X0 = (21071493, 0, 0, 0, 79018695, 0, 0, 174052991)

and the endemic equilibrium point is given as

X∗ =
(

S∗, E∗, I∗, C∗, Q∗, H∗, J∗, R∗
)

,

= (6031017, 10196616, 1933377, 63222893,

2119885, 362896, 798735, 30671327) .

The solution graph for the case of R0 > 1 is obtained

as follows in Figure 5.

The numerical simulation results support the analysis from

3.4.2 and Theorem 3 that some of the initial values given are

obtained by the graph of the solution leading to the endemic

equilibrium point X∗ (converging to the endemic equilibrium

point X∗), which means there is a spread of disease due

to COVID-19. The numerical simulation results follow the

analysis that if R0 > 1, the endemic equilibrium point X∗ is

asymptotically stable locally and globally with different initial

values. Based on the given parameter values, we obtain R0 > 1.

This means that there is an outbreak of disease due to COVID-

19. Therefore, it is necessary to take control measures to reduce

the outbreak.

4.1. E�ect parameters

The effect of parameters on R0 was analyzed using

contour plots. We choose two significant parameters, q1
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FIGURE 4

COVID-19 model solution graph for R0 < 1.

FIGURE 5

The COVID-19 model solution graph for R0 > 1.
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and β2, and provide a contour plot as a function of R0.

The impact of some R0 parameters is further investigated

in Figure 6. Figure 6 shows that increasing the parameter

q1 decreases the value of R0. This implies that increasing

quarantines has the effect of reducing the spread of COVID-

19. Meanwhile, an increase in the β2 parameter resulted in

an increase in the R0 value and implied that an increase in

contacts of individuals with comorbidities would increase the

spread of COVID-19, especially individuals with comorbidities.

Therefore, increasing quarantine and reducing contact with

individuals with comorbidities are important.

5. Optimal control problem

5.1. Comorbidity COVID-19 model with
optimal control

The control variable given to the COVID-19 model consists

of preventive measures through education (u1) and individual

treatment efforts for infected (u2) . So the model with control is

given as follows:

dS

dt
= π − (1− u1)

(β1SI + β2SC)

N
− q1S− µS,

dE

dt
= (1− u1)

(β1SI + β2SC)

N
− αE− µE,

dI

dt
= ξαE−

(

h1 + u2
)

I − r1I − d1I − µI,

dC

dt
= (1− ξ) αE−

(

h2 + u2
)

C − r2C − d2C − µC,

dQ

dt
= q1S−

ρ1β1QI

N
−

ρ2β2QC

N
− r3Q− µQ, (15)

dH

dt
=

(

θh1 + u2
)

I +
pρ1β1QI

N

+
qρ2β2QC

N
+

(

δh2 + u2
)

C − r4H − d3H − µH,

dJ

dt
=

(

(1− θ)h1 + u2
)

I

+
(

(1− δ)h2 + u2
)

C +
(1− p)ρ1β1QI

N

+
(1− q)ρ2β2QC

N
− a7J,

dR

dt
= r1I + r2C + r3Q+ r4H + r5J − µR.

The function that minimizes the number of infected cases

without comorbidity (I) and the number of infected cases with

comorbidity (C) over a time interval [0,T] can be defined as

J(u1, u2) =

∫ T

0

(

I(t)+ C(t)+
1

2
(A1u

2
1 + A2u

2
2)

)

, (16)

Where A1 and A2 are the relative cost associated with the

controls u1 and u2, and T is the final time. The aim of the control

FIGURE 6

E�ect parameters of R0

(β2 × q1 ∈ [0.1 :0.79664]× [0.1 :0.16574]).

is to minimize the cost function.

J(u∗1 , u
∗
2) = min J(u1, u2),

Subject to the system (Equation 15), where 0 ≤ (u1, u2) ≤ 1

and t ∈ (0,T).

5.2. Optimal control analysis

The Hamilton function can be defined as follows:

H = I + C +
1

2

(

A1u
2
1 + A2u

2
2

)

+λ1

(

π − (1− u1)
(β1SI + β2SC)

N
− q1S− µS

)

+λ2

(

(1− u1)
(β1SI + β2SC)

N
− αE− µE

)

+λ3
(

ξαE−
(

h1 + u2
)

I − r1I − d1I − µI
)

+λ4
(

(1− ξ) αE−
(

h2 + u2
)

C − r2C − d2C − µC
)

+λ5

(

q1S−
ρ1β1QI

N
−

ρ2β2QC

N
− r3Q− µQ

)

(17)

+λ6

(

(

θh1 + u2
)

I +
pρ1β1QI

N

+
qρ2β2QC

N
+

(

δh2 + u2
)

C − r4H − d3H − µH

)

+λ7
((

(1− θ)h1 + u2
)

I +
(

(1− δ)h2 + u2
)

C

+
(1− p)ρ1β1QI

N
+

(1− q)ρ2β2QC

N
− a7J

)

+λ8 (r1I + r2C + r3Q+ r4H + r5J − µR) .

Based on Pontryagin’s principle, the Hamilton function

will reach an optimal solution if it satisfies the state equation
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and the costate equation, and the condition is stationary. The

equation state is obtained by deriving the Hamilton function

(Equation 17) for each variable costate as Equation (15). Next,

the equation costate is the negative value of the derivative of

the Hamilton function (Equation 17) for each variable state

as follows:

dλ1

dt
= −

∂H

∂S
= (λ1 − λ2)

(

(1− u1) (β1I + β2C)

N
+

(1− u1) (β1SI + β2SC)

N2

)

+q1 (λ1 − λ5) + λ1µ

+
ρ1β1QI

N2

(

pλ6 +
(

1− p
)

λ7 − λ5
)

+
ρ2β2QC

N2

(

qλ6 +
(

1− q
)

λ7 − λ5
)

,

dλ2

dt
= −

∂H

∂E
= (λ2 − λ1)

(1− u1) (CSβ2 + ISβ1)

N2

+λ2α + λ2µ − λ3αξ − λ4α (1− ξ)

+
ρ1β1QI

N2

(

λ6p+
(

1− p
)

λ7 − λ5
)

+
ρ2β2QC

N2
(

λ6q+
(

1− q
)

λ7 − λ5
)

,

dλ3

dt
= −

∂H

∂I
= (λ1 − λ2)

(

(1− u1) Sβ1

N
−

(1− u1) Sβ1

N

)

+h1 (λ3 − θλ6 − (1− θ) λ7)

+u2 (λ3 − λ6 − λ7) + r1 (λ3 − λ8) − λ3(−d1 − µ)

+
ρ1β1Q

N

(

λ5 − λ6p− λ7
(

1− p
))

− 1, (18)

dλ4

dt
= −

∂H

∂C

= (λ2 − λ1)

(

−
(1− u1) Sβ2

N
+

(1− u1) (CSβ2 + ISβ1)

N2

)

+h2 (λ4 − λ6δ − λ7 (1− δ))

+r2 (λ4 − λ8) + u2 (λ4 − λ6 − λ7) − λ4
(

−d2 − µ
)

+
ρ1β1QI

N2

(

−λ5 + λ6p+ λ7
(

1− p
))

+

(

ρ2β2Q

N
−

ρ2β2QC

N2

)

(

λ5 − λ6q− λ7
(

1− q
))

− 1,

dλ5

dt
= −

∂H

∂Q
= (λ2 − λ1)

(

(1− u1) (CSβ2 + ISβ1)

N2

)

+r3 (λ5 − λ8)

+

(

ρ1β1I

N
−

ρ1β1QI

N2

)

(

λ5 − pλ6 −
(

1− p
)

λ7
)

+

(

ρ2β2C

N
−

ρ2β2QC

N2

)

(

λ5 − λ6q− λ7
(

1− q
))

+ λ5µ,

dλ6

dt
= −

∂H

∂H
= (λ2 − λ1)

(

(1− u1) (CSβ2 + ISβ1)

N2

)

+r4 (λ6 − λ8) +
ρ1β1QI

N2

(

−λ5 + λ6p+ λ7
(

1− p
))

+
ρ2β2QC

N2

(

−λ5 + λ6q+ λ7
(

1− q
))

,

dλ7

dt
= −

∂H

∂J
= (λ2 − λ1)

(

(1− u1) (CSβ2 + ISβ1)

N2

)

+r5 (λ7 − λ8) +
ρ1β1QI

N2

(

−λ5 + λ6p+ λ7
(

1− p
))

+
ρ2β2QC

N2

(

−λ5 + λ6q+ λ7
(

1− q
))

+ λ7
(

d4 + µ
)

,

dλ8

dt
= −

∂H

∂R
= (λ2 − λ1)

(

(1− u1) (CSβ2 + ISβ1)

N2

)

+
ρ1β1QI

N2

(

−λ5 + λ6p+ λ7
(

1− p
))

+
ρ2β2QC

N2
(−λ5 + λ6q+ λ7

(

1− q
)

)+ λ8µ.

With transverse condition

λ1 (T) = λ2 (T) = λ3 (T) = λ4 (T) = λ5 (T) = λ6 (T) =

λ7 (T) = λ8 (T) = 0.

The stationary condition for the optimal control problem

(16) is obtained by deriving the Hamilton function (17)

on the control variables u1 and u2

(

∂H
∂u1

= 0, ∂H
∂u2

= 0
)

,

successively obtained

u1 =
(β1SI + β2SC) (λ2 − λ1)

NA1
and

u2 =
I (λ3 − λ6 − λ7) + C (λ4 − λ6 − λ7)

A2
.

The control variables in the COVID-19 model with preventive

measures through education and treatment efforts for infected

individuals are defined as 0 ≤ u1 ≤ 1 and 0 ≤ u2 ≤ 1. So, the

optimal control u∗1 and u∗2 can be expressed as

u∗1 = maks
{

0,min
(

(β1S∗I∗+β2S
∗C∗)(λ2−λ1)

NA1
, 1

) }

and

u∗2 = maks
{

0,min
(

I∗(λ3−λ6−λ7)+C∗(λ4−λ6−λ7)
A2

, 1
)}

.

The optimal system is obtained by substituting the optimal

control variables u∗1 and u∗2 into the system of state (Equation

15) and costate (Equation 18) equations.

6. Simulation of the model with
control

The method used in solving this optimal control problem

is the forward–backward sweep method. In this numerical

simulation, the parameter values used are presented in Table 1

according to the state of the COVID-19 case in Indonesia. Next,

the initial values given are as follows S0 = 270, 911, 990, E0 =

1, 000, 000, I0 = 412, 784, C0 = 500, 000, Q0 = 100, 000,

H0 = 56, 899, J0 = 200, 000, and R0 = 341, 942, with simulation

intervals t ∈ [0, 100] . The results of the optimal numerical

control simulation are presented as follows:
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FIGURE 7

The optimal control simulation results with u1 6= 0.

6.1. Using the control strategy u1 6= 0 and
u2 = 0

Figure 7 shows the control strategy u1 6= 0 and u2 = 0. This

is the result of education that makes all individuals always be

careful, such as interacting outside the home. Implementing this

strategy on subpopulations exposed, infected with comorbidity,

infected without comorbidity, and isolation is significantly

reduced. Implementing the control strategy u1 6= 0 and u2 = 0

can also increase the subpopulation of quarantine. Furthermore,

the control strategy profiles u1 6= 0 and u2 = 0 to reduce the

number of COVID-19 cases during t = 100 are presented in

Figure 8.

The control strategy u1 6= 0 and u2 = 0 is given by one

(maximum) from the beginning of the period to t = 99.9 and

decreases significantly to zero at the end of the period. Control

is terminated at the period’s end, meaning no more control

is given.

6.2. Using the control strategy u1 = 0 and
u2 6= 0

Figure 9 shows the control strategy u1 = 0 and u2 6=

0. This strategy can reduce the subpopulation infected with

comorbid and without comorbid because there is an increase

in the care of infected individuals. Implementing this strategy

FIGURE 8

The optimal control profile with u1 6= 0.

on subpopulations exposed, infected with comorbidity, infected

without comorbidity, and isolation is significantly reduced.

Implementing the control strategies u1 = 0 and u2 6= 0 can

also increase the subpopulation of quarantine. Furthermore, the

profiles of u1 = 0 and u2 6= 0 control strategies to reduce

the number of COVID-19 cases for t = 100 are presented in

Figure 10.

The control strategy u1 = 0 and u2 6= 0 is given by one

(maximum) from the beginning to t = 48.6 and decreases slowly
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FIGURE 9

The optimal control simulation results with u2 6= 0.

FIGURE 10

Optimal control profile with u2 6= 0.

until t = 100 reaches zero which means control is stopped at the

end of the period.

6.3. Using the control strategy u1 6= 0 and
u2 6= 0

Figure 11 indicates a combined control strategy. This results

from education thatmakes all individuals always be careful (such

as interacting outside the home) and increased care for infected

individuals. Combined control strategies can control or reduce

deployment significantly. Furthermore, the combined control

strategy profile to reduce the number of COVID-19 cases during

t = 100 is presented in Figure 12.

The combined control strategy consists of two concurrent

administrations of control. The control u1 is given by one

(maximum) up to t = 65.4 and decreases significantly until the

end of the period reaches zero. Then, control u2 is assigned one

(maximum) until t = 39.5 and then decreases until t = 100

slowly reaches zero. Both controls are terminated at the end of

the period, which means they are no longer given control of u1

and u2.

6.4. Comparison of total infections using
all strategic control scenarios

The varying initial values of the exposed subpopulations

are given. Total infected subpopulations for different

initial conditions from exposed subpopulations are

E(0) = 200000,E(0) = 1000000,E(0) = 10000000, and

E(0) = 100000000 successively from left to right using the three

control strategies shown in Figure 13.

From Figure 13, it can be seen that the number of infected

subpopulations was reduced by applying the third strategy

compared to other strategies. Based on strategies 1–3, it can be
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FIGURE 11

Combined optimal control simulation results.

FIGURE 12

Combined control profile.

concluded that strategy 3 is the best strategy to minimize the

number of people infected with COVID-19 in the community.

7. Cost evaluation

The cost evaluation aims to determine the most minimal

cost-effectiveness strategy of COVID-19 spread control

measures. Cost evaluation in this study uses average cost-

effectiveness ratio (ACER) and incremental cost-effectiveness

ratio (ICER). According to the approach to cost-effectiveness

analysis, ACER is defined mathematically as follows:

ACER =
Objective function (J)

Total number of infections averted
.

The strategy with the smallest ACER value is the most

cost-effective and is obtained in Table 4 as follows:

The incremental cost-effectiveness ratio, which compares

two intervention options vying for the same scarce resources,

typically tracks costs and health benefits changes. ICER is

defined as follows when considering strategies p and q as two

competing control intervention techniques:

ICER =
Change in total costs in strategies p and q

Change in control benefits in strategies p and q
.

Next, ICER was calculated to determine the most cost-effective

strategy out of all the control strategies. First, the competition

for strategies 1 and 2 is calculated as follows:

ICER (1) =
49, 247, 000, 000− 0

53, 846, 000, 000−0
= 0.9146,

ICER (2) =
2, 991, 000, 000− 49, 247, 000, 000

53, 893, 000, 000

−53, 846, 000, 000 = −
46, 256, 000, 000

47, 000, 000
= −984.1702,
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FIGURE 13

(A–D) Total subpopulation infected using various strategies.

The ICER results in strategy 1 were greater than in strategy

2, so educational controls alone were more expensive and

ineffective than medical care enhancement controls. Therefore,

strategy 1 is removed from the possible control strategies. Next,

the ICER for strategies 2 and 3 is recalculated as follows:

ICER (2) =
2, 991, 000, 000− 0

53, 893, 000, 000−0
= 0.5130,

ICER (3) =
1, 794, 700, 000−2, 991, 000, 000

53, 894, 000, 000−53, 893, 000, 000

= −
1, 196, 300, 000

1, 000, 000
= −1, 196.3.

Strategy 2 has a higher ICER value than strategy 3. So,

strategy 3 (combined control) is the best control strategy of all

options because of its cost-effectiveness and prevention of the

spread of infectious diseases.

TABLE 4 Total infections prevented, total costs, and ACER for

strategies 1, 2, and 3.

Strategy Infections
prevented

Total cost ACER

No strategy 0 0 0

Strategy 1 53,846,000,000 49,247,000 0.9146

Strategy 2 53,893,000,000 2,991,000 0.0555

Strategy 3 53,894,000,000 1,794,700 0.0333

8. Conclusion

In this study, we have proposed a mathematical model of

COVID-19 with comorbidities and added control of community

education and improvement of medical care. The proposed
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model has been calibrated using cumulative confirmed infection

cases in Indonesia. The basic reproduction number has been

calculated by the next-generationmatrix method. Themodel has

an asymptotically stable disease-free equilibrium, provided that

the basic reproduction number is <1. Furthermore, the model

has an asymptotically stable endemic equilibrium, provided that

the basic reproduction number is more than one. Individuals

with comorbidity have a greater risk of infection, so there is

a need for more supervision and preventive measures such as

wearing masks, maintaining distance, and proper sanitation.

Public education can be through social media, TV, radio,

print media, and others to control the COVID-19 pandemic

in Indonesia. Based on the model analysis, it is found that

the COVID-19 pandemic can be controlled and eradicated if

the value of R0 < 1 by providing public education control

and improving medical care. The sensitivity analysis results

show that the most influential parameters are quarantine and

contact with infected individuals, so educating the public to

reduce disease transmission is important. After public education

was given, the community became aware of the COVID-

19 outbreak and began to reduce contact with other people.

Likewise, the Indonesian government imposed large-scale social

restrictions (PSBB) and enforced restrictions on community

activities (PPKM) with four levels aiming to reduce infection

and reduce social contact, educational institutions conducted

online classes, webinars, etc. In addition to public education,

increased medical care also need to be given to individuals who

are already infected so that they recover quickly and that the

epidemic is resolved soon. Furthermore, from the numerical

results and cost-effectiveness analysis on the optimal control

problem, it is found that applying a combination of controls

can give the best results compared to a single control. This

study can be extended in various ways, including considering

the stochastic, time delay, and fractional derivative versions of

this model. In addition, providing control variations (such as

the presence of vaccination) combines the dynamics of two

COVID-19 strains with another comorbidity and considers the

COVID-19 vaccination model.
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